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This paper presents a multidisciplinary conceptual design framework for unmanned aerial

vehicles based on artificial intelligence-driven analysis models. This approach leverages AI-

driven analysis models that include aerodynamics, structural mass, and radar cross-section

predictions to bring quantitative data to the initial design stage, enabling the selection of the

most appropriate configuration from various optimized concept designs. Due to the design

optimization cycle, the initial dimensions of key components such as the wing, tail, and fuselage

are provided more accurately for later design activities. Simultaneously, the generated structure

enables more suitable design point selection through the feedback loop within the design

iteration. Therefore, in addition to reducing design costs, this approach also offers a substantial

time advantage in the overall design process.

I. Introduction
The design process, specifically for unmanned aerial vehicles, involves certain differences. Particularly when

addressing unmanned aerial vehicle concepts, all considerations and constraints related to pilots and crew are eliminated

in the design process. In today’s context, autonomous control systems, new manufacturing techniques, and material

technologies compel a reevaluation of the design process in a completely different manner. If operational requirements

are taken into account, the situation becomes even more complex. The pursuit of cost-effective UAVs in today’s context

is driven by the need to optimize operational efficiency, minimize risks, and provide diverse mission requirements

while accommodating advancements in technology and market demands. In this sense, systems that utilize common

components and enable rapid and cost-effective production come to the forefront. A key challenge lies in developing

design approaches that incorporate non-conventional perspectives, particularly in the next-generation design of "plug &

play" configurations across a fleet of unmanned combat aerial vehicles (UCAVs) [1–3]. These vehicles are expected to

provide challenging mission requirements and specific system designs, emphasizing the minimization of full life-cycle

costs [4–9]. For example, a combat mission might require a smaller span wing with a reduced radar cross-section

area, whereas an ISR mission might necessitate larger wings to accommodate heavier payloads for extended durations.

Identifying the most suitable components for each mission scenario involves navigating through various optimum points

in an extensive design space.

In the situation mentioned above, as in the case of UAVs, the design process often necessitates the integration of

various engineering disciplines. The multidisciplinary design optimization approach serves to consolidate all disciplines

into a unified framework. Multidisciplinary design optimization (MDO) refers to the design of complex engineering

systems comprising interactive subsystems influenced by interdependent physical phenomena [10]. In aircraft design

studies, the typical disciplines within MDO include aerodynamic performance, structural layout, mass and stability,

and propulsion systems. As mentioned in [11], aircraft design optimization has historically utilized semi-empirical

equations to swiftly analyze conventional fixed-wing aircraft. However, the application of these low-fidelity models

to UAVs can pose challenges due to their reliance on traditional fixed-wing regression data. In general, the data in

semi-empirical approaches are not very accurate, especially in terms of aerodynamic performance, as stated in [12],

since they do not cover the dimensions and flight conditions of UAVs. Therefore, more complex approaches such as

numerical methods should enter the design process earlier. However, performing optimization via high-fidelity tools,

which need many evaluations of the mathematical model to compute the performance of the system at each iteration

loop, can be computationally expensive and time consuming [13]. At this point, machine learning based solutions come

to the fore in the literature as an alternative approach to this problem. Machine learning is a computational approach

that enables systems to learn and improve from experience without being explicitly programmed, with a primary focus
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on exploiting data to improve performance and make informed decisions. The field of aerospace engineering, which is

packed with data and already constructed on a limited multi-objective optimization framework that is perfectly suited for

contemporary machine learning approaches, is perhaps the best example of the potential for data-driven advancement

[14]. Particularly in terms of design optimization and upgrade analysis, performance validation and optimization, and

product improvement and calibration, digital twins offer significant advantages [15]. In the literature, there are several

machine learning-based studies for the conceptual/preliminary design of aerial vehicles. In [16], the study investigates

configuration selection by leveraging the existing UAV database using decision tree classifiers. However, this UAV

database is limited and as there is no quantitative value or performance calculation for comparison, it is inadequate like

other attempts in the literature. Another major gap in the literature is that almost all of the studies are limited to certain

parts of the aircraft, such as the 2D airfoil or the 3D wing [17–29]. Approximate models for aerodynamic coefficients of

complete aircraft geometry used in aerodynamic shape optimization are very limited.

Especially nowadays, it is not possible to develop different concept configurations and design iterations due to the

situation caused by competition and limited budgets. That is why focusing on the right concept from the beginning

is crucial. However, the human interaction level is remarkably decisive in the early phase of the design process (see

Fig. 1). To integrate numerical data into the design process at an early stage, we have created an intelligent conceptual

design method in this work that consists of AI-driven surrogate models and optimization loops. This technique makes it

feasible to evaluate the initial optimal configurations of several concepts and select the best fit. Thus, using a toolset

that is computationally quick, low-cost, and of a higher order than current approaches, the selection of the concept

configuration satisfies the design requirements. At the same time, the initial sizing and the design iteration are all

automated, lowering the amount of human engagement.

Fig. 1 Design influence and the cost of change in the design phase

The rest of the paper is organized as follows: In the “Methodology” section, the main algorithm of the paper is

briefly given. This section includes "Design Point Calculation", "Initial Sizing Algorithm", "Aircraft Model", "AI-based

Surrogate Models", and "Multi-Objective Genetic Algorithm" subsections. In the "Application of the Model" section,

an example application of the developed model is performed. Finally, the achieved objectives are presented in the

"Conclusion" part.

II. Methodology
The AI-driven conceptual design algorithm consists of four main parts: Design Point Calculation, Initial Sizing,

AI-driven Aircraft Model, and Optimization of Configurations. Each part is connected to another through an input-output

relationship. Additionally, the design iteration loop added to the algorithm enabled more accurate designs to be obtained.

Figure 2 represents the general structure of the algorithm.

The method starts with giving the design requirements to the algorithm. These requirements may include performance

requirements such as maximum take-off weight, payload weight, cruise altitude-speed, or restrictions about configuration

dimensions. Then, wing loading and thrust loading values that will meet these performance requirements are calculated

using the design point calculation. The initial sizing algorithm takes these values and calculates the basic dimensions

along with the initial requirements. These are the wing area, length, and hydraulic diameter of the fuselage. Afterward,
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configurations that will maximize performance while meeting the requirements are searched in the design space with

the help of the optimization algorithm. Since the aircraft models used here are AI-driven surrogate models, it is possible

to search the design space in a very flexible way.

Fig. 2 General overview of the proposed framework

A. Design Point Calculation

In design point calculation, given performance requirements such as stall speed (𝑉s), maximum speed (𝑉max),
maximum rate of climb (ROCmax), take-off run (𝑆TO), ceiling (ℎc) are used to determine a feasible design space in

terms of wing loading (𝑊/𝑆) and thrust loading (𝑇/𝑊). To determine the optimum selection the flight performance

equations are solved based on wing loading and thrust loading, and inequality restrictions are generated as a result. This

approach is entirely dependent on the aircraft’s performance requirements and makes use of flight mechanics theory. As

a result, the procedure is an analytical approach, and the outcomes are highly trustworthy.

The wing loading based on stall speed requirements is shown as:

(
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where 𝜌 denotes the air density and 𝐶𝐿max
is the aircraft maximum lift coefficient. The following relation is used for

the maximum speed requirement:
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where 𝜌o is the sea-level air density, 𝐶𝐷o
is the zero-lift drag coefficient and 𝐾 is referred to as the induced drag

factor.
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where 𝜇 is runway surface friction coefficient and is generally taken as 0.05 for concrete/asphalt surfaces. 𝐶𝐿R

represents the aircraft lift coefficient at take-off rotation. It can be obtained by solving the lift equation inversely using

take-off rotation speed (1.1 − 1.2𝑉s). The wing and engine sizing based on rate of climb requirements can be defined as

follows:
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The ceiling is defined as the highest altitude at which an aircraft maintains its level flight. The ceiling is not a

critical requirement for many aircraft, but it is critical for some missions, such as ISR (Intelligence, surveillance, and

reconnaissance). Similarly, as a function of wing and thrust loading, the performance equation can be stated as follows:
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(5)
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The details of the relevant equations can be found in an aircraft design or flight performance book [30, 31]. To drive

this process, the table-based aerodynamic and geometry parameters are used in the first design iteration. However, in

the design iteration step, this information is obtained directly from the aerodynamic performance and geometry of the

previous configuration.

B. Initial Sizing Algorithm

In the initial sizing step, the basic dimensions of the aircraft are calculated using the design point output and some

requirements. By dividing the aircraft’s maximum take-off weight by the wing loading, the wing area is computed. By

multiplying the aircraft’s maximum take-off weight by the thrust loading, the engine thrust is computed. Thus, the

required wing area and engine thrust are obtained as follows:

𝑆 = 𝑊mtow/

(

𝑊

𝑆

)

, 𝑇 = 𝑊mtow ·

(

𝑇

𝑊

)

(6)

Engine selection is generally - in almost most cases - made among the available engines. UAV-specific engine

development is not the first option due to cost and time factors. The selection of the engine, beyond numerical evaluations,

also depends on several conditions such as the manufacturing country, production maintenance competence, usage

permit, etc. Therefore, the current algorithm leaves it up to the user to use one of the engines that provides the required

thrust level. Table 1 lists some of the available turbofan engines that can be used for example high subsonic UAV. In

addition to these data, it is possible to choose an engine by taking into account specific full consumption and cost.

Table 1 Sample engine table for high subsonic UAV case

Engine
Length

(mm)

Diameter

(mm)

Dry Weight

(kg)

Maximum Thrust

(kN)

Williams FJ33 976 466 140 8.21

Pratt Whitney Canada PW617 1360 750 172 8.41

GE Honda HF120 1510 660 211.3 9.1

Pratt Whitney Canada JT15D 1531 685.8 285.7 13.57

Williams FJ44-4 1340 640 298 16.0

Ivchenko AI-25TL 3358 611.6 350 16.9

Pratt Whitney Canada 545B 1742 693.4 376.5 17.58

The length and diameter obtained after engine selection are important for aft-body sizing. There is also a mid-body

length calculated based on internal payload requirements. All this data is used to determine a representative body length

and diameter.

C. Aircraft Model

The aircraft model represents the main structure that includes various sub-disciplines. These sub-disciplines can be

summarized as follows: Aerodynamic Model, Structural Mass Model, and Radar Cross Section Model. The aircraft

model is shaped around the NASA open-source parametric geometry model, Vehicle Sketch Pad (OpenVSP), which

allows the user to create three-dimensional parametric models of generic aircraft configurations defined by common

engineering parameters [32]. The ability of OpenVSP to swiftly and practically construct a solid model and export/use

this geometry in various formats is extremely useful in conceptual and preliminary design processes [33, 34]. In this

study, OpenVSP - Python API integration was preferred, which provides coding flexibility to connect the algorithm to

the other disciplines.

1. Aerodynamic Model

Determining aerodynamic characteristics at the conceptual/preliminary design stages is predominant for the

successful development of UAVs. At these early phases of design, critical decisions are made that significantly impact

the entire development process. Understanding the aerodynamics of a UAV is crucial for achieving optimal performance,
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efficiency, and mission success. By assessing aerodynamic characteristics early on, designers can make informed

decisions about wing configurations, airfoil selections, and overall vehicle layout.

By making some assumptions about flow conditions and geometry, low-order aerodynamic models can forecast

aircraft performance inexpensively and rapidly. Although one of the well-known computational aerodynamics approaches,

potential flow-based panel methods, provides more complicated geometry modeling and solutions than semi-empirical,

lifting line, and vortex lattice methods (VLM), it remains at a lesser level when compared to CFD solutions. Because

this method employs the simplest form derived from the Navier-Stokes equations describing the flow, all viscous and

heat transfer factors are ignored. When the physical consequences of these assumptions are addressed, it is evident that

skin friction drag, separation, and transonic shocks cannot be computed [35]. Panel approaches, on the other hand, have

advantages over other computational aerodynamic methods, such as the vortex lattice method. While VLM models

ignore thickness and apply boundary conditions (BCs) on an average mean surface, panel methods can model blunt

geometries and apply BCs on the actual surface.

Panel methods can be briefly described as numerical schemes used to solve the linear, inviscid, irrotational flow

equation at subsonic or supersonic freestream Mach numbers. The name of the equation that panel codes solve is the

Prandtl-Giauert equation. For steady subsonic flow, this equation is usually can be defined as:

∇̃2𝜙 =

(

1 − 𝑀2
∞

)

𝜙𝑥𝑥 + 𝜙𝑦𝑦 + 𝜙𝑧𝑧 = 0 (7)

For subsonic flows, Eq. (7) is elliptical. This type of equation allows any disturbance to be felt everywhere in

the flow field, although the effect usually disappears with distance. To model the effect of the geometry on the flow,

the singularities are distributed over the entire geometry, and their strengths are calculated over the surface velocity

boundary conditions. The velocities induced by each ring vortex at a specified control point are calculated using the

law of Biot-Savart. The contribution of each vortex loops and trailing wakes at a given 𝑖 control point is calculated as

follows:

®𝑉𝑖 =

Loops
∑︁

𝑗

[

®𝑉loop

]

𝑗
+

Wakes
∑︁

𝑗

[

®𝑉wake

]

𝑗
(8)

Then freestream velocity component is added to the induced velocity and tangency boundary condition applied as:

[

®𝑉∞ + ®𝑉𝑖

]

· 𝑛̂𝑖 = 0 (9)

In the panel method model, shade wakes are represented as vortex filaments that leave the sharp trailing edges of

wings and possibly bodies. The strength of these filaments is determined by the Kutta condition, which allows the flow

to leave the trailing edge properly. Also in VSPAERO, the location of these vortex filaments is solved iteratively in the

overall flow field solution. Further details of the panel method algorithm can be found in the literature [36]. At the end

of the process, the whole problem is reduced to the solution of a set of linear equations:

𝐴®𝑥 = ®𝑏 (10)

where ®𝑥 represents the unknown circulation strengths. To reduce the computational cost, VSPAERO uses an

iterative method, the generalized minimal residual method (GMRES), for the numerical solution of this system of linear

equations.

®𝑅𝑖 =
®𝑏 − 𝐴®𝑥𝑖 (11)

where ®𝑅𝑖 →
−→
0 as 𝑖 → ∞. Using the preconditioned GMRES algorithm, a matrix-free evaluation of the residual is

obtained. In this application, the Precondition matrix was selected as an approximate LU decomposition of 𝐴. After

calculating the strength of the singularities, the aerodynamic forces and moments affecting the geometry are obtained.

Various correction factors are used to take into account the local compressible effects that occur especially in the

high-speed subsonic regime. The most popular of these is the Prandtl-Glauert rule, but a better model, the Karma-Tsien

rule, is used in this study. In this model, the freestream Mach number is used to correct the pressure coefficient (𝐶𝑝). It

is defined as:

𝐶𝑝 =
𝐶𝑝0

√︁

1 − 𝑀2
∞ +

[

𝑀2
∞/

(

1 +
√︁

1 − 𝑀2
∞

)]

𝐶𝑝0
/2

(12)
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where 𝑀∞ is the freestream Mach number and 𝐶𝑝0
is the potential flow coefficient of pressure. Since the panel

method gives an inviscid solution, the parasite drag values are calculated with a semi-empirical approach.

2. Structural Mass Model

The most important parameter of an aircraft is undoubtedly its weight. Although a target MTOW is determined at

the beginning of the design stage, the distribution of this weight to various components is also a critical issue. Because

it is based on a primitive statistical technique, the accuracy of the aircraft weight estimation during the preliminary

design phase is around %70-90. However, the estimation of this weight in relation to aerodynamic performance will be

very important.

There are four main weight groups that make up a UAV’s maximum take-off weight: empty weight, payload weight,

and fuel weight. The total weight of the UAV is the sum of these three components:

𝑊MTOW = 𝑊empty +𝑊payload +𝑊fuel (13)

In these parameters, payload and fuel weight can be calculated from the requirements and engine selection. However,

estimating the empty weight of the configuration to be created is an important issue. There are three major weight

groups for the UAV empty weight:

𝑊empty = 𝑊structure +𝑊engine +𝑊systems (14)

In this equation, while the engine weight is obtained from the engine selection, the system and avionics weight can

be approximately calculated from the requirements. The UAV structure weight is subdivided into four major weight

groups:

𝑊structure = 𝑊wing +𝑊tail +𝑊fuselage +𝑊gear (15)

To model structural weight of the aircraft OpenVSP’s structural module is used. The Structure Module in OpenVSP

(Vehicle Sketch Pad) is a component of the software that allows users to create, analyze, and modify structural elements.

It provides functionality for defining and manipulating various components, such as wings, fuselages, empennages,

and other structural elements of an aircraft. Using a developed Python script ribs, spars, shells, and other structural

elements are automatically created for each configuration. Structural weight calculation is performed by assigning

default materials to these parts.

Fig. 3 Structural and aerodynamic models

3. Radar Cross Section Model

Radar Cross Section measures an object’s detectability by radar systems. It denotes the effective area an object

presents to an incident radar signal, reflecting the proportion scattered back to the radar receiver. Various parameters

influence the radar cross-section, and these can be summarized as follows: the target’s geometry, the materials it

comprises, the frequency of the incident radar signal, the radar’s polarization, and the positions of antennas relative to

the target [37]. The definition of RCS is typically expressed in terms of electric fields, with the range 𝑅 approaching

infinity to ensure that the definition relies just on the target’s characteristics.

6



𝜎 = 4𝜋 lim
𝑅→∞

(

𝑅2 |E
𝑟 |2

|E𝑡 |2

)

(16)

where sigma is the RCS, R is the range, |E𝑟 | and |E𝑡 |2 are the backscattered and incident electric field squared

magnitudes, respectively.

RCS is expressed in m2 in physical scale and decibels referenced to a square meter (dBsm) in dB scale. The

conversion between these two units is expressed as follows:

𝜎[dBsm] = 10 log(𝜎)
[

m2
]

(17)

Ray tracing techniques can be used to predict the RCS of objects by simulating the interaction of radar waves with

the object’s geometry, materials, and surface properties. By tracing the paths of the incident and reflected rays, and

considering factors such as reflection, diffraction, and scattering, the RCS of the object can be estimated.

In this study, the RadarSimPy tool is used to calculate the radar cross-section of the generated concept configurations

[38]. This Python module is integrated into the data generation script (see Figure 4). The STL file, which consists

of unstructured triangulated surfaces of concept configurations created through the Python API, is used as an input

geometry to the RadarSimPy code. In this way, it is ensured that the RCS value of each configuration is obtained with

high performance. The algorithm can calculate the monostatic radar cross section of the aerial vehicles for the given

signal parameters.

Fig. 4 RCS calculation of configurations

D. AI-based Surrogate Models

In this part, AI-based surrogate models of aircraft performance models will be built. Thus, the performance of

the generated configurations can be calculated without the need for analysis. A large number of configurations were

produced using the framework first developed for this purpose. The Latin hypercube sampling (LHS) was added to the

algorithm to generate a quasi-random sampling distribution [39]. Thanks to this algorithm, it is possible to cover all

design space with a limited data point. Design and flow variables used in data generation are given in Table 2.

Neural network algorithms were used to train the black box model. We utilize an essential multi-layer perceptron

structure to regress the performance data, 𝑌 , using 𝑋 . For a fully-connected network with 𝐿 hidden layers, this amounts

to the following modeling equations relating the input features 𝑥, to its target prediction 𝑦. A generic structure of

a deep neural network consisting of a multilayer perceptron with 𝑀 input features and 𝑁 layers. It is composed

of sequentially connected layers, which comprise sets of neurons that are combinations of mathematical operations

followed by nonlinear activation functions. The model parameters 𝜉 are defined as 𝜉 = {𝑊, 𝑏}, where 𝑊 = {𝑤𝑖}
𝑁
𝑖=1

,

and 𝑏 = {𝑏𝑖}
𝑁
𝑖=1

. The output of the lth layer is:

𝑓 (𝑥, 𝜉𝑙) = 𝑓𝑤𝑙 ,𝑏𝑙 (𝑥) = 𝑧𝑙

(

∑𝑁𝑙

𝑗=1
𝑤𝑙 𝑗𝑥 𝑗 + 𝑏𝑙

)

(18)

= 𝑍𝑙
(

𝑤𝑇
𝑙
𝑥𝑙 + 𝑏𝑙

)

(𝑙 = 1, . . . , 𝑁) (19)

where 𝑁𝑡 is the neuron number and 𝑍𝑙 is a nonlinear activation function of a specific lth layer, and 𝑥𝑙 is the input of the

lth layer and also the output of the (𝑙 − 1)th layer. In addition to this, 𝑤𝑙 and 𝑏𝑙 are learnable parameters and called
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Table 2 Design and flow variables for the UAV conceptual design space exploration

Parameter Variable Units

Wing

Wing Area S 𝑚2

Aspect Ratio AR ∼

Span b m

Chord c m

Taper Ratio 𝜆 ∼

Sweep Λ deg

Fuselage
Diameter d m

Length L m

Flow Condition
Angle of Attack 𝛼 deg

Mach Number M ∼

weight and bias terms of that layer respectively. Finally, the output of the last layer is a result of the composite and

complex mapping defined as:

𝑦̂(𝑥) :=
(

𝑓𝑤𝑛 ,𝑏𝑛 ◦ · · · ◦ 𝑓𝑤1 ,𝑏1

)

(𝑥) (20)

Fig. 5 Neural-network and cascaded neural-network architecture for aircraft performance prediction

This work also proposes a cascaded neural network architecture for estimating aerodynamic performance data.

The architecture depicted in Figure 5 is a single neural network consisting of two parts: The first part estimates the

intermediate features:

𝑦̂𝑖𝑛𝑡 :=
(

𝑓
[1]
𝑤𝑛 ,𝑏𝑛

◦ · · · ◦ 𝑓
[1]
𝑤1 ,𝑏1

)

(𝑥) (21)

where 𝑦̂𝑖𝑛𝑡 represents 𝐶𝐿 for the drag coefficient. Then, we concatenate the intermediate feature to the main feature

set and provide this new input to the second part of the neural network, where we estimate the output variable. Note

that these two parts of the neural network are not trained separately. All trainable parameters in both parts are updated

simultaneously at each mini-batch.

𝑥𝑖𝑛𝑡 = {𝑥, 𝑦̂𝑖𝑛𝑡 } (22)

𝑦̂ :=
(

𝑓
[2]
𝑤𝑛 ,𝑏𝑛

◦ · · · ◦ 𝑓
[2]
𝑤1 ,𝑏1

)

(𝑥𝑖𝑛𝑡 ) (23)

The customized neural network architecture aims to increase the accuracy of drag estimation by incorporating

additional information about 𝐶𝐿 , which has a high correlation with this parameter. To address this issue, we introduce an

intermediate estimator to provide the neural network with additional information about this variable. As the loss in the

intermediate estimator decreases, the accuracy of the main output is expected to increase further. The inclusion of this

additional information enables the neural network to better capture the underlying relationships between performance

data and geometry and flow condition information, resulting in a more accurate estimation of the drag coefficient.
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E. Multi-Objective Genetic Algorithm

In this layer, a genetic algorithm (GA) based optimization runs using AI-driven aerodynamic performance, structural

mass, and radar cross section prediction. In the GA approach, an initial set of designs is generated using design variables

remaining within predetermined limits [40]. For each design, fitness values are calculated using the cost function, and a

random subset is selected from the current design set for those that better fit. Random operations are used to create new

designs using the subset of selected designs. A multi-objective genetic algorithm (MOGA) is an optimization method

designed for problems with multiple conflicting objectives. It extends the traditional genetic algorithm to simultaneously

optimize diverse criteria. In a MOGA, a population of potential solutions evolves through genetic operations, aiming to

discover a set of solutions along the Pareto front, a trade-off curve, where enhancing one objective may compromise

another. This approach allows decision-makers to explore a diverse range of optimal solutions, providing valuable

insights into the complex trade-offs inherent in multi-objective optimization problems across various domains.

In the optimization cycle, it is possible to scan huge design space in seconds by using the network-based black box

functions given below:

• The performance of an aircraft is mainly related to geometry, flow direction, Reynolds number and Mach number.

For the main performance parameters, lift (𝐶𝐿) and drag coefficients (𝐶𝐷), this relationship can be expressed as

follows:

𝐶𝐿,𝐷 = 𝑓𝑎𝑒𝑟𝑜 (𝐺𝑒𝑜𝑚𝑒𝑡𝑟𝑦, 𝛼,Re, 𝑀) (24)

• The mass model includes the engine, avionics, payload, fuel, and structural weight. AI-based structural weight

estimation is given as:

𝑊𝑠𝑡𝑟 = 𝑓𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑎𝑙 (𝐺𝑒𝑜𝑚𝑒𝑡𝑟𝑦, 𝛼,Re, 𝑀) (25)

• The RCS value of an aircraft is mainly related to geometry and surface material. For this study, we only considered

the effect of geometry, and the black box model only takes this as input.

𝑅𝐶𝑆 = 𝑓𝑟𝑐𝑠 (𝐺𝑒𝑜𝑚𝑒𝑡𝑟𝑦) (26)

At the end of the process, each concept is optimized for given objective functions such as maximizing efficiency

while minimizing structural weight and radar cross section.

III. Application of the Model
In this section, a medium-sized high subsonic UAV is designed according to the given performance requirements

using the developed algorithm. Concept configurations of this UAV are given in Fig. 7. The purpose of this optimization

problem is to obtain a configuration with maximum efficiency and minimum radar cross section and structural weight.

The optimization problem can be defined as:

minimize
𝑥

{

𝑓1 (𝑥) =
1

𝐿/𝐷
, 𝑓2 (𝑥) = 𝑊𝑠𝑡𝑟 , 𝑓3 (𝑥) = 𝑅𝐶𝑆

}

(27)

subject to 0.30 < 𝐶𝐿 < 0.33 (28)

𝐶𝐷 < 0.03 (29)

𝑅𝐶𝑆 < 0.2 (30)

where 𝑥 includes the cruise angle of attack, wing aspect ratio, taper ratio, and sweep angle. The limits of these

variables are given in Table 3.

Table 3 Wing design variables and limits

Variables Min Max

Cruise AoA 0 4

AR 3 7

Taper 0.1 0.6

Sweep 0 30
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For this study, the first surrogate models of UAV performance models were created. Design space was discovered

using these black-box models. In Figure 6, predicted and real Lift Coefficient, Drag Coefficient, Empty Weight, RCS

parameters are given. In these graphs, the accuracy of approximately 1000 configurations under different flow conditions

can be observed.

Fig. 6 Performance of black-box models: (a) Lift Coefficient, (b) Drag Coefficient, (c) Empty Weight, (d) RCS

After the optimization cycle, optimized versions of each concept configuration are presented to the user. As can be

seen from Figure 7, the initial layout and size of the traditional, lambda, and delta configurations have been determined.

Thanks to the algorithm, aerodynamic, structural, and RCS performance parameters were also obtained in detail.

Fig. 7 Conventional, Lambda, and Delta configuration concepts with RCS values in dBsm
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IV. Conclusion
In conclusion, this paper has successfully introduced and implemented an intelligent conceptual design algorithm

aimed at bringing numerical data into the early stages of the design process while significantly reducing the dependence

on human intervention. The developed algorithm not only helps the selection of optimal concept configurations but also

streamlines the initial sizing process. Using AI-driven algorithms, our approach demonstrates a remarkable decrease

in computational time, marking a transformative shift in the efficiency of the design process. By automating critical

aspects of conceptual design, our method contributes to cost reduction and accelerates the decision-making timeline.

Moving forward, the integration of AI-driven surrogate models and optimization loops holds promising potential for

advancing multidisciplinary design methodologies.
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