3D characterisation of tool wear whilst diamond turning silicon

Date published

2006-07-24T00:00:00Z

Free to read from

Supervisor/s

Journal Title

Journal ISSN

Volume Title

Publisher

Elsevier Science B.V., Amsterdam.

Department

Type

Article

ISSN

0043-1648

Format

Citation

I. Durazo-Cardenas, P. Shore, X. Luo, T. Jacklin, S.A. Impey, A. Cox, 3D characterisation of tool wear whilst diamond turning silicon, Wear, Volume 262, Issues 3-4, 4 February 2007, Pages 340-349

Abstract

Nanometrically smooth infrared silicon optics can be manufactured by the diamond turning process. Due to its relatively low density, silicon is an ideal optical material for weight sensitive infrared (IR) applications. However, rapid diamond tool edge degradation and the effect on the achieved surface have prevented significant exploitation. With the aim of developing a process model to optimise the diamond turning of silicon optics, a series of experimental trials were devised using two ultra-precision diamond turning machines. Single crystal silicon specimens (1 1 1) were repeatedly machined using diamond tools of the same specification until the onset of surface brittle fracture. Two cutting fluids were tested. The cutting forces were monitored and the wear morphology of the tool edge was studied by scanning electron microscopy (SEM). The most significant result showed the performance of one particular tool was consistently superior when compared with other diamond tools of the same specification. This remarkable tool performance resulted in doubling the cutting distance exhibited by the other diamond tools. Another significant result was associated with coolant type. In all cases, tool life was prolonged by as much as 300% by using a specific fluid type. Further testing led to the development of a novel method for assessing the progression of diamond tool wear. In this technique, the diamond tools gradual recession profile is measured by performing a series of plunging cuts. Tool shape changes used in conjunction with flank wear SEM measurements enable the calculation of the volumetric tool wear rate.

Description

Software Description

Software Language

Github

Keywords

IR optics, Diamond turning, Diamond tool wear, Tool life, Silicon optics

DOI

Rights

Relationships

Relationships

Supplements

Funder/s