CERES
Library Services
  • Communities & Collections
  • Browse CERES
  • Library Staff Log In
    Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Pandit, Ravi Kumar"

Now showing 1 - 2 of 2
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Data-centric predictive control with tuna swarm optimization-backpropagation neural networks for enhanced wind turbine performance
    (Elsevier, 2024-12) Li, Wei; Pandit, Ravi Kumar
    Wind energy is a significant renewable resource, but its efficient harnessing requires advanced control systems. This study presents a Data-Centric Predictive Control (DPC) system, enhanced by a Tuna Swarm Optimization-Backpropagation Neural Network (TSO-BPNN) for predictive wind turbine control. It's like a smart tool that uses innovative fusion of deep learning, predictive Control, and reinforcement learning. Unlike traditional control methods, the proposed approach uses real-time data to optimize turbine performance in response to fluctuating wind conditions. The system is validated using simulations on the FAST platform, which demonstrate its superior performance in two critical operational regions. Specifically, in Region II, where the objective is to maximize power extraction from the wind, the DPC achieves a 1.07 % reduction in overshoot and an improvement of 36.14 units in steady-state error compared to traditional methods. The response time remains comparable to existing Model Predictive Control (MPC) strategies, ensuring real-time applicability without sacrificing efficiency. In Region III, where maintaining constant power output is crucial, the DPC outperforms both the baseline and MPC methods, reducing overshoot by 0.58 % and improving accuracy by 17.27 units compared to the baseline method. These results highlight the effectiveness of the proposed DPC system in optimizing turbine performance under variable wind conditions, offering a significant improvement over traditional methods in both accuracy and control precision.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Improving O&M decision tools for offshore wind farm vessel routing by incorporating weather uncertainty
    (Institution of Engineering and Technology (IET), 2023-02-24) Hadjoudj, Yannis; Pandit, Ravi Kumar
    The growth of offshore wind farms depends significantly on how well offshore wind turbines (OWTs) are operated and maintained in the long term. The operation and maintenance (O&M) activities for offshore wind are relatively more challenging due to uncertain environmental conditions than onshore and due to this, vessel routing for offshore on-site repair is remain complex and unreliable. Here, an improved data-driven decision tool is proposed to robust the vessel routing for O&M tasks under numerous environmental conditions. A novel data-driven technique based on operational datasets is presented to incorporate weather uncertainties, such as wind speed, wave period and wave height (significantly influence offshore crew repair works), into the O&M decision-making process. Results show: (1) The inclusion of weather conditions improves the O&M model uncertainty and accuracy, (2) the implementation of a model allowing weather conditions to evolve has been added to vary the probabilities of successful transfers throughout the day, and (3) the reduction of risk of transfer failure by 15%. These conclusions are further supported by the performance error metrics and uncertainty calculations. Last but not least, by generating a variety of policies for consideration, this tool gave wind turbine operators a systematic and transparent way to evaluate trade-offs and enable choices pertaining to offshore O&M. The full paper highlights the strengths and weaknesses of the proposed technique for offshore vessel routing as well as how the environmental conditions affect them.

Quick Links

  • About our Libraries
  • Cranfield Research Support
  • Cranfield University

Useful Links

  • Accessibility Statement
  • CERES Takedown Policy

Contacts-TwitterFacebookInstagramBlogs

Cranfield Campus
Cranfield, MK43 0AL
United Kingdom
T: +44 (0) 1234 750111
  • Cranfield University at Shrivenham
  • Shrivenham, SN6 8LA
  • United Kingdom
  • Email us: researchsupport@cranfield.ac.uk for REF Compliance or Open Access queries

Cranfield University copyright © 2002-2025
Cookie settings | Privacy policy | End User Agreement | Send Feedback