CERES
Library Services
  • Communities & Collections
  • Browse CERES
  • Library Staff Log In
    Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Alnahdi, Sultan Saleh"

Now showing 1 - 4 of 4
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    ItemOpen Access
    A framework for sustainable construction project based on BIM environment
    (Cranfield University, 2023-06) Alnahdi, Sultan Saleh; Al-Ashaab, Ahmed; Salonitis, Konstantinos
    The global construction industry's significant resource consumption and environmental impact underscore the urgency of sustainability. This research emphasizes the intersection of sustainability and construction, focusing on ecological, economic, and social considerations. It highlights Building Information Modelling (BIM) as a key enabler of sustainability within the construction value chain. Construction, vital to economic and societal development, necessitates sustainability as a core project objective. Efficient resource utilization, compliance with evolving sustainability standards, and effective collaboration among stakeholders are crucial. However, communication challenges often impede shared understanding and data integration. BIM emerges as a digital solution, unifying project phases, facilitating collaboration, and informed decision-making. In response to the global sustainability mandate, construction projects worldwide are adopting more effective approaches. BIM plays a pivotal role in enhancing efficiency, performance, and productivity. This research addresses a gap by presenting a framework to assess how building materials impact energy consumption within the BIM environment. The research aims to develop a comprehensive framework for promoting sustainability in construction projects through BIM. This involves investigating sustainable practices, assessing BIM's role in sustainability, selecting optimal engineering calculations, and creating an integrated framework. The framework's effectiveness will be evaluated through a hypothetical case study. Key research questions include BIM's alignment with sustainability, expected improvements in addressing sustainability issues, and the value of sharing sustainability calculations within the construction value chain. The thesis comprises seven chapters, including a literature review on sustainability and BIM, a detailed research methodology, a hypothetical case study, analysis of conduction heat transfer calculations, the development of a sustainable construction framework, and discussions, conclusions, and future directions. This research seeks to empower the construction industry with a practical framework for embedding sustainability within the BIM environment, driving efficiency, environmental responsibility, and societal well-being.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Analysis of the self-healing capability of thermoplastic elastomer capsules in a polymeric beam structure based on strain energy release behaviour during crack growth
    (MDPI, 2023-08-12) Almutairi, Mohammed Dukhi; He, Feiyang; Alshammari, Yousef Lafi; Alnahdi, Sultan Saleh; Khan, Muhammad Ali
    The objective of this study was to investigate the elastic and plastic responses of 3D-printed thermoplastic elastomer (TPE) beams under various bending loads. The study also aimed to develop a self-healing mechanism using origami TPE capsules embedded within an ABS structure. These cross-shaped capsules have the ability to be either folded or elastically deformed. When a crack occurs in the ABS structure, the strain is released, causing the TPE capsule to unfold along the crack direction, thereby enhancing the crack resistance of the ABS structure. The enhanced ability to resist cracks was confirmed through a delamination test on a double cantilever specimen subjected to quasi-static load conditions. Consistent test outcomes highlighted how the self-healing process influenced the development of structural cracks. These results indicate that the suggested self-healing mechanism has the potential to be a unique addition to current methods, which mostly rely on external healing agents.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Modal response of hybrid raster orientation on material extrusion printed acrylonitrile butadiene styrene and polyethylene terephthalate glycol under thermo-mechanical loads
    (Elsevier, 2023-02-05) Almutairi, Mohammed Dukhi; Mascarenhas, Taheer A.; Alnahdi, Sultan Saleh; He, Feiyang; Khan, Muhammad A.
    In this paper we look at Acrylonitrile Butadiene Styrene (ABS) and Polyethylene Terephthalate Glycol (PETG), chosen for their low cost, high strength and temperature resistance. This study evaluates the bending fatigue performance of Material extrusion (MEX) ABS and PETG cantilever beams and compares their properties while varying a printing parameter under thermal loads. The study, using custom building orientation angles of 90o, 45o and 60o between the layers, tested the beams at different temperatures from 30o to 50 °C. The results show the effects of the building orientations and the effects of temperature on the sample. The printing orientation, which is the same as loading, also slows the crack growth.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Strain release behaviour during crack growth of a polymeric beam under elastic loads for self-healing
    (MDPI, 2022-07-30) Almutairi, Mohammed Dukhi; Alnahdi, Sultan Saleh; Khan, Muhammad A.
    The response of polymeric beams made of Acrylonitrile butadiene styrene (ABS) and thermoplastic polyurethane (TPU) in the form of 3D printed beams is investigated to test their elastic and plastic responses under different bending loads. Two types of 3D printed beams were designed to test their elastic and plastic responses under different bending loads. These responses were used to develop an origami capsule-based novel self-healing mechanism that can be triggered by crack propagation due to strain release in a structure. Origami capsules of TPU in the form of a cross with four small beams, either folded or elastically deformed, were embedded in a simple ABS beam. Crack propagation in the ABS beam released the strain, and the TPU capsule unfolded with the arms of the cross in the direction of the crack path, and this increased the crack resistance of the ABS beam. This increase in the crack resistance was validated in a delamination test of a double cantilever specimen under quasi-static load conditions. Repeated test results demonstrated the effect of self-healing on structural crack growth. The results show the potential of the proposed self-healing mechanism as a novel contribution to existing practices which are primarily based on external healing agents.

Quick Links

  • About our Libraries
  • Cranfield Research Support
  • Cranfield University

Useful Links

  • Accessibility Statement
  • CERES Takedown Policy

Contacts-TwitterFacebookInstagramBlogs

Cranfield Campus
Cranfield, MK43 0AL
United Kingdom
T: +44 (0) 1234 750111
  • Cranfield University at Shrivenham
  • Shrivenham, SN6 8LA
  • United Kingdom
  • Email us: researchsupport@cranfield.ac.uk for REF Compliance or Open Access queries

Cranfield University copyright © 2002-2025
Cookie settings | Privacy policy | End User Agreement | Send Feedback