Environmental Sustainability
Browse
Browsing Environmental Sustainability by Subject "3 Good Health and Well Being"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Open Access Artificial intelligence-driven innovation in Ganoderma spp.: potentialities of their bioactive compounds as functional foods(Royal Society of Chemistry (RSC), 2025) Khanal, Sonali; Sharma, Aman; Pillai, Manjusha; Thakur, Pratibha; Tapwal, Ashwani; Kumar, Vinod; Verma, Rachna; Kumar, DineshGanoderma spp., which are essential decomposers of lignified plant materials, can affect trees in both wild and cultivated settings. These fungi have garnered significant global interest owing to their potential to combat several chronic, complicated, and infectious diseases. As technology progresses, researchers are progressively employing artificial intelligence (AI) for studying various fungal strains. This novel approach has the potential to accelerate the knowledge and application of Ganoderma spp. in the food industry. The development of extensive Ganoderma databases has markedly expedited research on them by enhancing access to information on bioactive components of Ganoderma and promoting collaboration with the food sector. Progress in AI techniques and enhanced database quality have further advanced AI applications in Ganoderma research. Techniques such as machine learning (ML) and deep learning employing various methods, including support vector machines (SVMs), Bayesian networks, artificial neural networks (ANNs), random forests (RFs), and convolutional neural networks (CNNs), are propelling these advancements. Although AI possesses the capacity to transform Ganoderma research by tackling significant difficulties, continuous investment in research, data dissemination, and interdisciplinary collaboration are necessary. AI could facilitate the development of customized functional food products by discerning patterns and correlations in customer data, resulting in more specific and accurate solutions. Thus, the future of AI in Ganoderma research looks auspicious, presenting prospects for ongoing advancement and innovation in this domain.Item Open Access Comparative profiling of bioactive compounds and antioxidant activity of extracts from selected medicinal plants: implications for mitigating obesity-related inflammation(Elsevier, 2025-06) Mngoma, Mlungisi F.; Magwaza, Lembe Samukelo; Mditshwa, Asanda; Tesfay, Samson Zeray; Mkhwanazi, Blessing N.; Nkomo, Mbukeni A.Obesity is a metabolic disorder, contributing to various health complications, including diabetes, hypertension, and cardiovascular dysfunction. Increased use of plant extracts to reduce obesity risk reflects consumer preference for natural remedies and scientific validation for their safety and efficacy. This study profiled bioactive compounds in methanolic extracts from the leaves and roots of Merwilla plumbea (Lindl.) Speta, Hypoxis hemerocallidea Fisch, Eucomis autumnalis (Mill.) Chitt, and Pentanisia prunelloides (Klotzsch) Walp. The objective was to explore and compare the medicinal properties of distinct plant parts for their potential to mitigate obesity-induced inflammation. P. prunelloides leaves and roots had higher concentrations of phenolics (123.92 mg/mL and 110.01 mg/mL) and flavonoids (44.4 mg/mL and 55.05 mg/mL), respectively. Gallotannins were significantly higher in H. hemerocallidea roots (5.19 mg/mL) while proanthocyanidins were predominantly found in P. prunelloides roots (35.77 mg/mL). The antioxidant activity was assessed by ferric reducing antioxidant potential (FRAP) and DPPH radical scavenging activity (RSA) assays. P. prunelloides roots had higher FRAP (2.97 mg/mL) and moderate DPPH (RSA) (52.89 %) while M. plumbea roots had the highest DPPH RSA (80.86 %) and lower FRAP (2.25 mg/mL). E. autumnalis roots and leaves showed FRAP values of 2.78 and 2.13 mg/mL, and DPPH RSA of 80.72 and 74.54 %, respectively. The results revealed that all plants investigated had considerable amounts of bioactive compounds with P. prunelloides showing the highest concentration, highlighting its potential for further pharmaceutical and nutraceutical exploration. Further research validating the bioactivity of key compounds in vivo, exploring seasonal variations, and assessing optimal harvesting practices is paramount for the sustainable utilization of these medicinal plants.