Measurement of nanoparticles release during drilling of polymer nanocomposites

Date

2015-05-26

Supervisor/s

Journal Title

Journal ISSN

Volume Title

Publisher

Institute of Physics

Department

Type

Article

ISSN

1742-6588

Format

Citation

L Gendre, V Marchante Rodriguez, H Abhyankar, et al., Measurement of nanoparticles release during drilling of polymer nanocomposites. Journal of Physics: Conference Series, Volume 617 (2015) Article number 012027

Abstract

Nanomaterials are one of the promising technologies of this century. The Project on Emerging Nanotechnologies [1] reports more than 1600 consumer products based on nanotechnology that are currently on the market and advantages link to the reinforcement of polymeric materials using nano-fillers are not to demonstrate anymore. However, the concerns about safety and its consumer perception can slow down the acceptance of nanocomposites. Indeed, during its life-cycle, a nanotechnology-based product can release nano-sized particles exposing workers, consumers and environment and the risk involved in the use and disposal of such particles is not well known. The current legislation concerning chemicals and environment protection doesn’t explicitly cover nanomaterials and changes undergone by nanoparticles during the products’ life cycle. Also, the possible physio-chemical changes that the nanoparticles may undergo during its life cycle are unknown. Industries need a standard method to evaluate nanoparticles release during products’ life cycle in order to improve the knowledge in nanomaterials risk assessment and the legislation, and to inform customers about the safety of nanomaterials and nanoproducts. This work aims to propose a replicable method in order to assess the release of nanoparticles during the machining of nanocomposites in a controlled environment. For this purpose, a new experimental set-up was implemented and issues observed in previous methods (background noise due to uncontrolled ambient environment and the process itself, unrepeatable machining parameters) were solved. A characterisation and validation of the chamber used is presented in this paper. Also, preliminary testing on drilling of polymer-based nanocomposites (Polyamide-6/Glass Fibre reinforced with nano-SiO2) manufactured by extrusion and injection moulding were achieved.

Description

4th International Conference on Safe Production and Use of Nanomaterials (Nanosafe2014), 18-20 November 2014, Grenoble, France

Software Description

Software Language

Github

Keywords

DOI

Rights

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI. Published under licence by IOP Publishing Ltd Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use. Information: No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.

Relationships

Relationships

Supplements