Artificial intelligence-driven innovation in Ganoderma spp.: potentialities of their bioactive compounds as functional foods
Date published
Free to read from
Supervisor/s
Journal Title
Journal ISSN
Volume Title
Publisher
Department
Type
ISSN
Format
Citation
Abstract
Ganoderma spp., which are essential decomposers of lignified plant materials, can affect trees in both wild and cultivated settings. These fungi have garnered significant global interest owing to their potential to combat several chronic, complicated, and infectious diseases. As technology progresses, researchers are progressively employing artificial intelligence (AI) for studying various fungal strains. This novel approach has the potential to accelerate the knowledge and application of Ganoderma spp. in the food industry. The development of extensive Ganoderma databases has markedly expedited research on them by enhancing access to information on bioactive components of Ganoderma and promoting collaboration with the food sector. Progress in AI techniques and enhanced database quality have further advanced AI applications in Ganoderma research. Techniques such as machine learning (ML) and deep learning employing various methods, including support vector machines (SVMs), Bayesian networks, artificial neural networks (ANNs), random forests (RFs), and convolutional neural networks (CNNs), are propelling these advancements. Although AI possesses the capacity to transform Ganoderma research by tackling significant difficulties, continuous investment in research, data dissemination, and interdisciplinary collaboration are necessary. AI could facilitate the development of customized functional food products by discerning patterns and correlations in customer data, resulting in more specific and accurate solutions. Thus, the future of AI in Ganoderma research looks auspicious, presenting prospects for ongoing advancement and innovation in this domain.