CERES
Library Services
  • Communities & Collections
  • Browse CERES
  • Library Staff Log In
    Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Jacklin, T."

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    ItemOpen Access
    3D characterisation of tool wear whilst diamond turning silicon
    (Elsevier Science B.V., Amsterdam., 2006-07-24T00:00:00Z) Durazo-Cardenas, Isidro; Shore, Paul; Luo, X.; Jacklin, T.; Impey, Susan A.; Cox, A.
    Nanometrically smooth infrared silicon optics can be manufactured by the diamond turning process. Due to its relatively low density, silicon is an ideal optical material for weight sensitive infrared (IR) applications. However, rapid diamond tool edge degradation and the effect on the achieved surface have prevented significant exploitation. With the aim of developing a process model to optimise the diamond turning of silicon optics, a series of experimental trials were devised using two ultra-precision diamond turning machines. Single crystal silicon specimens (1 1 1) were repeatedly machined using diamond tools of the same specification until the onset of surface brittle fracture. Two cutting fluids were tested. The cutting forces were monitored and the wear morphology of the tool edge was studied by scanning electron microscopy (SEM). The most significant result showed the performance of one particular tool was consistently superior when compared with other diamond tools of the same specification. This remarkable tool performance resulted in doubling the cutting distance exhibited by the other diamond tools. Another significant result was associated with coolant type. In all cases, tool life was prolonged by as much as 300% by using a specific fluid type. Further testing led to the development of a novel method for assessing the progression of diamond tool wear. In this technique, the diamond tools gradual recession profile is measured by performing a series of plunging cuts. Tool shape changes used in conjunction with flank wear SEM measurements enable the calculation of the volumetric tool wear rate.

Quick Links

  • About our Libraries
  • Cranfield Research Support
  • Cranfield University

Useful Links

  • Accessibility Statement
  • CERES Takedown Policy

Contacts-TwitterFacebookInstagramBlogs

Cranfield Campus
Cranfield, MK43 0AL
United Kingdom
T: +44 (0) 1234 750111
  • Cranfield University at Shrivenham
  • Shrivenham, SN6 8LA
  • United Kingdom
  • Email us: researchsupport@cranfield.ac.uk for REF Compliance or Open Access queries

Cranfield University copyright © 2002-2025
Cookie settings | Privacy policy | End User Agreement | Send Feedback