CERES
Library Services
  • Communities & Collections
  • Browse CERES
  • Library Staff Log In
    Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Medina, Angel"

Now showing 1 - 20 of 65
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Acclimatisation of Fusarium langsethiae, F. poae and F. sporotrichioides to elevated CO2: impact on fungal growth and mycotoxin production on oat-based media
    (Elsevier, 2023-03-28) Kahla, Amal; Verheecke-Vaessen, Carol; Delpino-Deelias, Mariluz; Gutierrez-Pozo, Maria; Medina, Angel; Magan, Naresh; Doohan, Fiona
    Oats are highly susceptible to infection by Fusarium species, especially F. langsethiae, F. poae and F. sporotrichioides which contaminate the grain with mycotoxins. Climate change is expected to affect fungal colonisation and associated mycotoxin production. The objective of this study was to examine the effect of acclimatisation to elevated CO2 on the growth and mycotoxin production capacity of these fungal species. Strains of F. langsethiae (FL; seven strains), F. poae (FP; two strains) and F. sporotrichioides (FS; one strain) were acclimatised by sub-culturing for 10 generations at either 400 or 1000 ppm CO2 under diurnal temperature conditions. At each sub-culturing, the effect of acclimatisation to elevated CO2 on (a) lag phase prior to growth, (b) growth rate on oat-based media was assessed. Additionally, the production of type A trichothecenes and related toxic secondary metabolites of sub-cultures after 1, 7 and 10 generations were assessed using LC-MS/MS qTRAP. The results showed that Fusarium strains had an increased lag time and growth rate in response to the combined effect of sub-culturing and elevated CO2 levels. T-2 + HT-2 production was affected by elevated CO2 in strain FL4 (7.1-fold increase) and a decrease in strain FL1 (2.0-fold decrease) at the first sub-culturing and FS (1.3-fold decrease) after 7 sub-cultures compared to ambient conditions. The effect of sub-culturing on T-2 + HT-2 production varied depending on the fungal strain. For strain FL4, significantly less T-2 + HT-2 toxins were produced after 10 generations (4.4-fold decrease) as compared to that under elevated CO2 conditions after one sub-culture, and no change was observed under ambient conditions. The FS strain showed significant stimulation of T-2 + HT-2 toxin production after 10 sub-cultured generations (1.1-fold increase) compared to the initial sub-culture of this strain under elevated CO2 conditions. The production of other toxic secondary metabolites was generally not impacted by elevated CO2 conditions or by sub-culture for 10 generations, with the exceptions of FL1 and FP1. FL1 produced significantly more neosolaniol after 10 generations, when compared to those after 1 and 7, regardless of the CO2 conditions. For FP1, elevated CO2 significantly triggered beauvericin production after an initial sub-culture when compared to ambient conditions at the same sub-culture stage (29-fold). FP1 acclimatisation to elevated CO2 led to a decrease of beauvericin production after 10 generations when compared to 1 (6-fold). In contrast, sub-culturing for 10 generations compared to 1 under ambient CO2 conditions resulted in an increase in this toxin (12-fold).
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Aspergillus ullungdoensis sp. nov., Penicillium jeongsukae sp. nov., and other fungi from Korea
    (Elsevier, 2024-12-01) Lee, Hyang Burm; Nguyen, Thuong T. T.; Noh, So Jeong; Kim, Dong Hee; Kang, Ki Hyun; Kim, Su Jin; Kirk, Paul M.; Avery, Simon V.; Medina, Angel; Hallsworth, John E.
    Eurotiales fungi are thought to be distributed worldwide but there is a paucity of information about their occurrence on diverse substrates or hosts and at specific localities. Some of the Eurotiales, including Aspergillus and Penicillium species, produce an array of secondary metabolites of use for agricultural, medicinal, and pharmaceutical applications. Here, we carried out a survey of the Eurotiales in Korea, focusing on soil, freshwater, and plants (dried persimmon fruits and seeds of Perilla frutescens, known commonly as shiso). We obtained 11 species that—based on morphology, physiology, and multi-locus (ITS, BenA, CaM, and RPB2) phylogenetic analyses—include two new species, Aspergillus ullungdoensis sp. nov. and Penicillium jeongsukae sp. nov., and nine species that were known, but previously not described in Korea, Aspergillus aculeatinus, Aspergillus aurantiacoflavus, Aspergillus croceiaffinis, Aspergillus pseudoviridinutans, Aspergillus uvarum, Penicillium ferraniaense, Penicillium glaucoroseum, Penicillium sajarovii, and one, Penicillium charlesii, that was isolated from previously unknown host, woodlouse (Porcellio scaber). We believe that biodiversity surveys and identifying new species can contribute to set a baseline for future changes in the context of humanitarian crises such as climate change.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Assessment of agricultural practices by Ethiopian women farmers: existence of gender disparities in access to mycotoxins training
    (Wageningen Academic Publishers, 2023-01-01) Cervini, Carla; Abegaz, Beimnet; Mohammed, Abdi; Elias, Raisa; Medina, Angel; Gebre, Kiros; Verheecke-Vaessen, Carol
    Ethiopia is one of the countries with the lowest gender-equality performance in sub-Saharan Africa being ranked 121/134 in terms of the magnitude and scope of gender disparities by the United Nations Women’s Organisation. Within the farming communities, women represent 70% of the labour force, but they are neglected from accessing training events run by Ethiopian Universities (e.g. Haramaya University). A survey to assess the existence of gender disparities among Ethiopian women farmers with respect to agricultural labour and mycotoxins knowledge was conducted on three hundred and forty-nine women from the Oromia and Amhara regions. A higher illiteracy rate was found in women compared to men from both Oromia and Amhara regions. Women played a key role in agricultural activities while having limited access to modern technologies compared to their male counterparts. Women were mainly responsible for sorting spoiled crops. Especially in Amhara, these were intended for home consumption, representing a serious health risk for local people. Overall, women from Amhara were more aware than women from Oromia about what mycotoxins are (e.g. aflatoxins), their impact and risk of occurrence in crops. Women in Amhara were also more intended to act towards mycotoxins in the future compared to women from Oromia. Only 0.24% of women have previously attended a training on mycotoxins. The radio seemed to be the most efficient way to deliver training to Ethiopian women farmers from these regions. Mycotoxins trainings were the second option of choice by all women surveyed. Such findings clearly stated the existence of gender inequality in the two Ethiopian regions considered. Empower women’s knowledge about mycotoxins will not only benefit agricultural income and the national economy, but it will also provide women the recognition they equally deserve alongside their male counterparts in future agricultural training programs and interventions.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Assessment of the effect of Satureja montana and Origanum virens essential oils on Aspergillus flavus growth and aflatoxin production at different water activities
    (MDPI, 2020-02-25) García-Díaz, Marta; Gil-Serna, Jessica; Patiño, Belén; García-Cela, Esther; Magan, Naresh; Medina, Angel
    Aflatoxin contamination of foodstuffs poses a serious risk to food security, and it is essential to search for new control methods to prevent these toxins entering the food chain. Several essential oils are able to reduce the growth and mycotoxin biosynthesis of toxigenic species, although their efficiency is strongly influenced by the environmental conditions. In this work, the effectiveness of Satureja montana and Origanum virens essential oils to control Aspergillus flavus growth was evaluated under three water activity levels (0.94, 0.96 and 0.98 aw) using a Bioscreen C, a rapid in vitro spectrophotometric technique. The aflatoxin concentrations at all conditions tested were determined by HPLC-FLD. Aspergillus flavus growth was delayed by both essential oil treatments. However, only S. montana essential oil was able to significantly affect aflatoxin production, although the inhibition percentages widely differed among water activities. The most significant reduction was observed at 0.96 aw, which is coincident with the conditions in which A. flavus reached the highest levels of aflatoxin production. On the contrary, the treatment with S. montana essential oil was not effective in significantly reducing aflatoxin production at 0.94 aw. Therefore, it is important to study the interaction of the new control compounds with environmental factors before their application in food matrices, and in vitro ecophysiological studies are a good option since they provide accurate and rapid results.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Atoxigenic isolates of Aspergillus flavus effectively reduce cyclopiazonic acid in a sorghum-based matrix under simulated abiotic stress conditions
    (Oxford University Press (OUP), 2025-05-15) Sharma, Vanshika; Cervini, Carla; Verheecke-Vaessen, Carol; Bandyopadhyay, Ranajit; Medina, Angel; Ortega-Beltran, Alejandro; Magan, Naresh
    Maize, groundnut, and sorghum are important staple crops in several countries, but are prone to mycotoxin contamination. In the tropics and subtropics, Aspergillus flavus frequently contaminates those crops with aflatoxins and, sometimes, with cyclopiazonic acid (CPA). However, some genotypes cannot produce one or both toxins. In various countries, atoxigenic isolates of A. flavus are formulated into biocontrol products for field use to outcompete aflatoxin producers. The products effectively limit aflatoxin but their utility to reduce CPA remains unexplored. The abilities of four atoxigenic isolates (AF-) from Burkina Faso to control CPA by an isolate with high capacity to produce aflatoxins (AF+) and CPA was tested in co-inoculations at varying ratios (100+, 75+/25-, 50+/50-, 25+/75-, 100-), under simulated abiotic stress conditions. Experiments were conducted on 2% sorghum-based media at 0.95 and 0.90 water activity (aw), at 30°C and 37°C, for 12 days. CPA was quantified using LC-MS/MS. CPA concentrations gradually decreased as the proportion of atoxigenic isolates increased, with effectiveness varying depending on the environmental conditions.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Biocontrol activities of yeasts or lactic acid bacteria isolated from Robusta coffee against Aspergillus carbonarius growth and ochratoxin A production in vitro
    (Elsevier, 2024-04-16) López Rodríguez, Claudia; Strub, Caroline; Fontana, Angélique; Verheecke-Vaessen, Carol; Durand, Noël; Beugré, Corinne; Guehi, Tagro; Medina, Angel; Schorr-Galindo, Sabine
    Biocontrol Agents (BCAs) can be an eco-friendly alternative to fungicides to reduce the contamination with mycotoxigenic fungi on coffee. In the present study, different strains of bacteria and yeasts were isolated from Ivorian Robusta coffee. Their ability to reduce fungal growth and Ochratoxin A (OTA) production during their confrontation against Aspergillus carbonarius was screened on solid media. Some strains were able to reduce growth and OTA production by 85 % and 90 % and were molecularly identified as two yeasts, Rhodosporidiobolus ruineniae and Meyerozyma caribbica. Subsequent tests on liquid media with A. carbonarius or solely with OTA revealed adhesion of R. ruineniae to the mycelium of A. carbonarius through Scanning Electron Microscopy, and an OTA adsorption efficiency of 50 %. For M. caribbica potential degradation of OTA after 24 h incubation was observed. Both yeasts could be potential BCAs good candidates for Ivorian Robusta coffee protection against A. carbonarius and OTA contamination.
  • No Thumbnail Available
    ItemEmbargo
    Biocontrol of ochratoxigenic fungi by endogenous lactic acid bacteria and yeasts from ivorian robusta coffee in the context of climate change
    (Cranfield University, 2023-09) López Rodríguez, Claudia; Medina, Angel; Schorr-Galindo, Sabine; Verheecke-Vaessen, Carol; Fontana, Angelique; Strub, Caroline
    This doctoral research delves into the innovative domain of biocontrol strategies targeting mycotoxigenic fungi in the context of climate change. Focusing on Ivorian coffee, a vital economic and agricultural commodity, the study explores the potential of indigenous lactic acid bacteria (LAB) and yeasts as biocontrol agents. Mycotoxins, toxic secondary metabolites produced by fungi, pose significant health risks and economic losses. As climate change amplifies the proliferation of mycotoxigenic fungi, the demand for sustainable and eco-friendly interventions intensifies. The research encompasses comprehensive isolation, identification, and characterization of LAB and yeasts from Ivorian coffee, evaluating their antagonistic properties against mycotoxigenic fungi. Furthermore, the study elucidates the mechanisms underlying the biocontrol activity, shedding light on how these microorganisms mitigate mycotoxin contamination. This research is pivotal in the pursuit of climate-resilient strategies for mycotoxin management, contributing to both food safety and agricultural sustainability.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Biovalorisation of crude glycerol and xylose into xylitol by oleaginous yeast Yarrowia lipolytica
    (BMC (part of Springer Nature), 2020-06-03) Prabhu, Vinayak Ashok; Thomas, Dominic J.; Ledesma-Amaro, Rodrigo; Leeke, Gary A.; Medina, Angel; Verheecke-Vaessen, Carol; Coulon, Frederic; Agrawal, Deepti; Kumar, Vinod
    Background Xylitol is a commercially important chemical with multiple applications in the food and pharmaceutical industries. According to the US Department of Energy, xylitol is one of the top twelve platform chemicals that can be produced from biomass. The chemical method for xylitol synthesis is however, expensive and energy intensive. In contrast, the biological route using microbial cell factories offers a potential cost-effective alternative process. The bioprocess occurs under ambient conditions and makes use of biocatalysts and biomass which can be sourced from renewable carbon originating from a variety of cheap waste feedstocks. Result In this study, biotransformation of xylose to xylitol was investigated using Yarrowia lipolytica, an oleaginous yeast which was firstly grown on a glycerol/glucose for screening of co-substrate, followed by media optimisation in shake flask, scale up in bioreactor and downstream processing of xylitol. A two-step medium optimization was employed using central composite design and artificial neural network coupled with genetic algorithm. The yeast amassed a concentration of 53.2 g/L xylitol using pure glycerol (PG) and xylose with a bioconversion yield of 0.97 g/g. Similar results were obtained when PG was substituted with crude glycerol (CG) from the biodiesel industry (titer: 50.5 g/L; yield: 0.92 g/g). Even when xylose from sugarcane bagasse hydrolysate was used as opposed to pure xylose, a xylitol yield of 0.54 g/g was achieved. Xylitol was successfully crystallized from PG/xylose and CG/xylose fermentation broths with a recovery of 39.5 and 35.3%, respectively. Conclusion To the best of the author’s knowledge, this study demonstrates for the first time the potential of using Y. lipolytica as a microbial cell factory for xylitol synthesis from inexpensive feedstocks. The results obtained are competitive with other xylitol producing organisms.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Carbon dioxide production as an indicator of Aspergillus flavus colonisation and aflatoxins/cyclopiazonic acid contamination in shelled peanuts stored under different interacting abiotic factors
    (Elsevier, 2019-10-24) Garcia Cela, Esther; Gari Sanchez, F. J.; Sulyok, Michael; Verheecke-Vaessen, Carol; Medina, Angel; Kruska, Rudolf; Magan, Naresh
    Aspergillus flavus is the main xerophylic species colonising stored peanuts resulting in contamination with aflatoxins (AFs) and cyclopiazonic acid (CPA). This study evaluated the relationship between storage of shelled peanuts under interacting abiotic conditions on (a) temporal respiration (R) and cumulative CO2 production, (b) dry matter losses (DMLs) and (c) aflatoxin B1 (AFB1) and CPA accumulation. Both naturally contaminated peanuts and those inoculated with A. flavus were stored for 7-days under different water activities (aw; 0.77–0.95) and temperatures (20–35°C). There was an increase in the temporal CO2 production rates in wetter and warmer conditions, with the highest respiration at 0.95 aw + A. flavus inoculum at 30°C (2474 mg CO2kg−1h−1). The DMLs were modelled to produce contour maps of the environmental conditions resulting in maximum/minimum losses. Maximum mycotoxin contamination was always at 0.95 aw although optimal temperatures were 25-30°C for AFs and 30-35°C for CPA. These results showed a correlation between CO2 production and mycotoxin accumulation. They also provide valuable information for the creation of a database focused on the development of a post-harvest decision support system to determine the relative risks of contamination with these mycotoxins in stored shelled peanuts.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Comparative growth inhibition of bread spoilage fungi by different preservative concentrations using a rapid turbidimetric assay system
    (Frontiers, 2021-06-08) Valle Garcia, Marcelo; Garcia Cela, Esther; Magan, Naresh; Venturini Copetti, Marina; Medina, Angel
    Bread and intermediate moisture bakery products are mainly spoiled by yeasts and filamentous fungi. The inoculum load and preservation system used determines their shelf life. To extend the shelf life of such commodities, the use of chemical preservatives is the most common way to try and control the initiation of mold spoilage of bread. This study has utilized a rapid turbidimetric assay system (Bioscreen C) to examine the temporal efficacy of calcium propionate (CP) and potassium sorbate (PS) for controlling the growth of important bread spoilage fungi. The objectives were to compare the temporal growth of strains of three important spoilage fungi Hyphopichia burtonii (HB17), Paecilomyces variotii (PV11), and Penicillium roqueforti (PR06) isolated from visibly molded bread to (a) different concentrations of CP and PS (0–128 mM), (b) temperatures (25°C, 30°C), (c) water activity (aw; 0.95, 0.97), and (d) pH (5.0, 5.5). All three abiotic factors, pH, aw, and temperature, and preservative concentrations influenced the relative growth of the species examined. In general, PS was more effective than CP in inhibiting the growth of the strains of these three species. In addition, the Time to Detection (TTD) for the efficacy of the preservatives under the interacting abiotic factors was compared. The strain of Paecilomyces variotii (PV10) was the most tolerant to the preservatives, with the shortest TTD values for both preservatives. P. roqueforti was the most sensitive with the longest TTD values under all conditions examined. These results are discussed in the context of the evolution of resistance to food-grade preservatives by such spoilage fungi in bakery products.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Comparison of growth and aflatoxin B1 production profiles of Aspergillus flavus strains on conventional and isogenic GM-maize-based nutritional matrices
    (Elsevier, 2021-10-30) Gasperini, Alessandra M.; Medina, Angel; Magan, Naresh
    Maize grown in both North and South America are now predominantly genetically modified (GM) cultivars with some resistance to herbicide, pesticide, or both. There is little information on the relative colonisation and aflatoxin B1 (AFB1) production with maize meal-based nutritional matrices based on kernels of non-GM maize and isogenic GM-ones by strains of Aspergillus flavus. The objectives were to examine the effect of interacting conditions of temperature (25–35 °C) and water availability (0.99–0.90 water activity, aw) on (a) mycelial growth, (b) AFB1 production and (c) develop contour maps of optimum and marginal conditions of these parameters for four strains of A. flavus on three different non-GM and isogenic GM-maize based nutritional media. The growth of the four strains of A. flavus (three aflatoxigenic; one non-aflatoxigenic) was relatively similar in relation to the temperature × aw conditions examined on both non-GM and GM-based matrices. Optimum growth overall was at 30–35 °C and 0.99 aw for all four strains. Under water stress (0.90 aw) growth was optimum at 35 °C. Statistically: non-GM, GM cultivars, temperature and aw all significantly affected growth rates. For AFB1 production, all single and interacting factors were statistically significant except for non-GM × GM cultivar. In conclusion, colonisation of GM- and non-GM nutritional sources was similar for the different A. flavus strains examined. The contour maps will be very useful for understanding the ecological niches for both toxigenic and non-toxigenic strains in the context of the competitive exclusion of those producing aflatoxins.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Comparison of multiple mycotoxins in harvested maize samples in three years (2018-2020) in four continents
    (Taylor and Francis, 2022-01-19) Raj, Jog; Farkaš, Hunor; Jakovčević, Zdenka; Medina, Angel; Magan, Naresh; Čepela, Robert; Vasiljević, Marko
    This study has examined the pattern of mycotoxin contamination of maize destined for animal feed in different global regions over a period of 3 years (2018–2020) with up to 1000+ samples analysed in each year. Overall, >75% of samples in each of the survey years were contaminated with multiple mycotoxins regardless of the global region (Europe, Africa, Asia, South Americas countries). Using LC-MS/MS, it was possible to quantify the relative contamination present in the samples in each year from the different regions of eight different mycotoxins including aflatoxin B1 (AFB1), ochratoxin A (OTA) deoxynivalenol (DON), fumonisin B1 (FB1) and B2, zearalenone (ZEA), T-2 and HT-2 toxins. The trends in mycotoxin contamination showed that there was a consistent contamination with DON in the 3 sampling years in all four regions. Interestingly, AFB1 contamination was prevalent in all regions in 2018, but more predominant in Europe and in 2019. In contrast, in 2020 it was found to be the major contaminant in Africa only. However, FB1 contamination of maize which was prevalent in Europe in 2018, became more prevalent in Asia and LATAM countries in 2019 and even in African maize in 2020. Comparisons of contamination with different mycotoxins in each of the years globally showed significant differences for AFB1, FB1, DON and ZEA between the different years. These results are discussed in relation to the trends of contamination of maize with mixtures of mycotoxins and the implication for their control in this key commodity used as an important ingredient in animal feed.
  • No Thumbnail Available
    ItemOpen Access
    Data for "The influence of different abiotic conditions on the concentrations of free and conjugated (masked) deoxynivalenol and zearalenone in stored wheat"
    (Cranfield University, 2024-02-09 16:10) Oluwakayode, Abimbola; Greer, brett; Meneely, Julie; He, Qiqi; Sulyok, Michael; Krska, Rudolf; Medina, Angel
    This study aims to examine the impact of storage conditions of water activities 0.93, 0.95, 0.98 aw and temperature 20-25 °C on (a) the concentrations of DON and ZEN and their respective glucosides/conjugates and (b) the concentrations of emerging mycotoxins in both naturally contaminated and irradiated wheat grains inoculated with Fusarium graminearum to ascertain any potential increases in toxicity in the wheat grains.
  • No Thumbnail Available
    ItemOpen Access
    Data underpinning "Interacting climate change environmental factors effects on Fusarium langsethiae growth, expression of Tri genes and T-2/HT-2 mycotoxin production on oat-based media and in stored oats"
    (Cranfield University, 2019-08-21 09:08) Verheecke, Carol; Magan, Naresh; Diez, Lucia; renaud, justin; Sumarah, Mark; Medina, Angel
    The objectives of this study were to investigate the impact that interactions between key climate change (CC) related environmental factors of temperature (20, 25, 30°C), water activity (aw; 0.995, 0.98) and CO2 exposure (400, 1000 ppm) may have on (a) growth, (b) gene expression of biosynthetic toxin genes (Tri5, Tri6, Tri16), and (c) phenotypic T-2/HT-2 production by Fusarium langsethiae on oat-based agar medium and in stored oats. Fungal growth was optimum at 25°C and 0.995 aw and reduced significantly at 30°C and intermediate stress (0.98 aw, elevated CO2 (1000 ppm) exposure by approx. 4-fold. Lag phases prior to growth paralleled these results with the longest lag phase in this treatment (24 hrs). On oat-based medium, the relative Tri5 gene expression was increased in elevated CO2 conditions. The expression of both the Tri6 and Tri16 genes was reduced when compared to control (20°C, 0.995 aw, 400 ppm), especially in elevated CO2 conditions. In stored oats, the Tri5 gene expression was reduced in all conditions except at 30°C, 0.98 aw, elevated CO2 where there was a significant (5.3-fold) increase. The expression of the Tri6 was slightly over-expressed in elevated CO2 and the Tri16 gene was upregulated, especially in elevated CO2 conditions. For mycotoxin production, both on oat-based medium and in stored oats the production was higher at 25°C when compared to 30°C. In stored oats, at 0.98 aw, elevated CO2 led to higher T2/HT-2 toxin production at both 25 and 30°C with a significant increase (73-fold higher) at 30°C. In elevated CO2 conditions, Tri16 (Spearman test; 0.68; p-value=0.0019) and Tri5 gene expression (Spearman test; 0.56; p-value=0.0151) were correlated with T-2+HT-2 production. Nine T-2 and HT-2 metabolites were detected by LC-MS/MS including a new dehydro T-2 toxin and the conjugate, HT-2 toxin glucuronide (in plantae). The new dehydro T-2 toxin was the most abundant metabolites and showed correlation (R2=0.8176) with T-2 production. This is the first study to examine the impact of CC factors on growth and mycotoxin production by a strain of F. langsethiae. The influence of such scenarios on relative risk of oats contamination with these toxins in relation to the food security agenda is discussed.'
  • No Thumbnail Available
    ItemOpen Access
    Data underpinning "Three-Dimensional Study of F. graminearum Colonisation of Stored Wheat: Post-Harvest Growth Patterns, Dry Matter Losses and Mycotoxin Contamination"
    (Cranfield University, 2020-08-07 08:19) Portell-Canal, Xavier; Garcia Cela, Esther; Verheecke, Carol; Medina, Angel; Otten, Wilfred; Magan, Naresh; Torrelles-RÃfales, Rosa
    Data used in the paper "Three-Dimensional Study of F. graminearum Colonisation of Stored Wheat: Post-Harvest Growth Patterns, Dry Matter Losses and Mycotoxin Contamination". Data is found in comma separated values files (e.g., "data1.csv") and the data content explained in text files (e.g., "data2_Readme.txt").
  • No Thumbnail Available
    ItemOpen Access
    Data underpinning "Water and temperature relations of Fusarium langsethiae strains and modelling of growth and T-2 and HT-2 mycotoxin production on oat-based matrices"
    (Cranfield University, 2021-04-23 11:55) Verheecke, Carol; García-Cela, Esther; Lopez-Prietro, Alejandro; Osk Jonsdottir, Inga; Medina, Angel; Magan, Naresh
    These data are linked to the paper Water and temperature relations of Fusarium langsethiae strains and modelling of growth and T-2 and HT-2 mycotoxin production on oat-based matrices.
  • No Thumbnail Available
    ItemOpen Access
    Data underpinning the paper: Intra-species variability in Fusarium langsethiae strains in growth and T-2/HT-2 mycotoxin production in response to climate change abiotic factors.
    (Cranfield University, 2021-06-21 08:58) Verheecke, Carol; Lopez-Pietro, Alejandro; Garcia Cela, Esther; Medina, Angel; Magan, Naresh
    The objective of this study was to evaluate the potential intra-species variability of 3 Fusarium langsethiae strains in response to extreme climate change (CC) conditions on an oat-based matrix. The impact of elevated temperature (25 vs 30-34 °C) coupled with increasing drought stress (0.98 vs 0.95 aw ) and elevated CO2 (400 vs 1000 ppm) were examined on lag phases prior to growth, growth rate, and production of the mycotoxins T-2 and HT-2 and their ratio. In comparison to the control conditions (25 °C; 0.98; 400 ppm), exposure to increased temperature (30- 34 °C), showed similar reductions in the lag phase and fungal growth rates of all 3 strains. However, with elevated CO2 a reduction in both lag phases prior to growth and growth rate occurred regardless of the aw examined. For T-2 and HT-2 mycotoxin production, T-2 showed the most intra-species variability in response to the interacting abiotic stress factors, with the 3 strains having different environmental conditions for triggering increases in T-2 production: Strain 1 produced higher T-2 toxin at 25 °C, while Strain 2 and the type strain (Fl201059) produced most at 0.98 aw /30 °C. Only Strain 2 showed a reduction in toxin production when exposed to elevated CO2 . HT-2 production was higher at 25 °C for the type strain and higher at 30-34 °C for the other two strains, regardless of the aw or CO2 level examined. The HT-2/T-2 ratio showed no significant differences due to the imposed interacting CC abiotic conditions.
  • No Thumbnail Available
    ItemOpen Access
    Dataset "Impact of Carbon Sources in Airport De-icing Compounds on the Growth of Sphaerotilus natans"
    (Cranfield University, 2024-09-12) Exton, Benjamin; Grabowski, Robert; Hassard, Francis; Medina, Angel
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Dynamics of solute/matric stress interactions with climate change abiotic factors on growth, gene expression and ochratoxin aA production by Penicillium verrucosum on a wheat-based matrix
    (Elsevier, 2020-10-16) Abdelmohsen, Shaimaa; Verheecke-Vaessen, Carol; García-Cela, Esther; Medina, Angel; Magan, Naresh
    Penicillium verrucosum is responsible for ochratoxin A (OTA) contamination of temperate cereals during harvesting and storage. Inoculum comes from soil and crop debris. This study examined the effect of temperature (25 vs 30 °C), CO2 (400 vs 1000 ppm) and matric and solute stress (-2.8 vs -7.0 MPa) on (i) growth, (ii) key OTA biosynthetic genes and (iii) OTA production on a milled wheat substrate. Growth was generally faster under matric than solute stress at 25 °C, regardless of CO2 concentrations. At 30 °C, growth of P. verrucosum was significantly reduced under solute stress in both CO2 treatments, with no growth observed at -2.8 MPa (=0.98 water activity, aw) and 1000 ppm CO2. Overall, the growth patterns under solute stress was slower in elevated CO2 than under matric stress conditions when compared with existing conditions. The otapksPV gene expression was increased under elevated CO2 levels in matric stress treatments. There was fewer effects on the otanrpsPV biosynthetic gene. This pattern was paralleled with the production of OTA under these conditions. This suggest that P. verrucosum is able to actively grow and survive in both soil and on crop debris under three way interacting climate-related abiotic factors. This resilience suggests that they would still be able to pose an OTA contamination risk in temperate cereals post-harvest.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Effect of acclimatization in elevated CO2 on growth and aflatoxin B1 production by Aspergillus flavus strains on pistachio nuts
    (MDPI, 2021-12-27) Baazeem, Alaa; Medina, Angel; Magan, Naresh
    There is little knowledge of the effect of acclimatization of Aspergillus flavus strains to climate-related abiotic factors and the subsequent effects on growth and aflatoxin B1 (AFB1) production. In this study, two strains of A. flavus (AB3, AB10) were acclimatized for five generations in elevated CO2 (1000 ppm × 37 °C) on a milled pistachio-based medium. A comparison was made of the effects of non-acclimatized strains and those that were acclimatized when colonizing layers of pistachio nuts exposed to 35 or 37 °C, 400 or 1000 ppm CO2, and 0.93 or 0.98 water activity (aw), respectively. Acclimatization influenced the fitness in terms of the growth of one strain, while there was no significant effect on the other strain when colonizing pistachio nuts. AFB1, production was significantly stimulated after ten days colonization when comparing the non-acclimatized and the acclimatized AB3 strain. However, there was no significant increase when comparing these for strain AB10. This suggests that there may be inter-strain differences in the effects of acclimatization and this could have a differential influence on the mycotoxin contamination of such commodities.
  • «
  • 1 (current)
  • 2
  • 3
  • 4
  • »

Quick Links

  • About our Libraries
  • Cranfield Research Support
  • Cranfield University

Useful Links

  • Accessibility Statement
  • CERES Takedown Policy

Contacts-TwitterFacebookInstagramBlogs

Cranfield Campus
Cranfield, MK43 0AL
United Kingdom
T: +44 (0) 1234 750111
  • Cranfield University at Shrivenham
  • Shrivenham, SN6 8LA
  • United Kingdom
  • Email us: researchsupport@cranfield.ac.uk for REF Compliance or Open Access queries

Cranfield University copyright © 2002-2025
Cookie settings | Privacy policy | End User Agreement | Send Feedback