CERES
Library Services
  • Communities & Collections
  • Browse CERES
  • Library Staff Log In
    Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Zhou, Nan"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    ItemOpen Access
    CRISPR-enabled genetic logic circuits for biosensing
    (Elsevier, 2025-09-01) Wang, Xiyan; Gao, Yuanli; Zhou, Nan; Yang, Zhugen; Cooper, Jonathan M.; Wang, Baojun
    Synthetic biology aims to engineer genetic circuits for custom-designed behaviors in living systems, including sophisticated biosensing applications. The CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) system has gained attention for its potential in genetic circuit design due to its modularity, programmability, precision, and orthogonality. Here we highlight the current CRISPR-based tools for gene regulation at both transcriptional and translational levels. We discuss how these CRISPR technologies facilitate the design and construction of complex genetic circuits that can perform customized logic computations within living systems. Furthermore, we summarize the applications of CRISPR-based genetic logic circuits in biosensing, emphasizing their potential for detecting diverse biological and environmental signals. Finally, we highlight the key challenges facing the development and application of CRISPR-enabled genetic logic circuits and propose directions for future research to overcome these bottlenecks.

Quick Links

  • About our Libraries
  • Cranfield Research Support
  • Cranfield University

Useful Links

  • Accessibility Statement
  • CERES Takedown Policy

Contacts-TwitterFacebookInstagramBlogs

Cranfield Campus
Cranfield, MK43 0AL
United Kingdom
T: +44 (0) 1234 750111
  • Cranfield University at Shrivenham
  • Shrivenham, SN6 8LA
  • United Kingdom
  • Email us: researchsupport@cranfield.ac.uk for REF Compliance or Open Access queries

Cranfield University copyright © 2002-2025
Cookie settings | Privacy policy | End User Agreement | Send Feedback