Browsing by Author "Gao, Li"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Open Access Effectiveness of grease interceptors in food service establishments for controlling fat, oil and grease deposition in the sewer system(Elsevier, 2023-12-20) Sultana, Nilufa; Roddick, Felicity; Jefferson, Bruce; Gao, Li; Bergmann, David; Papalois, Jim; Guo, Mike; Tzimourtas, Kyriakos; Pramanik, Biplob KumarThe water industry worldwide experiences numerous sewer blockages each year, partially attributed to the accumulation of fat, oil and grease (FOG). Managing this issue involves various strategies, including the requirement for installation of grease interceptors (GIs) installation. However, the claimed efficacy of commercial GIs of eliminating 99 % of FOG has been questioned for many years because FOG deposit formation occurs despite food service establishments (FSEs) using GIs, therefore detailed understanding of FOG wastewater compositions and its removal by GIs is required. This study provides an insight into the key FOG components such as FOG particle size, metals and fatty acid (FA) profile in GI influent and effluent, and within the GI, at three different FSEs. Analysis of FAs identified substantial proportions of extra-long-chain FAs in the effluents, including arachidic (C20:0), behenic (C22:0), mead (C20:3), lignoceric (C24:0), and nervonic (C24:1) acids. In contrast, the household kitchen released palmitic (C16:0), oleic (C18:1) and linoleic (C18:2) acids. It was further observed that scums effectively remove the larger FOG particles, leaving only 10 % below 75.4 μm. Notably, FSEs which employed automatic dishwashers produced up to 80.4 % of particles ≤45 μm, whereas FSEs and household kitchen which used handwash sinks generated only 36.9 % and 26.3 % of particles ≤45 μm, respectively. This study demonstrated that the commercial GIs do not remove FOG entirely but clearly demonstrated that they discharge high concentrations of FOG with extra-long FFAs which were attributed to the occurrence of microbial activity and hydrolysis of triglycerides within the GI, potentially contributing to FOG deposition.Item Open Access Uncovering the impact of metals on the formation and physicochemical properties of fat, oil and grease deposits in the sewer system(Elsevier, 2024-09-01) Yusuf, Hamza Hassan; Roddick, Felicity; Jegatheesan, Veeriah; Jefferson, Bruce; Gao, Li; Pramanik, Biplob KumarThe deposition of fats, oil, and grease (FOG) in sewers reduces conveyance capacity and leads to sanitary sewer overflows. The major contributing factor lies in the indiscriminate disposal of used cooking oil (UCO) via kitchen sinks. While prior investigations have mostly highlighted the significance of Ca2+ from concrete biocorrosion, the influence of common metal ions (e.g., Mg2+, Na+, K+) found in kitchen wastewater on FOG deposition has received limited attention in the existing literature. This study aimed to elucidate the roles of Ca, Mg, Na and K in FOG deposition in sewers and examine the influence of metal ions, fat/oil sources, and free fatty acids (FFAs) on the physicochemical and rheological properties of FOG deposits. To examine FOG deposit formation, synthetic wastewater containing 0.1 g/L of each metal ion was mixed with 40 mL of fat/oil and agitated for 8 h. Following FOG deposition, three distinct phases were observed: unreacted oil, FOG deposit and wastewater. The composition of these phases was influenced by the composition of metal ions and FFA in the wastewater. Mg produced the highest amount of FOG of 242.5 ± 10.6 mL compared to Ca (72.5 ± 3.5 mL) when each FFAs content in UCO was increased by 10 mg/mL. Molar concentration, valency and the solubility of metal ion sources were identified to influence the formation of FOG deposits via saponification and aggregation reaction. Furthermore, Fourier-Transform Infrared spectroscopy indicated that the FOG deposits in this study were similar to those collected from the field. This study showed that the use of Mg(OH)2 as a biocorrosion control measure would increase FOG deposition and highlights the need for a comprehensive understanding of its roles in real sewage systems.