
Environ. Res. Lett. 11 (2016) 113004 doi:10.1088/1748-9326/11/11/113004

TOPICAL REVIEW

Meta-analysis of climate impacts and uncertainty on crop yields in
Europe

JerryKnox1, AndreDaccache2, TimHess1 andDavidHaro1
1 CranfieldWater Science Institute, CranfieldUniversity, Bedfordshire,MK43 0AL,UK
2 MediterraneanAgronomic Institute of Bari (IAMB), Via Ceglie 9, I-70010Valenzano (BA) Italy

E-mail: j.knox@cranfield.ac.uk

Keywords: agriculture, systematic review, cropmodels, climate change, productivity

Supplementarymaterial for this article is available online

Abstract
Future changes in temperature, rainfall and soilmoisture could threaten agricultural land use and
crop productivity in Europe, withmajor consequences for food security.We assessed the projected
impacts of climate change on the yield of sevenmajor crop types (vizwheat, barley,maize, potato,
sugar beet, rice and rye) grown in Europe using a systematic review (SR) andmeta-analysis of data
reported in 41 original publications from an initial screening of 1748 studies. Our approach adopted
an established SR procedure developed by theCentre for Evidence BasedConservation constrained by
inclusion criteria and definedmethods for literature searches, data extraction,meta-analysis and
synthesis.Whilst similar studies exist to assess climate impacts on crop yield inAfrica and SouthAsia,
surprisingly, no comparable synthesis has been undertaken for Europe. Based on the reported results
(n=729)we show that the projected change in average yield in Europe for the seven crops by the
2050s is+8%. Forwheat and sugar beet, average yield changes of+14%and+15% are projected,
respectively. Therewere strong regional differences with crop impacts in northern Europe being
higher (+14%) andmore variable compared to central (+6%) and southern (+5)Europe.Maize is
projected to suffer the largest negativemean change in southern Europe (−11%). Evidence of climate
impacts on yieldwas extensive forwheat,maize, sugar beet and potato, but very limited for barley, rice
and rye. The implications for supporting climate adaptation policy and informing climate impacts
crop science research in Europe are discussed.

Introduction

European agriculture supports a relatively small pro-
portion (4.7%) of the total working population, but is
responsible for managing nearly half of the EU’s land
area (EEA 2015). It therefore plays a critical role in
influencing the landscape and the quality of the natural
environment. Global warming and a changing climate
are expected to have a multitude of direct and indirect
impacts, including:modifying the composition of land
use and land suitability for food and fibre crops;
shifting growing periods; and influencing crop yield
and resource use efficiencies, including water and
energy demand (Olesen and Bindi 2002, Daccache
et al 2015). These climate-related risks raise important
concerns regarding the future sustainability and resi-
lience of certain crops in Europe, since agriculture

plays a multifunctional role in integrating natural
resources management, rural development and food
production and underpinning environmental heritage
through the maintenance of semi-natural habitats,
landscape and biodiversity (EUROSTAT 2014). Agri-
culture also supports the economy for rural commu-
nities especially in the southern Mediterranean,
central and eastern European regions where it buffers
rural poverty (Davidova et al 2010, Fritsch et al 2010)
and enhances the social fabric of rural areas by
contributing to more balanced rural land develop-
ment. Climate change therefore threatens to impact
significantly on both the production of food crops and
the rural livelihoodswhich depend on them.

Europe is considered to be one of the most pro-
ductive suppliers of food and fibre (Olesen et al 2011)
contributing over half of global trade in food products
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(Iglesias et al 2011). For example, in 2008 Europe
accounted for a fifth of global meat and cereal produc-
tion. The levels of productivity of European agri-
culture are also high, notably in Western Europe,
where average cereal yields are reported to be 60%
higher than the world average (Olesen et al 2011).
However, a changing climate will result in differing
impacts (both positive and negative) across Europe
depending on local soils and agroclimatic variation,
the composition and intensity of agricultural land use,
the availability of irrigation infrastructure to offset
drought risks, as well as the prevailing political and
agro-economic policy environments. How these
underlying conditions vary from one region to
another across Europe is expected to strongly impact
the responsiveness and adaptive capacity of agri-
cultural systems to climate change (Trnka et al 2011).
Generally, more wide ranging negative effects are
expected in the economically less developed areas due
to their low adaptive capacity (Field 2012). Negative
effects are also expected to be more acute in southern
Europe where increased water shortages and extreme
weather events are projected to reduce crop yields,
lead to greater yield variability and a reduction in the
areas suitable for cropping (Olesen and Bindi 2002).
There are also expected to be significant increases in
the demand for irrigation water and energy for pump-
ing (Rodríguez-Díaz et al 2011, Daccache et al 2015).
Conversely, in northern Europe, climate change could
have positive impacts on agriculture through elevated
temperatures and CO2 concentrations increasing crop
productivity, although there could be increased risks
from flooding (Bronstert 2003) and a greater reliance
on supplemental irrigation to cope with changes in
land suitability, particularly for high-value vegetable
cropping (Daccache et al 2012).

Whilst many published studies have investigated
the impacts of climate change on individual crop types
and agricultural systems in Europe, the often con-
founding reported effects and large magnitudes of
impact make developing robust policies for support-
ing climate change adaptation very challenging. Given
concerns regarding food security and the vulnerability
of European agriculture to climate variability
(Reidsma et al 2010), the objective of this paper was to
review and assess the projected impacts of climate
change on crop yields in Europe using a systematic
review (SR) of published scientific and grey literature.
SRs are increasingly being used in support of evidence-
based approaches to formulate policy by providing
unbiased and robust syntheses of scientific evidence.
Whilst similar studies exist to assess climate impacts
on crop yield in Africa and South Asia (Roudier
et al 2011, Knox et al 2012), surprisingly, no such com-
parable synthesis has been undertaken for Europe. The
study findings aim to provide new information to sup-
port the development of appropriate farmer adapta-
tion responses for crop production in Europe (Olesen
et al 2011), to inform future crop modelling research

(Ewert 2012) and to provide new insights for climate
adaptation policy.

Methods

Our approach adopted an established SR procedure
developed by the Centre for Evidence BasedConserva-
tion (CEBC) constrained by inclusion criteria and
defined methods for literature searches, data extrac-
tion, meta-analysis and synthesis (Centre for Evi-
dence-Based Conservation 2010). The aim of the SR
was to assess the projected impacts of climate change
on the yield of seven important crops (viz wheat,
barley, maize, potato, sugar beet, rice and rye) which
are grown extensively across Europe. We included
both biophysically based crop modelling studies and
statistical studies using GCM climate projections from
different time horizons in the SR. We excluded those
studies that dealt with the effects of extreme events,
such as droughts or floods, on crop responses, and
those that considered ‘food production’ activities since
these are affected by other non-biophysical factors. A
detailed description of the protocol used to establish
the methods for data extraction, development of the
meta-database and data synthesis are included in the
supplementary information. The SR approach used
here for Europe was similar to that described by Knox
et al (2012) for Africa andAsia.

Following CEBC convention, the research ques-
tion was broken down into four PICO components,
namely (i) the population (agricultural food crops in
Europe), (ii) interventions (projected climate changes
based on global circulationmodels and a time horizon
up to the 2080s; temperature, rainfall and CO2 con-
centration were considered as the main climate dri-
vers), (iii) comparators (changes relative to a baseline,
defined as 1961–1990, although more recent studies
have started using a later baseline), and (iv) outcomes
(defined as changes in forecast average yield or varia-
tion in yield). Unique PICO keywords were defined
together with a list of relevant bibliographic databases
covering both the scientific literature (ISI Web of Sci-
ence™, Scopus™, ScienceDirect™, Ingenta Con-
nect™) and other sources (e.g. EBSCO GreenFILE,
CSA Natural Sciences, FAO Repository). A set of
search terms was defined and trialled using Web of
Science™, in order to assess the suitability of specific
keywords and search strings. The chosen search term
was then applied to each bibliographic database. Aca-
demic bibliographic sources were sampled first. For
the website searches, the same search string was used
and the first 50 hits reviewed. Following removal of
duplicates, all the references retrieved were then col-
lated in Mendeley™, an open source bibliographic
management software package. The published dates
for literature included in the reviewwere a vital feature
as GCMs and emissions scenario have been regularly
updated. In this SR, any literature that was either a
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product of the 3rd IPCC Assessment Report
(IPCC 2001a, 2001b) or any earlier reports were con-
sidered outdated and thus excluded.

The inclusion criteria used to screen the literature
for relevance included (i) relevant subjects (crops
defined above; field to regional scales; any countries or
regions within Europe; small-scale and commercial/
industrial agriculture), (ii) types of intervention (IPCC
climate change scenario; a time horizon up to the
2080s; projected changes inmean, total or seasonal cli-
mate), (iii) comparators (future yield values compared
to present/baseline values), (iv) methods (controlled
experiments and biophysical modelling studies), and
(v) outcomes (studies that considered changes in crop
suitability, performance, variability and/or sustain-
ability). The first filtering was based on the source title;
a second filter was then applied based on the source
abstract. Full documents (peer review articles, indus-
try reports) were only reviewed after satisfying all
inclusion criteria. The screening was undertaken by

two researchers working independently to ensure con-
sistency in the process.

A schematic representation of the screening pro-
cess is given in figure 1. We ultimately identified and
screened 1748 sources of literature, of which 41 were
subsequently selected and analysed, to provide 729
‘observations’ of projected yield variation by crop and
region, relative to a historical baseline. All relevant
data were extracted and combined in a meta-database.
Due to the disparity in the methods used for yield esti-
mation and limited reporting on yield variability, it
was not possible to use a weighted meta-analysis, as
commonly applied in conventional SRs of exper-
imental results. Hence, the mean forecast yield varia-
tions were compared with a zero response using a
Student’s t-test on the full dataset and afterwards repe-
ated for a number of subsets aggregated by geo-
graphical region (northern, central and southern
Europe), by climate GCMmodel, time slice, crop type
and cropmodelling approach (complex biophysical or

Figure 1. Schematic representation of the systematic review process.
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simple statistical). The results included all reported
yield forecasts, for all time slices, for all GCM combi-
nations (whether single or ensemble) and for all crop
modelling approaches (whether based on simple sta-
tistical trends or more complex biophysical model-
ling). We therefore conducted further statistical
analyses to differentiate subsets from the meta-data-
base (by time slice, climate model and crop modelling
approach) to highlight which factors contributedmost
to the projected change in average yield in order to
analyse the uncertainty. The countries included in
each region are listed in the supplementary
information.

Results and discussion

Regional climate impacts
The projected impacts of climate change on yield by
crop type, for Europe as a whole and aggregated into
sub-regions (northern, central and southern) are
shown in figure 2. The data shown correspond to the
forecast yield variations for each crop, for all GCM
models, all time slices and all crop models. The
whiskers represent the minimum and maximum
reported yield variation, where published. Table 1
summarises the primary data and shows that for
Europe as a whole, most studies project a positive

Figure 2.Variation in projected change in average yield (%) for all observations in Europe.

Table 1. Summary of reported impacts of projected change (%) in average yield for all crops and split into northern (NE), central (CE) and
southern (SE)Europe.

Crop n
Mean

variation%
Cropswith significant
variation n

Mean
variation%

Cropswith non-
significant variation n

All crops 729 +8 Wheat 293 +14 Barley 69
Maize 149 −6 Rice 4
Potato 109 +8 Rye 2
Sugar beet 103 +15

Northern Eur-
ope (NE)

224 +14 Wheat 89 +18 Barley 49

Maize 24 +14 Rye 2
Potato 31 +17
Sugar beet 29 +17

Central Eur-
ope (CE)

312 +6 Wheat 140 +10 Barley 19

Maize 64 −9
Potato 47 +5
Sugar beet 42 +17

Southern Eur-
ope (SE)

188 +5 Wheat 63 +18 Potato 30

Maize 60 −11 Rice 4
Sugar beet 31 +8

Note: Refer to supplementary information for countries included in each region; n=number of observedmean yield variations. This could
include some from the same source for different time slices and/or countries; level of significance tested (p<0.05) by comparing the
confidence interval of themeanwith zero; in each region and time slice, data was not necessarily available for all crops e.g. rice and rye.
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impact on crop yield. The reported increases being
largely due to rising atmospheric CO2 concentrations,
enhancing both crop productivity and resource use
efficiency. Overall, a projected change in average yield
of +8% was identified, but with large differences
between both individual crops (for example, wheat
+14%; maize −6%) and regions (northern Europe
+14%; southern Europe +5%). Crops with the most
observations and a statistically significant yield varia-
tion were wheat, maize, potato and sugar beet.
Conversely, data for barley, rice and rye were much
less extensive, so projected variations in average yield
were not statistically significant.

When the data were disaggregated by time hor-
izon, only changes in wheat and sugar beet yield were
statistically significant. However, it is important to
note that there were no data available on forecast
yields for all crops in all regions in all time horizons, so
lack of a significant response may in part be due to the
absence, or limited number of studies for certain crops
and/or regions.

For northern Europe, most evidence related to
wheat (n=89) with observations available from stu-
dies conducted in almost all countries in the region. In
contrast, there was very limited published data on rye
(n=2) and none for rice. The evidence projected
higher yield increases both on average and across all
crop types and countries, although the variability in
reported impacts was also surprisingly high (figure 2).
Significant average yield changes were identified for
maize and potato (+14% and +17%, respectively),
with particularly strong increases in the 2050s (+12%
and +18%) and 2080s (+19% and +14%). The aver-
age yield change for barley (−1%) was not statistically
significant.

For central Europe, the average yield change was
+6%, which was relatively constant through the dif-
ferent time horizons and for all crops. Wheat accoun-
ted for the largest number of observations (n=140)
with a moderate projected yield increase towards the
end of the century (+7% for the 2020s rising to+11%
by the 2080s). Sugar beet showed a steady increase in
projected average yield through time. However, it is
important to recognise the decrease in projected
change in average yield for maize from −9% for the
2020s down to −15% by the 2080s. The projected
changes in yield in central Europe were broadly con-
sistent with those for northern Europe, showing posi-
tive impacts formost crops apart frommaize.

Climate impacts for southern Europe also showed
an increase in average yield although the data for the
2080s was not statistically significant. Wheat showed a
consistent, significant increase in projected average
yield (+18%), in contrast to maize which showed a
sharp decrease, particularly by the 2080s (−28%).
Reported data for potato showed a significant increase
in projected average yield for the 2020s and the 2050s
(+11% and +10%, respectively). However, by the
2080s the trend reverses, with a significant projected

change in average yield of −10%. These data were
drawn from a single study covering the European
region using a crop modelling methodology and cli-
mate data, generating single climate impacts for potato
for each country separately. The frequency distribu-
tion of the projected change in average yield for all
crops, disaggregated into European regions, is shown
in figure 3. This shows thatmost of the observations lie
between the−5%and+15%bins.

For many of the crops studied, notably cereals and
sugar beet, Europe is a significant contributor to global
production. For example, in 2014, the harvested pro-
duction of cereals (including rice) in the EU-28 was
estimated to be 334 million tonnes, representing 13%
of global cereal production (FAOSTAT 1998). Whilst
globally most sugar is derived from sugarcane, beet
production in the EU-28 still provides 20% of global
sugar demand and constitutes half of global produc-
tion (EUROSTAT 2014). Given a rising global popula-
tion, reducing the amount of food produced in Europe
is not a viable option. Positive or negative changes in
yield in Europe will not only influence future levels of
self-sufficiency but could also have serious indirect
impacts on international agricultural trade, food sup-
ply-chains and commodity markets. To inform robust
decision-making regarding policies for climate adap-
tation, it is therefore important to set the projected cli-
mate impacts on food crops in Europe as reported in
this study against equivalent projected yield changes
internationally. For wheat, themean projected climate
impact in Europe (+14%) contrast sharply with pre-
vious research by Knox et al (2012) who reported sig-
nificant a reduction in Africa (−17.2%). For maize, a
projectedmean yield reduction of−6% in Europe was
similar to Africa (−5.4%) but much less than S Asia
(−15.9%). For other important crops in Europe
including sugar beet (+15%) and potatoes (+8%)
there are no equivalent reported data for Africa or S
Asia. For rice, evidence from studies in Europe, Africa
and S Asia were all insufficient to deduce any sig-
nificant yield variation, highlighting the pressing need
for further research to expand the evidence base. For
sugarcane, a lack of evidence on climate yield impacts
in Africa should also be addressed given the recent
focus on sugarcane expansion as a means to power
agricultural transformation and economic develop-
ment in Africa (Hess et al 2016). The findings from this
research corroborate other studies that show how crop
productivity impacts in higher-latitude temperate
regions, such as northern Europe, are generally expec-
ted to be less severe than in lower-latitude more tropi-
cal regions (Challinor et al 2014). These wide geo-
spatial variations in climate impact confirm an
enhanced role for trade with increased flows in agri-
cultural commodities from the mid to high latitude
regions to low latitude regions needed to offset the
more extreme climate impacts, where both produc-
tion and export potential could be severely hampered
(Elbehri et al 2015).
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GCMand cropmodel impacts
The SR also considered the projected change (%) in
average yield over time, based on reported time slices
(ranging from the 2020s to the 2080s) and for different
GCMs (both single and ensemble). The data for all
crops and all GCM models are shown in the ‘box and
whisker’ plots in figure 4, disaggregated by EU region.
The ‘box’ defines the inter-quartile range. The line
spanning the box represents the median and the
‘whiskers’ represent the lower (10%) and upper (90%)
deciles. Outliers are shown as individual points. The
data in figure 4 highlight the significant differences
between time slices and regions. Overall, the variation
in projected change in average yield is positive across
all time slices and regions (apart from southern Europe
in the 2080s). There are smaller projected changes in
yield for the 2020s compared to the 2050s and 2080s.
The inter-decile range spans the zero variation line for
all time slices and regions. Generally the variation in
projected change in average yield increases with time,
andmost notably for southern Europe.

Forecasting future crop productivity under a
changing climate is subject to several sources of uncer-
tainty, including for example, the timing of impacts
(Challinor et al 2014). The choice of a particular GCM
climate model and whether it is used in isolation or as

part of an ensemble can also have a significant impact
(Challinor et al 2009). Figure 5 shows the projected
change in average yield for studies that used either an
individual GCM model (e.g. CGCM, ECHAM,
HadCM3) or an ensemble approach. Surprisingly, the
projected change in average yield was more variable
for ensemble-based studies and the median was
greater. This is in contrast to findings from a SR of
equivalent climate impact on crop yield data for Africa
and SAsia (Knox et al 2012).

The complexity of modelling approaches used for
climate impact assessment can also strongly influence
the projected crop yield variation. For example,
figure 6 shows the reported yield variation based on
either a simple modelling approach, typically based on
locally developed statistical models, or a more com-
plex biophysical modelling approach using locally
calibrated and validated crop models such as those
embedded within DSSAT (Jones et al 2003) or standa-
lone crop models such as WOFOST (van Diepen
et al 1989) or CropSyst (Stockle et al 2003). The varia-
tion around themean ismuch greater for those studies
that adopted a complex modelling based approach,
with wide variation in both positive and negative yield
change. Various authors have previously identified
possible reasons (termed ‘effect modifiers’ in SRs) for

Figure 3. Frequency distribution of projected change in average yield (%) for all observations (n=729) by region (northern, central
and southern) in Europe. Based on data for all crops, allmodelling approaches, all GCMclimatemodels and time slices.
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Figure 4.Box andwhisker plots showing the variation in projected change in average yield (%) for (a) all observations (n=729) by
region in Europe and for selected time slices including the 2020s (b), the 2050s (c) and the 2080s (d).

Figure 5.Box andwhisker plot showing projected changes in average yield (%) for all crops using either a single, ensemble or group
(>3) of GCMclimatemodels.
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such variation. Firstly, there are more published stu-
dies based on the ‘complex’ modelling approach; in
this study, the observations for simple approaches
(n=70) was much lower compared to those using
‘complex’ approaches (n=654). Other factors
include differences in the assumptions made in the
cropmodelling (e.g. soil and crop cultivars, cropman-
agement practices, pest and disease risk) and the lack
of locally specific model parametrization (Müller
et al 2011). Finally, different protocols used by
researchers could also introduce biases that limit any
further cross-study or cross regional synthesis (White
et al 2011).

Methodological limitations
SRs were originally designed for application in clinical
research to synthesise the outcomes from replicated,
controlledmedical trials where the effects of particular
interventions could be identified and quantified statis-
tically. However, in field crops research it is generally
not possible to evaluate future climate impacts on crop
production through experimentation, so yield impact
is usually assessed through a combination of estima-
tion methods involving biophysical or statistical crop
models, which themselves introduce an important
component of uncertainty into the modelled results
due to their simplification of real-world complexity.
The quality of primary data available for conducting a
SR is also critical. This reviewwas limited to evaluating
modelled results from a wide spectrum of climate
change impact studies, all of which inevitably con-
tained different combinations of effect modifiers.
These included, for example, different emissions
scenarios applied to a diverse range of GCMs under
various agro-ecological conditions, and varying
assumptions regarding crop varieties, agricultural
systems, crop husbandry practices, and levels of
mechanisation. As highlighted by Reidsma et al (2010)
such differences in farm characteristics (e.g.

production intensity, farm size) are particularly
important when considering climate impacts on
production and farm adaptation options and
responses. In addition, the different spatial scales
reported in the literature may explain some of the
observed differences together with the approaches
used by individual studies for downscaling coarse
resolution climate data. The studies included in the SR
assessed the impacts of climate change on the crops in
the locations where they were currently grown, so they
ignored any possible impact of changes in cropping
pattern to exploit more favourable growing condi-
tions. Finally, the SR was limited to assessing climate
impacts on yield, ignoring any planned or autono-
mous adaptation or adaptive capacity response; future
SR studies could focus on the extent to which
adaptation is integrated into crop modelling studies
(Reidsma et al 2010).

Policy implications for adaptation
This study provides the first SR of climate impacts on
crop productivity for a major food production region.
The outputs provide valuable new information to
inform policies regarding climate change impacts in
support of developing adaptation strategies to increase
the future resilience of European food crop systems. In
contrast to crops such as wheat (n=293) and maize
(n=149) where there is extensive and robust evi-
dence, the SR has identified a major knowledge gap
regarding the climate impacts on important crops
such as barley, rice and rye (n=69, n=2, n=4,
respectively). For countries where these crops are
important, this will inevitably limit decision makers’
and farmers’ ability to benefit from research in
developing robust strategies to increase their resilience
to a changing climate. Surprisingly, the SR also
confirmed there is extensive evidence on climate
impacts on crop production for northern and central
Europe, but much fewer studies for southern Europe.

Figure 6.Box andwhisker plot showing projected changes in average yield (%) for all crops and time slices, aggregated by climate
changemodelling approach (complex, simple).

8

Environ. Res. Lett. 11 (2016) 113004 J Knox et al



For the science community, our outputs should help
focus future efforts regarding the choice of crops and
regions within Europe where research effort is needed
and where programmes such as the FACCE JPI
(Modelling European Agriculture with Climate
Change for Food Security) might wish to direct
increased attention. This will assist policy makers and
practitioners in making more informed decisions on
how and where resources should be allocated to better
adapt agricultural production to climate change, and
importantly the scale at which interventions should be
made. To be effective, adaptation responses at regional
level need to be closely aligned and sensitive to the
composition and mix of farm types at local level. For
example, farmers surveyed by Olesen et al (2011)
reported a high proportion of negative expectation
regarding the impacts of climate change on crop
production across Europe, even in the cooler tempe-
rate latitudes of northern Europe. This potentially
highlights a lack of effective knowledge transfer and
dissemination of research to the farming community
and practitioners from modelled studies that predo-
minantly demonstrate a positive benefit from climate
change on crop production in that region whilst not to
excluding the secondary impacts of climate change
linked to crop production including potentially
increased risks from soil erosion, changes in nutrient
cycling and need for crop protection (Olesen
et al 2011).

Robust and reliable evidence are of course critical
in support of formulating policies to address climate
impacts on agriculture, food security and trade; imple-
mented effectively it can usefully guide decisions on
policy, highlight options for action and identify evi-
dence gaps (Elbehri et al 2015). However, from a pol-
icy perspective, it is important to recognise that whilst
quantifying changes in yield is essential for on-farm
adaptation, it constitutes only part of a much broader
mix of climate risks to agriculture. Integrated assess-
ments attempt to overcome this by factoring in the
links and feedbacks between agricultural production,
food demand, markets and land use trends, to identify
a range of policy alternatives. Various international
collaborative initiatives are striving to achieve this
through linking global circulation models with bio-
physical and agricultural economics modelling to
inform economic and trade impacts at the regional
and international levels (Rosenzweig et al 2013). Given
the strong differences in climate yield impact between
Europe and other regions, and the fact that climate
change can transform trade by altering the compara-
tive advantages between regions (Elbehri et al 2015),
there will also be a need for more climate-compatible
trade policies to resolve the trade versus environment
trade-offs to ensure that future trade regulations are
more tightly aligned with climate adaptation objec-
tives. Recent research has also highlighted the policy
risks associated with conducting single-sector (e.g.
agriculture, forestry) climate impact assessments. In

Europe Harrison et al (2016), showed how single sec-
tor studies can strongly misrepresent the spatial pat-
tern, direction and magnitude of most impacts as they
omit critical interdependencies between human and
environmental systems. Finally, developing policies to
achieve a more climate resilient agricultural sector in
Europe will requiremuch greater attention to the links
between water resources and agricultural production.
Since water mediates much of the climate impact on
agriculture any projected increases in water scarcity
will inevitably present major challenges for climate
adaptation, food security and nutrition (Elbehri
et al 2015). Identifying ‘hotspots’ where irrigated agri-
culture is concentrated and where future supply-
demand imbalances might occur, could provide valu-
able insights to inform national policies targeting
resources for adaptation, or in providing incentives for
adaptation research to identify more resilient agri-
cultural technologies/systems in hotspot regions.
National climate change policies should also pay
greater attention to identifying regions where future
investment in agriculture and new food crops should
be encouraged, particularly where more favourable
growing conditions and/or new markets might
emerge. Clearly, there are many opportunities for
robust evidence derived from SRs to usefully con-
tribute to ongoing policy dialogue and science debate.

The evidence from this SR confirms that climate
change is likely to increase the yield of Europe’s major
agricultural cropping systems, with more favourable
impacts in northern and central Europe. Despite the
inherent limitations in applying an SR approach in this
research domain, it highlights a potentially very
importantmessage; that climate impacts in Europe are
not necessarily all negative, but that they could be ben-
eficial for many crops and areas of production. This
could also trigger changes in growing conditions and
land suitability for other crops that are currently either
marginal or not grown by farmers in certain regions,
providing scope for crop diversification. Notwith-
standing these potential opportunities, as stated by
Wheeler (2015), the multitude of risks that climate
change still poses to agricultural output and food sys-
tems in Europe and globally should not be ignored by
those making medium to long term strategic planning
decisions regarding food security.
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