CERES
Library Services
  • Communities & Collections
  • Browse CERES
  • Library Staff Log In
    Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Blackburn, David"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Measurement of nanoparticles release during drilling of polymer nanocomposites
    (Institute of Physics, 2015-05-26) Gendre, Laura; Marchante Rodriguez, Veronica; Abhyankar, Hrushikesh; Blackburn, David; Brighton, James
    Nanomaterials are one of the promising technologies of this century. The Project on Emerging Nanotechnologies [1] reports more than 1600 consumer products based on nanotechnology that are currently on the market and advantages link to the reinforcement of polymeric materials using nano-fillers are not to demonstrate anymore. However, the concerns about safety and its consumer perception can slow down the acceptance of nanocomposites. Indeed, during its life-cycle, a nanotechnology-based product can release nano-sized particles exposing workers, consumers and environment and the risk involved in the use and disposal of such particles is not well known. The current legislation concerning chemicals and environment protection doesn’t explicitly cover nanomaterials and changes undergone by nanoparticles during the products’ life cycle. Also, the possible physio-chemical changes that the nanoparticles may undergo during its life cycle are unknown. Industries need a standard method to evaluate nanoparticles release during products’ life cycle in order to improve the knowledge in nanomaterials risk assessment and the legislation, and to inform customers about the safety of nanomaterials and nanoproducts. This work aims to propose a replicable method in order to assess the release of nanoparticles during the machining of nanocomposites in a controlled environment. For this purpose, a new experimental set-up was implemented and issues observed in previous methods (background noise due to uncontrolled ambient environment and the process itself, unrepeatable machining parameters) were solved. A characterisation and validation of the chamber used is presented in this paper. Also, preliminary testing on drilling of polymer-based nanocomposites (Polyamide-6/Glass Fibre reinforced with nano-SiO2) manufactured by extrusion and injection moulding were achieved.

Quick Links

  • About our Libraries
  • Cranfield Research Support
  • Cranfield University

Useful Links

  • Accessibility Statement
  • CERES Takedown Policy

Contacts-TwitterFacebookInstagramBlogs

Cranfield Campus
Cranfield, MK43 0AL
United Kingdom
T: +44 (0) 1234 750111
  • Cranfield University at Shrivenham
  • Shrivenham, SN6 8LA
  • United Kingdom
  • Email us: researchsupport@cranfield.ac.uk for REF Compliance or Open Access queries

Cranfield University copyright © 2002-2025
Cookie settings | Privacy policy | End User Agreement | Send Feedback