CERES
Library Services
  • Communities & Collections
  • Browse CERES
  • Library Staff Log In
    Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Bardis, Kostas"

Now showing 1 - 2 of 2
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Advanced diagnostics of aircraft structures using automated non-invasive imaging techniques: a comprehensive review
    (MDPI, 2025-04-01) Bardis, Kostas; Avdelidis, Nicolas P.; Ibarra-Castanedo, Clemente; Maldague, Xavier P. V.; Fernandes, Henrique
    The aviation industry currently faces several challenges in inspecting and diagnosing aircraft structures. Current aircraft inspection methods still need to be fully automated, making early detection and precise sizing of defects difficult. Researchers have expressed concerns about current aircraft inspections, citing safety, maintenance costs, and reliability issues. The next generation of aircraft inspection leverages semi-autonomous and fully autonomous systems integrating robotic technologies with advanced Non-Destructive Testing (NDT) methods. Active Thermography (AT) is an example of an NDT method widely used for non-invasive aircraft inspection to detect surface and near-surface defects, such as delamination, debonding, corrosion, impact damage, and cracks. It is suitable for both metallic and non-metallic materials and does not require a coupling agent or direct contact with the test piece, minimising contamination. Visual inspection using an RGB camera is another well-known non-contact NDT method capable of detecting surface defects. A newer option for NDT in aircraft maintenance is 3D scanning, which uses laser or LiDAR (Light Detection and Ranging) technologies. This method offers several advantages, including non-contact operation, high accuracy, and rapid data collection. It is effective across various materials and shapes, enabling the creation of detailed 3D models. An alternative approach to laser and LiDAR technologies is photogrammetry. Photogrammetry is cost-effective in comparison with laser and LiDAR technologies. It can acquire high-resolution texture and colour information, which is especially important in the field of maintenance inspection. In this proposed approach, an automated vision-based damage evaluation system will be developed capable of detecting and characterising defects in metallic and composite aircraft specimens by analysing 3D data acquired using an RGB camera and a IRT camera through photogrammetry. Such a combined approach is expected to improve defect detection accuracy, reduce aircraft downtime and operational costs, improve reliability and safety and minimise human error.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Aircraft skin machine learning-based defect detection and size estimation in visual inspections
    (MDPI , 2024-09-10) Plastropoulos, Angelos; Bardis, Kostas; Yazigi, George; Avdelidis, Nicolas P.; Droznika, Mark
    Aircraft maintenance is a complex process that requires a highly trained, qualified, and experienced team. The most frequent task in this process is the visual inspection of the airframe structure and engine for surface and sub-surface cracks, impact damage, corrosion, and other irregularities. Automated defect detection is a valuable tool for maintenance engineers to ensure safety and condition monitoring. The proposed approach is to process the captured feedback using various deep learning architectures to achieve the highest performance defect detections. Additionally, an algorithm is proposed to estimate the size of the detected defect. The team collaborated with TUI’s Airline Maintenance Team at Luton Airport, allowing us to fly a drone inside the hangar and use handheld cameras to collect representative data from their aircraft fleet. After a comprehensive dataset was constructed, multiple deep-learning architectures were developed and evaluated. The models were optimized for detecting various aircraft skin defects, with a focus on the challenging task of dent detection. The size estimation approach was evaluated in both controlled laboratory conditions and real-world hangar environments, providing insights into practical implementation challenges.

Quick Links

  • About our Libraries
  • Cranfield Research Support
  • Cranfield University

Useful Links

  • Accessibility Statement
  • CERES Takedown Policy

Contacts-TwitterFacebookInstagramBlogs

Cranfield Campus
Cranfield, MK43 0AL
United Kingdom
T: +44 (0) 1234 750111
  • Cranfield University at Shrivenham
  • Shrivenham, SN6 8LA
  • United Kingdom
  • Email us: researchsupport@cranfield.ac.uk for REF Compliance or Open Access queries

Cranfield University copyright © 2002-2025
Cookie settings | Privacy policy | End User Agreement | Send Feedback