CERES
Library Services
  • Communities & Collections
  • Browse CERES
  • Library Staff Log In
    Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Vale, Peter C. J."

Now showing 1 - 20 of 33
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Bioconversion of carbon dioxide in anaerobic digesters for on-site carbon capture and biogas enhancement - A review
    (Taylor & Francis, 2017-12-11) Bajón Fernández, Yadira; Soares, Ana; Koch, Konrad; Vale, Peter C. J.; Cartmell, Elise
    Energy consumption of the water sector presents an increasing energy demand, contrary to GHG mitigation aims. As a result, research aimed at capturing emitted CO2 and at developing treatment technologies with a low energy demand and increased renewable energy production has increased, leading to a surge in implementation of anaerobic digestion (AD). Valorization of the biogenic CO2 emitted with biogas AD (estimated at over 1 MtCO2 per annum for the UK water and organic waste sectors), presents an opportunity to further reduce carbon footprint and support energy supply decarburization. This paper reviews bioconversion of CO2 into CH4 in ADs (without addition of H2) as a means to valorize CO2 emissions. The review has concluded this to be a promising solution to reduce carbon footprint and uplift renewable energy production. However, in order to increase readiness for implementation (1) the mechanisms of CO2 utilization need to be elucidated, including the sources of additional H2 needed, (2) studies need to report more thoroughly the conditions of CO2 injection and (3) trials where ADs are integrated with gas to liquid mass transfer technologies need to be performed.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Biological carbon dioxide utilisation in food waste anaerobic digesters
    (Elsevier, 2015-06-09) Bajón Fernández, Yadira; Green, Kevin; Schuler, K.; Soares, Ana; Vale, Peter C. J.; Alibardi, Luca; Cartmell, Elise
    Carbon dioxide (CO2) enrichment of anaerobic digesters (AD) was previously identified as a potential on-site carbon revalorisation strategy. This study addresses the lack of studies investigating this concept in up-scaled units and the need to understand the mechanisms of exogenous CO2 utilisation. Two pilot-scale ADs treating food waste were monitored for 225 days, with the test unit being periodically injected with CO2 using a bubble column. The test AD maintained a CH4 production rate of 0.56 ± 0.13 m3 CH4·(kg VSfed d)−1 and a CH4 concentration in biogas of 68% even when dissolved CO2 levels were increased by a 3 fold over the control unit. An additional uptake of 0.55 kg of exogenous CO2 was achieved in the test AD during the trial period. A 2.5 fold increase in hydrogen (H2) concentration was observed and attributed to CO2 dissolution and to an alteration of the acidogenesis and acetogenesis pathways. A hypothesis for conversion of exogenous CO2 has been proposed, which requires validation by microbial community analysis.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Carbon capture and biogas enhancement by carbon dioxide enrichment of anaerobic digesters treating sewage sludge or food waste
    (Elsevier Science B.V., Amsterdam., 2014-05-01T00:00:00Z) Bajón Fernández, Yadira; Soares, Ana; Villa, Raffaella; Vale, Peter C. J.; Cartmell, Elise
    The increasing concentration of carbon dioxide (CO2) in the atmosphere and the stringent greenhouse gases (GHG) reduction targets, require the development of CO2 sequestration technologies applicable for the waste and wastewater sector. This study addressed the reduction of CO2 emissions and enhancement of biogas production associated with CO2 enrichment of anaerobic digesters (ADs). The benefits of CO2 enrichment were examined by injecting CO2 at 0, 0.3, 0.6 and 0.9M fractions into batch ADs treating food waste or sewage sludge. Daily specific methane (CH4) production increased 11-16% for food waste and 96-138% for sewage sludge over the first 24h. Potential CO2 reductions of 8-34% for sewage sludge and 3-11% for food waste were estimated. The capacity of ADs to utilise additional CO2 was demonstrated, which could provide a potential solution for onsite sequestration of CO2 streams while enhancing renewable energy production.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Carbon dioxide utilisation in anaerobic digesters as an on-site carbon revalorisation strategy
    (Cranfield University, 2014-11) Bajón Fernández, Yadira; Cartmell, Elise; Soares, Ana; Vale, Peter C. J.
    The increasing carbon footprint of the water and organic waste sectors has led to water utilities to voluntarily include carbon mitigation approaches within their strategic plans and to an increase in research aimed at mitigating carbon dioxide (CO2) emissions. Injection of CO2 in anaerobic digesters (ADs) for its bioconversion into methane (CH4) has been identified as a potential solution. However, previous literature provided limited knowledge of the carbon benefits obtainable and presented conflicting information regarding the mechanisms of CO2 utilisation. This thesis investigated the potential of injecting exogenous CO2 into ADs for its bioconversion into CH4 to reduce CO2 emissions from water and organic waste facilities. Batch laboratory scale and continuous pilot-scale ADs enriched with CO2 were operated. A substrate dependant response to exogenous CO2 was reported for the first time and potential CO2 savings of up to 34% and 11% were estimated for sewage sludge and food waste batch ADs, respectively, injected with CO2 before the digestion process. Higher benefits in CH4 production were observed in sewage sludge ADs than in food waste units. An up to 2.4 fold increase in CH4 production during the 24 hours following saturation with CO2 was obtained in sewage sludge units, while benefit was limited to 1.16 fold in food waste ADs. Microbial community analyses were performed to elucidate CO2 fate mechanisms. An increase of up to 80% in the activity of Methanosaetaceae (obligate acetoclastic methanogen) was observed in sewage sludge ADs periodically enriched with CO2. Methanosaetaceae was scarce (4.3±1.7%) in food waste units, which was attributed to an inhibitory concentration of ammonia (4 gL-1 NH4-N). Based on Archaea analyses and on monitoring hydrogen (H2) and volatile fatty acids (VFA) speciation dynamics in a pilot-scale AD, it was proposed that exogenous CO2 is reduced by homoacetogenesis (Wood-Ljungdahl mechanism) and the acetate generated by this route is converted to CH4 by acetoclastic methanogenesis. Gas to liquid mass transfer was identified as limiting of the amount of dissolved CO2 loaded to an AD and the complex rheology of anaerobically digested media as detrimental for transfer performance. An increase of apparent viscosity (μa) from 130 to 340 cPo (typical variability of sewage sludge) reduced gas transfer efficiency (GTE) by 6 percentage points. The use of bubble columns was identified as suitable for further scaled-up units. Injection of CO2 could be performed in the digestate recirculation loop of single phase ADs or in the first phase of two phase ADs (TPADs), with CO2 sourced from off-gas of biogas upgrading technologies. It has been demonstrated that bioconversion of CO2 in ADs can reduce carbon footprint and increase CH4 production, with the possibility of becoming an on-site carbon revalorisation strategy.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Characterisation and control of the biosolids storage environment: Implications for E. coli dynamics
    (Elsevier, 2020-08-15) Fane, Sarah Elizabeth; Nocker, Andreas; Vale, Peter C. J.; Rivas Casado, Monica; Cartmell, Elise; Harris, Jim A.; Bajón Fernández, Yadira; Tyrrel, Sean F.
    E. coli survival in biosolids storage may present a risk of non-compliance with guidelines designed to ensure a quality product safe for agricultural use. The storage environment may affect E. coli survival but presently, storage characteristics are not well profiled. Typically biosolids storage environments are not actively controlled or monitored to support increased product quality or improved microbial compliance. This two-phased study aimed to identify the environmental factors that control bacterial concentrations through a long term, controlled monitoring study (phase 1) and a field-scale demonstration trial modifying precursors to bacterial growth (phase 2). Digested and dewatered biosolids were stored in operational-scale stockpiles to elucidate factors controlling E. coli dynamics. E. coli concentrations, stockpile dry solids, temperature, redox and ambient weather data were monitored. Results from ANCOVA analysis showed statistically significant (p < 0.05) E. coli reductions across storage periods with greater die-off in summer months. Stockpile temperature had a statistically significant effect on E. coli survival. A 4.5 Log reduction was measured in summer (maximum temperature 31 °C). In the phase 2 modification trials, covered stockpiles were able to maintain a temperature >25 °C for a 28 day period and achieved a 3.7 Log E. coli reduction. In winter months E. coli suppression was limited with concentrations >6 Log10 CFU g−1 DS maintained. The ANCOVA analysis has identified the significant role that physical environmental factors, such as stockpile temperature, has on E. coli dynamics and the opportunities for control
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Chemically reactive membrane crystallisation reactor for CO2–NH3 absorption and ammonium bicarbonate crystallisation: Kinetics of heterogeneous crystal growth
    (Elsevier, 2019-11-22) Bavarella, Salvatore; Brookes, Adam; Moore, Andrew; Vale, Peter C. J.; Di Profio, Gianluca; Curcio, Efrem; Hart, Phil; Pidou, Marc; McAdam, Ewan J.
    The feasibility of gas-liquid hollow fibre membrane contactors for the chemical absorption of carbon dioxide (CO2) into ammonia (NH3), coupled with the crystallisation of ammonium bicarbonate has been demonstrated. In this study, the mechanism of chemically facilitated heterogeneous membrane crystallisation is described, and the solution chemistry required to initiate nucleation elucidated. Induction time for nucleation was dependent on the rate of CO2 absorption, as this governed solution bicarbonate concentration. However, for low NH3 solution concentrations, a reduction in pH was observed with progressive CO2 absorption which shifted equilibria toward ammonium and carbonic acid, inhibiting both absorption and nucleation. An excess of free NH3 buffered pH suitably to balance equilibria to the onset of supersaturation, which ensured sufficient bicarbonate availability to initiate nucleation. Following induction at a supersaturation level of 1.7 (3.3 M NH3), an increase in crystal population density and crystal size was observed at progressive levels of supersaturation which contradicts the trend ordinarily observed for homogeneous nucleation in classical crystallisation technology, and demonstrates the role of the membrane as a physical substrate for heterogeneous nucleation during chemically reactive crystallisation. Both nucleation rate and crystal growth rate increased with increasing levels of supersaturation. This can be ascribed to the relatively low chemical driving force imposed by the shift in equilibrium toward ammonium which suppressed solution reactivity, together with the role of the membrane in promoting counter-current diffusion of CO2 and NH3 into the concentration boundary layer developed at the membrane wall, which permitted replenishment of reactants at the site of nucleation, and is a unique facet specific to this method of membrane facilitated crystallisation. Free ammonia concentration was shown to govern nucleation rate where a limiting NH3 concentration was identified above which crystallisation induced membrane scaling was observed. Provided the chemically reactive membrane crystallisation reactor was operated below this threshold, a consistent (size and number) and reproducible crystallised reaction product was collected downstream of the membrane, which evidenced that sustained membrane operation should be achievable with minimum reactive maintenance intervention.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    CO2 absorption into aqueous ammonia using membrane contactors: Role of solvent chemistry and pore size on solids formation for low energy solvent regeneration
    (Elsevier, 2022-03-16) Bavarella, Salvatore; Luqmani, Benjamin A. ; Thomas, Navya; Brookes, Adam; Moore, Andrew; Vale, Peter C. J.; Pidou, Marc; McAdam, Ewan J.
    Solids formation can substanitally reduce the energy penalty for ammonia solvent regeneration in carbon capture and storage (CCS), but has been demonstrated in the literature to be difficult to control. This study examines the use of hollow fibre membrane contactors, as this indirect contact mediated between liquid and gas phases in this geometry could improve the regulation of solids formation. Under conditions comparable to existing literature, NH4HCO3 was evidenced to primarily crystallise in the gas-phase (lumen-side of the membrane) due to the high vapour pressure of ammonia, which promotes gaseous transmission from the solvent. Investigation of solvent reactivity demonstrated how equilibria dependent reactions controlled the onset of NH4HCO3 nucleation in the solvent, and limited ‘slip’ through transfomation of ammonia into its protonated form which occurs prior to the phase change. Crystallisation in the solvent was also dependent upon ammonia concentration, where sufficient supersaturation must develop to overcome the activation energy for nucleation. However, this has to be complemented with a reduction in solvent temperature to offset vapour pressure and limit the risk of gas-phase crystallisation. While changes to the solvent chemistry were sufficient to shift from gas-phase to liquid phase crystallisation, wetting was observed immediately after nucleation in the solvent. This was explained by a local region of supersaturation within the coarse membrane pores that promoted a high nucleation rate, altering the material contact angle of the membrane sufficient for solvent to breakthrough into the gas phase. Adoption of a narrower pore size membrane was shown to dissipate wetting after crystallisation in the solvent, illustrating membrane contactors as a stable platform for the sustained separation of CO2 coupled with its simultaneous transformation into a solid. Through resolving previous challenges experienced with solids formation in multiple reactor configurations, the cost benefit of using ammonia as a solvent can be realised, which is critical to enabling economically viable CCS for the transition to net zero, and can be exploited within hollow fibre membrane contactors, eliciting considerable process intensification over existing reactor designs for CCS.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Coagulation–flocculation process with metal salts, synthetic polymers and biopolymers for the removal of trace metals (Cu, Pb, Ni, Zn) from municipal wastewater
    (Springer, 2018-07-02) Hargreaves, Andrew J.; Vale, Peter C. J.; Whelan, Jonathan; Alibardi, Luca; Constantino, Carlos; Dotro, Gabriela; Cartmell, Elise
    To ensure compliance with regulatory standards, it is important to examine the potential of treatment technologies to enhance trace metal removal from wastewater. This study investigated the effectiveness of coagulation–flocculation at removing trace metals from humus effluent with ferric chloride (FeCl3), the synthetic polymer polyethyleneimine (PEI) and the biopolymers chitosan and floculan. Effluent samples were collected from a trickling filter treatment works operating in the UK and contained 21 ± 4 μg/L Cu, 0.8 ± 0.1 μg/L Pb, 4 ± 1 μg/L Ni and 43 ± 9 μg/L Zn. The influence of coagulant dosage and the velocity and time of the slow mixing stage were studied via a series of jar tests. Chitosan and PEI had a moderate effect on the removal of trace metals (≤ 35%). FeCl3 removed 48% Cu, 56% Pb and 41% Zn at the optimised dose of 0.10 mg/L. At the optimised dose of 0.25 mg/L, floculan removed 77% Cu, 68% Pb and 42% Zn. The dominant mechanism for particle removal by FeCl3 was enmeshment in the precipitates (i.e. sweep flocculation), whereas, for floculan, inter-particle bridging was the dominant removal mechanism. Overall, FeCl3 and floculan were found to be most effective at removing trace metals from wastewater.
  • No Thumbnail Available
    ItemOpen Access
    Data supporting: 'CO2 absorption into aqueous ammonia using membrane contactors: Role of solvent chemistry and pore size on solids formation for low energy solvent regeneration'
    (Cranfield University, 2022-10-13 16:42) Bavarella, Salvatore; Luqmani, Benjamin A.; Thomas, Navya; Brookes, Adam; Moore, Andrew; Vale, Peter C. J.; Pidou, Marc; McAdam, Ewan
    Solids formation can substantially reduce the energy penalty for ammonia solvent regeneration in carbon capture and storage (CCS), but has been demonstrated in the literature to be difficult to control. This study examines the use of hollow fibre membrane contactors, as this indirect contact mediated between liquid and gas phases in this geometry could improve the regulation of solids formation. Adoption of a narrower pore size membrane was shown to dissipate wetting after crystallisation in the solvent, illustrating membrane contactors as a stable platform for the sustained separation of CO2 coupled with its simultaneous transformation into a solid. Through resolving previous challenges experienced with solids formation in multiple reactor configurations, the cost benefit of using ammonia as a solvent can be realised, which is critical to enabling economically viable CCS for the transition to net zero, and can be exploited within hollow fibre membrane contactors, eliciting considerable process intensification over existing reactor designs for CCS.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Demonstrating commercial hollow fibre membrane contactor performance at industrial scale for biogas upgrading at a sewage treatment works
    (MDPI, 2021-01-13) Houlker, Sam; Rutherford, Tony; Herron, Daniel; Brookes, Adam; Moore, Andrew; Vale, Peter C. J.; Pidou, Marc; McAdam, Ewan J.
    Hollow fibre membrane contactor (HFMC) technology has been developed for CO2 absorption primarily using synthetic gas, which neglects the critical impact that trace contaminants might have on separation efficiency and robustness in industrial gases. This study, therefore, commissioned a demonstration-scale HFMC for CO2 separation at a full-scale anaerobic digester facility to evaluate membrane integrity over six months of operation on real biogas. The CO2 capture efficiency identified using real biogas was benchmarked at comparable conditions on synthetic gas of an equivalent partial pressure, and an equivalent performance identified. Two HFMC were subsequently compared, one with and one without a pre-treatment stage that targeted particulates, volatile organic compounds (VOCs) and humidity. Similar CO2 separation efficiency was again demonstrated, indicating limited impact within the timescale evaluated. However, gas phase pre-treatment is advised in order to ensure robustness in the long term. Over longer-term operation, a decline in CO2 separation efficiency was observed. Membrane autopsy identified shell-side deposition, where the structural morphology and confirmation of amide I and II groups, indicated biofouling. Separation efficiency was reinstated via chemical cleaning, which demonstrated that proactive maintenance could minimise process risk.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Development of on-line FTIR spectroscopy for siloxane detection in biogas to enhance carbon contactor management
    (Elsevier, 2015-04-04) Hepburn, Caroline; Vale, Peter C. J.; Brown, Andrew S.; Simms, Nigel J.; McAdam, Ewan J.
    Activated carbon filters are used to limit engine damage by siloxanes when biogas is utilised to provide electricity. However, carbon filter siloxane removal performance is poorly understood as until recently, it had not been possible to measure siloxanes on-line. In this study, on-line Fourier Transform Infrared (FTIR) spectroscopy was developed to measure siloxane concentration in real biogas both upstream (86.1–157.5 mg m−3) and downstream (2.2–4.3 mg m−3) of activated carbon filters. The FTIR provided reasonable precision upstream of the carbon vessel with a root mean square error of 10% using partial least squares analysis. However, positive interference from volatile organic carbons was observed in downstream gas measurements limiting precision at the outlet to an RMSE of 1.5 mg m−3 (47.8%). Importantly, a limit of detection of 3.2 mg m−3 was identified which is below the recommended siloxane limit and evidences the applicability of on-line FTIR for this application.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Disruption of cells in biosolids affects E. coli dynamics in storage
    (IWA Publishing, 2019-05-22) Fane, Sarah Elizabeth; Madureira, D.; Nocker, Andreas; Vale, Peter C. J.; Rivas Casado, Monica; Wilson, A.; Bajón Fernández, Yadira; Harris, Jim A.; Cartmell, Elise; Tyrrel, Sean
    Achieving microbial compliance during biosolids storage can be complicated by the unpredictable increase of Escherichia coli. Thermal treatment during anaerobic digestion (AD) and the effects of dewatering may be a significant factor contributing to indicator survival. Shear forces present during dewatering may promote cell damage, releasing nutrient for E. coli growth. The effect of cell damage on E. coli survival was assessed in laboratory-scale thermal and physical disruption experiments. E. coli growth curves for disrupted treatments were compared with control conditions and quantified using flow cytometry and membrane filtration techniques. A significant difference (p < 0.05) in the level of damaged cells between control and disrupted conditions was observed. For thermal and physical disruption treatments, the peak of E. coli concentration increased significantly by 1.8 Log and 2.4 Log (CFU (colony forming units) g−1 DS), respectively, compared with control treatments. Research findings contribute to the understanding of bacterial growth and death dynamics in biosolids
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Enhancing the anaerobic digestion process through carbon dioxide enrichment: Initial insights into mechanisms of utilisation
    (Taylor and Francis, 2019-03-19) Bajón Fernández, Yadira; Soares, Ana; Vale, Peter C. J.; Koch, Konrad; Masse, Anne Laure; Cartmell, Elise
    Carbon dioxide (CO2) enrichment of anaerobic digesters (ADs) without hydrogen addition has been demonstrated to provide a potential solution to manage CO2 streams generated in the water and organic waste sectors, with concomitant increases in methane (CH4) production. This study investigates the CO2 utilisation mechanisms, by considering chemical and biological pathways in food waste and sewage sludge ADs. Methanosaetaceae was observed to be the dominant methanogen in sewage sludge ADs (Abundance of 83.8 – 98.8%) but scarce in food waste units (3.5 – 5.8%). Methanosarcinaceae was dominant in food waste (14.3 – 32.4%), likely due to a higher tolerance to the free ammonia nitrogen concentration recorded (885 mg·L-1). Ratios of RMethanosaetaceae (ratio of Methanosaetaceae fluorescence signal between test and control) of 1.45 and 1.79 were observed for sludge ADs enriched once and periodically with CO2, respectively (p-value <0.05), suggesting a higher Methanosaetaceae activity associated with CO2 enrichment. Reduction of CO2 by homoacetogenesis followed by acetoclastic methanogenesis was proposed as a CO2 utilisation mechanism, which requires validation by radiolabelling or carbon isotope analysis.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Full-scale trials to achieve low total phosphorus in effluents from sewage treatment works
    (Elsevier, 2021-02-24) Alibardi, Luca; Vale, Peter C. J.; Bajón Fernández, Yadira
    The tightening of phosphorus (P) standards has forced the UK water industry to identify options to improve P removal in sewage treatment works. This article presents results of 12-month trials testing three technologies at full-scale: a membrane bioreactor (MBR), a continuous backwash up-flow sand filter (CBUSF) and a high-rate compressible media filter (HRCMF). The aim of the trial was to determine the lowest total phosphorus (TP) concentrations that these systems can consistently achieve under stable operating conditions. MBR is a mature technology combining biological treatment with membrane filtration for solids removal. CBUSF uses granular media deep filtration as removal process while HRCMF uses a synthetic fibre compressible media to retain solids and both technologies are typically applied as tertiary treatments in combination with chemical P removal. The lowest TP effluent concentration was recorded for CBUSF (0.22 mgP/L) while the highest TP removal was recorded for MBR (95 ± 3 %). HRCMF delivered the poorest performance (32 ± 26 % TP removal, 1.7 mgP/L average TP effluent), attributed to limited chemical TP binding and solids removal under the conditions tested. Factors affecting P removal performance during the trial were the identification of the optimal coagulant dose to bind soluble P, the formation of solids that can be removed by the separation unit, insufficient reaction time for the coagulation process and the carryover of coagulant into the final effluent. The trials gave valuable insights to address the implementation of new technologies or upgrade existing assets' performance.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Gas to liquid mass transfer in rheologically complex fluids
    (Elsevier, 2015-03-19) Bajón Fernández, Yadira; Cartmell, Elise; Soares, Ana; McAdam, Ewan J.; Vale, Peter C. J.; Darche-Dugar, C.; Jefferson, Bruce
    The increase of studies relaying on gas to liquid mass transfer in digested sludge (shear thinning fluid) necessitates a better understanding of the impact of apparent viscosity (μa) and rheology in process performance. Mass transfer retardation due to μa variations was investigated in a pilot scale absorption bubble column for Newtonian and shear thinning fluids with varied superficial gas velocities (UG). A non-linear reduction of mass transfer efficiency with increasing μa was observed, being the impact higher at low μa ranges and high UG. An increase of 114 cPo in μ from 1.01 to 115 cPo in glycerol solutions saturated with UG = 1.73 cm s−1 led to a reduction of 96% in kLa (α = 0.04), while a comparable raise from 115 to 229 cPo implied a reduction of 52% (α = 0.02). Slug–annular flow regime was identified for shear thinning fluids of high μa (1.0% and 1.5% carboxymethyl cellulose sodium salt solutions), where bubble buoyancy was conditioned by the μ of the fluid at rest and the active volume for mass transfer was reduced because of the presence of stagnant areas. Conditions imitating the rheological variability of anaerobically digested sewage sludge were included within those tested, being a reduction in gas transfer efficiency of 6 percentage points (from 7.6 ± 0.3% to 1.6 ± 0.1%) recorded when increasing μa from 130 to 340 cPo. It is thus recommended that rheology and μa variability are accounted for within the design of gas to liquid mass transfer systems involving digested sewage sludge, in order to avoid reductions in process performance and active volume.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    The impact of polymer selection and dose on the incorporation of ballasting agents onto wastewater aggregates
    (Elsevier, 2019-11-28) Murujew, Olga; Geoffroy, Jordan; Fournie, Emeline; Gioacchini, Elisa Socionovo; Wilson, Andrea; Vale, Peter C. J.; Jefferson, Bruce; Pidou, Marc
    Ballasted flocculation is an efficient high-rate sedimentation process getting more attention as an advanced P removal technology for levels below 0.1 mg/L. The process is well-known yet only very few studies have investigated the interactions, within the matrix of wastewater, of coagulant, polymer and ballast, especially when it comes to polymer doses and types which are, in the industry, rather based on recommendations than scientific evidence. In this work, the impact of anionic and cationic polymers has been investigated on P removal and floc properties. Anionic polymers showed to be superior to cationic ones when it comes to P removal and doses even as low as 0.01 mg/L yield better results than coagulant alone. There appears to be a “best-case” floc size with which very good P removal (>90%) can be achieved and flocs of sufficient strength can be generated.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Impacts of coagulation-flocculation treatment on the size distribution and bioavailability of trace metals (Cu, Pb, Ni, Zn) in municipal wastewater
    (Elsevier, 2017-10-25) Hargreaves, Andrew J.; Vale, Peter C. J.; Whelan, Jonathan; Alibardi, Luca; Constantino, Carlos; Dotro, Gabriela; Cartmell, Elise; Campo, Pablo
    This study investigated the impact of coagulation-flocculation treatment on metal form and bioavailability in municipal wastewater. Real humus effluent samples were separated into particulate, colloidal and truly dissolved fractions before and after treatment with either ferric chloride (FeCl3) or the biopolymer Floculan. Results revealed that both reagents effectively (≥48%) eliminated Cu, Pb and Zn from the particulate fraction and removed Cu and Zn from the colloidal fraction in conjunction with colloidal organic carbon (COC). Although organics in the truly dissolved fraction were resistant to removal, Floculan reduced Cu in this fraction by 72% owing to the complexation of free Cu ions to phenol and amino groups along the polymeric chains, revealing an additional removal pathway. In fact, COC removed in the CF process by Floculan was replaced with truly dissolved compounds, input as a result of this reagents organic composition. Floculan, therefore, reduced the soluble concentration of Cu and Zn without changing the DOC concentration, thus reducing the bioavailability of these metals in treated effluent. FeCl3 did not reduce the bioavailability of target metals, thus did not deliver any environmental benefit. This work provides important information for the selection and development of high performance coagulants to improve metal removal.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Influence of innate sludge factors and ambient environmental parameters in biosolids storage on indicator bacteria survival: A review
    (Springer, 2019-10-31) Fane, Sarah Elizabeth; Vale, Peter C. J.; Bajón Fernández, Yadira; Cartmell, Elise; Harris, Jim A.; Tyrrel, Sean
    The potential health risks associated with sludge cake application to agricultural land are managed by controlling the levels of Escherichia coli (E. coli) bacteria which indicate the risk of pathogen transfer. Analyses undertaken following post-digestion sludge dewatering have shown unpredictable levels of E. coli increase in stored sludge cake. Presently there is limited understanding on environmental parameters controlling the indicator bacteria density in storage and the contributory effects dewatering may have. This review aims to establish the state of current knowledge on innate and environmental factors influencing E. coli dynamics and survival in biosolids. A key factor identified is the effect of mechanical dewatering processes, which transform the sludge matrix environmental conditions through the increased availability of growth factors (e.g. nutrient and oxygen). Examples of storage practices from the agricultural and food industries are also discussed as successful methods to inhibit bacterial growth and survival, which could be extrapolated to the biosolids sector to regulate E. coli concentrations.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Is chemically reactive membrane crystallisation faciliated by heterogeneous primary nucleation? Comparison with conventional gas-liquid crystallisation for ammonium bicarbonate precipitation in a CO2-NH3-H2O system
    (American Chemical Society, 2020-01-27) Bavarella, Salvatore; Hermassi, Mehrez; Brookes, Adam; Moore, Andrew; Vale, Peter C. J.; Di Profio, Gianluca; Curcio, Efrem; Hart, Phil; Pidou, Marc; McAdam, Ewan
    In this study, membrane crystallisation is compared to conventional gas-liquid crystallisation for the precipitation of ammonium bicarbonate, to demonstrate the distinction in kinetic trajectory and illustrate the inherent advantage of phase separation introduced by the membrane to crystallising in gas-liquid systems. Through complete mixing of gas and liquid phases in conventional crystallisation, high particle numbers were confirmed at low levels of supersaturation. This was best described by secondary nucleation effects in analogy to mixed suspension mixed product removal (MSMPR) crystallisation, for which a decline in population density was observed with an increase in crystal size. In contrast, for membrane crystallisation, fewer nuclei were produced at an equivalent level of supersaturation. This supported growth of fewer, larger crystals which is preferred to simplify product recovery and limit occlusions. Whilst continued crystal growth was identified with the membrane, this was accompanied by an increase in nucleation rate which would indicate the segregation of heterogeneous primary nucleation from crystal growth, and was confirmed by experimental derivation of the interfacial energy for ammonium bicarbonate (σ, 6.6 mJ m-2), which is in agreement to that estimated for inorganic salts. The distinction in kinetic trajectory can be ascribed to the unique phase separation provided by the membrane which promotes a counter diffusional chemical reaction to develop, introducing a region of concentration adjacent to the membrane. The membrane also lowers the activation energy required to initiate nucleation in an unseeded solution. In conventional crystallisation, the high nucleation rate was due to the higher probability for collision, and the gas stripping of ammonia (around 40% loss) through direct contact between phases which lowered pH and increased bicarbonate availability for the earlier onset of nucleation. It is this high nucleation rate which has restricted the implementation of gas-liquid crystallisation in direct contact packed columns for carbon capture and storage. Importantly, this study evidences the significance of the membrane to governing crystallisation for gas-liquid chemical reactions through providing controlled phase separation.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Mechanical sludge disintegration for the production of carbon source for biological nutrient removal.
    (Elsevier, 2007-04) Kampas, Pantelis; Parsons, Simon A.; Pearce, Peter; Ledoux, Sandrine; Vale, Peter C. J.; Churchley, J.; Cartmell, Elise
    The primary driver for a successful biological nutrient removal is the availability of suitable carbon source, mainly in the form of volatile fatty acids (VFA). Several methods have been examined to increase the amount of VFAs in wastewater. This study investigates the mechanism of mechanical disintegration of thickened surplus activated sludge by a deflaker technology for the production of organic matter. This equipment was able to increase the soluble carbon in terms of VFA and soluble chemical oxygen demand (SCOD) with the maximum concentration to be around 850 and 6530 mg l−1, for VFA and SCOD, respectively. The particle size was reduced from 65.5 to 9.3 μm after 15 min of disintegration with the simultaneous release of proteins (1550 mg l−1) and carbohydrates (307 mg l−1) indicating floc disruption and breakage. High performance size exclusion chromatography investigated the disintegrated sludge and confirmed that the deflaker was able to destroy the flocs releasing polymeric substances that are typically found outside of cells. When long disintegration times were applied (10 min or 9000 kJ kg−1 TS of specific energy) smaller molecular size materials were released to the liquid phase, which are considered to be found inside the cells indicating cell lysis.
  • «
  • 1 (current)
  • 2
  • »

Quick Links

  • About our Libraries
  • Cranfield Research Support
  • Cranfield University

Useful Links

  • Accessibility Statement
  • CERES Takedown Policy

Contacts-TwitterFacebookInstagramBlogs

Cranfield Campus
Cranfield, MK43 0AL
United Kingdom
T: +44 (0) 1234 750111
  • Cranfield University at Shrivenham
  • Shrivenham, SN6 8LA
  • United Kingdom
  • Email us: researchsupport@cranfield.ac.uk for REF Compliance or Open Access queries

Cranfield University copyright © 2002-2025
Cookie settings | Privacy policy | End User Agreement | Send Feedback