
1 

 

CRANFIELD UNIVERSITY 

 

 

L. KIRKWOOD 

 

 

CHARACTERISATION OF WEAR RESISTANCE OF 

NATURAL AND SYNTHETIC DIAMOND TOOLS 

DURING SINGLE POINT DIAMOND TURNING  

 
 

 

SCHOOL OF APPLIED SCIENCES 

 

 

PhD THESIS 

Academic year: 2012-2013 

 

 

Supervisors: 

P. Shore 

& 

I. Durazo-Cardenas 

 

February 2013 

 

 

  



2 

 

 

Cranfield University 

Leigh Kirkwood 

 

 

Characterisation of wear resistance of natural and synthetic 

diamond tools during single point diamond turning  
 

 

 

 

School of Applied Sciences 

PhD thesis 

 

 

 

 

 

 

Supervisors: 

Doctor I. Durazo-Cardenas 

& 

Professor P. Shore 

 

 

 

 

This thesis is submitted in partial fulfilment of the requirements for the 

 Degree of Doctor of Philosophy 
 

 

 

 

© Cranfield University, 2013. All rights reserved.  

No part of this publication may be reproduced without the written permission of the 

copyright holder. 

  



3 

 

 

 

 

 

Abstract 

Achievable cutting distance of a diamond tool during turning is finite and is a limiting 

factor in the size of component that can be turned. This limit is particularly problematic 

when attempting to turn brittle materials, such as those used in infra-red optics. Natural 

diamond tools have been used for this application. However natural diamond introduces 

problems: the gems can contain possible contamination with a range of impurities and 

strong residual stresses from formation. Cutting distance is therefore inconsistent when 

using natural diamond. Industry is keen to increase possible cutting distance and to 

increase the consistency of cutting distance. 

One possible solution is synthetic diamond materials. New CVD single crystal synthetic 

diamonds possess high purity and consistent growth conditions and therefore have the 

potential to be a superior tool-material that provides longer achievable cutting distance 

and extremely consistent cutting behaviour. This new material is compared against 

natural and HPHT synthetic diamonds in machining tests against silicon workpieces in a 

selection of tool-orientations. Aluminium workpieces are machined with MCC and 

natural diamond tools to assess the performance of the new material against this 

commonly diamond turned material. While analysing the results from these cutting 

trials the failure modes of diamond tools were examined closely, resulting in 

discovering the existence of two separate failure modes and the development of a new 

wear-model. Natural diamond tools were carefully tested using a range of techniques 

hoping to find a root cause of the wide variability seen. FTIR offered a strong clue as to 

the defect within natural diamond tools that leads to occasional high cutting life. 
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Chapter 1- Introduction 
 

Diamond turning is an ultra-precision machining method that has found application in 

the production of high accuracy infra-red (IR) optical components. There are several 

reasons for using diamond turning in this application; the high stiffness of diamond 

turning machines and the quality of the CNC control systems ensure that form accuracy 

is extremely good. However the primary reason for the move towards machining optics 

with diamond turning is the increasing geometrical complexity of optical components 

which makes polishing of these lenses impossible. This increased complexity is driven 

by the need to remove optical aberration effects from the component. Specifically, 

spherical aberration is compensated out by using an aspheric profile and chromatic 

aberration is corrected by machining a diffractive element into the workpiece.  

 

Performance of hybrid lenses is also strongly dependent upon the quality of surface 

finish. Achieving a good quality surface finish is complicated when machining IR 

materials as many are extremely brittle and therefore exhibit a tendency to produce poor 

surfaces. Brittleness can lead to cracks propagating into the machined surface inducing 

so called sub-surface damage. However, good optical quality surfaces (with Ra values 

of a few nanometres) are possible in IR materials if specific machining criteria are met 

and the tool is in good condition. Keeping the tool in good condition is difficult when 

machining IR workpieces as the hardness of these materials is often high and attritious 

wear of the tool is fast. When producing IR lenses from such materials the accumulated 

wear damage to the tool-edge can very quickly result in the tool inducing damage to the 

surface of the workpiece. During literature searches the causal link between wear of a 

tool and the start of a tool to introduce brittle damage into the workpiece surface has not 

been found. The cause of brittle damage is therefore linked through unknown 

mechanisms to attritious wear of the diamond tool. This thesis addresses this lack of 

knowledge and introduces two different failure mechanisms into the discussion. 

 

For many optical systems weight is an important factor therefore there is a continuous 

effort to develop methods for using lower density materials. For IR optics silicon offers 
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the greatest weight saving but the difficulty with using silicon is that it has extreme 

hardness and results in destructive tool-wear after a comparatively short cut-length. The 

short cut-life directly limits the maximum size of optic that can be manufactured (for 

example cutting a simple flat on a 120mm workpiece requires a working cut distance of 

11.3 Km). Silicon is therefore a test material for the work presented here, with the hope 

that through this work larger workpieces can be successfully machined. 

 

Even with softer materials, such as aluminium, tool-wear can result in a failure to 

machine the workpiece within tolerances. Aluminium does not suffer the brittle 

behaviour found among the IR crystalline materials but suffers different problems. Wear 

can make the tools finish rougher and this will directly “print-through” to the workpiece 

surface, potentially raising the Ra above tolerance. Additionally, wear of the tool can 

cause tool-geometry to change sufficiently that the tool cuts the incorrect form into the 

workpiece, (a particular problem with more complex geometries). Finally, it is possible 

for increased tool-wear to result in higher cutting forces, which on small or thin 

workpieces can easily result in distortion of the workpiece. On machines with lower 

loop stiffness high cutting forces can result in displacement of the axis and introduce 

form errors. Non-ferrous materials like aluminium are the larger market for diamond 

turning, and therefore reducing wear of diamond tools in this application is of interest. 

 

Natural diamond tools have long shown inconsistent performance when machining a 

range of workpiece materials. For more than 30 years seemingly identical single crystal 

natural diamond tools have been known to have the potential to achieve very different 

cut distances, implying different tool-wear characteristics. At first this result might be 

unintuitive, however when the wide variety possible in natural diamond is considered 

(specifically the huge range in size, shape, stress-state, dopant materials and impurity 

arrangements), then the result is perhaps less surprising. Converting diamond tools 

away from the use of natural tools towards synthetic diamond material types would 

eliminate a lot of the inconsistency. The oldest synthetic diamond material is the high-

pressure high-temperature (HPHT). Most diamond turning does not use this type of 

material as it has a reputation for performing poorly against most workpiece materials, 

(though some workpiece materials are preferentially machined with HPHT). This 
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relatively poor performance is largely thought to be due to the large quantity of nitrogen 

impurities within the crystal structure. A new single crystal chemical vapour deposition 

(CVD) synthetic diamond material (supplied by Element 6 under the trade name MCC) 

is of interest as a potential diamond turning tool material. The expectation is that a very 

pure, high crystallographic perfection, synthetic like MCC would be an exceptional tool 

material.  

 

This project focuses on how various synthetic and natural diamond tool-materials wear. 

Experiments were performed testing the wear resistance of various natural and synthetic 

diamond materials, in various crystallographic orientations, against silicon and 

aluminium workpieces. Aluminium was selected as a representative soft non-ferrous 

material that is frequently diamond turned, while silicon was tested because of its strong 

commercial interest and ability to wear tools quickly. These trials were designed with 

the aim of describing their tool-wear characteristics and gaining an understanding of the 

mechanisms leading to tool failure. Furthermore these trials were designed to allow the 

development of models to describe wear, hopefully leading to predictions of useful tool-

life. 

 

1.1 Aims & objectives  

To structure the research it is useful to define some research aims and the objectives that 

will help to achieve them. For this work three main aims need exploring:  

Aim 1: Explore the effect of diamond quality on cutting tools during SPDT of silicon 

Aim 2: Explore the effect of diamond quality on cutting tools during SPDT of 

aluminium 

Aim 3: Explore the origins of the “supertool” effect 

 

To start to approach the first aim we clearly need to define what “diamond quality” 

means. This can be done through a thorough literature review. Natural diamond and the 

two synthetic diamond materials could be expected to have different crystallographic 

properties. It is therefore possible to design experiments to explore the affect of 

diamond quality when diamond turning by using the three diamond materials. 

The first three objectives can therefore be defined: 
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Objective 1: Test HPHT material against silicon workpieces 

Objective 2: Test natural diamond tools against silicon workpieces 

Objective 3: Test MCC material against silicon workpieces 

These objectives should thoroughly test the behaviour of different types of tool when 

machining silicon workpieces. Combined with crystallographic knowledge about the 

three diamond materials from the literature review these tests should provide an 

understanding of which properties of a diamond lead to maximised cutting life during 

SPDT. 

 

Tests against aluminium workpieces are sensible objectives towards completion of the 

second aim. A separate trial is needed as diamond properties that are positive during the 

turning of silicon workpieces can not be assumed to be positive factors for SPDT of 

aluminium.  

Objective 4: Test natural diamond tools against aluminium workpieces 

Objective 5: Test MCC material against aluminium workpieces 

As the HPHT has been available for some time and is of limited use in the aluminium 

machining industry a trial with HPHT would be superfluous. 

 

If the root cause of supertool behaviour is to be understood then an examination of the 

crystallographic properties of a known supertool and normal behaving tools will be 

required. Completing the following objectives should help find the cause of supertool 

behaviour. 

Objective 6: Investigate crystallographic orientation as a cause of supertool 

behaviour 

Objective 7: Investigate impurity content of natural diamond as a cause of 

supertool behaviour 

Objective 8: Investigate other possible causes of supertool behaviour 

The project therefore has eight objectives to complete leading to completion of three 

aims. Objective 8 is deliberately wide in scope, but the literature review should reduce 

this objective down to a small number of possible factors and provide enough 

information to decide if any are likely to be contributing to the supertool phenomena. 
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Chapter 2- Literature review 

2.1 Background to diamond turning 

The extreme hardness of diamond is one of its best known qualities and as such has 

found wide use as a cutting or abrasive material. Diamond turning is a process that 

generates extremely smooth surfaces for use in a number of industries, particularly 

demanding optical applications. Unlike traditional optical polishing techniques, the 

process of diamond turning can create complex forms because of precision control of 

the motions in the axes the machines used.  

 

 

Figure 1: The Moore machine: principle diamond turning machine for this project.  

 

The above image is of the Moore Nanotech 350 UPL diamond turning machine. This 

machine uses the design principles established by McKeown [1], which details the 

eleven design principles, establishing the criteria for any successful precision 

engineering machine. 

 

The machine uses an airbearing spindle to rotate the workpiece; these are particularly 

suitable for ultra-precision diamond turning because of the very low error motion. 

Additionally the machines at Cranfield are operated within a temperature controlled 
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laboratory. This temperature control is necessary to minimise any thermal distortion that 

could affect machine tool accuracy. 

 

Cranfield has an enviable record in ultra-precision engineering and a history of 

investigating single-point diamond turning. A recent investigation on machining of 

silicon for diffractive optics [2] examined the influence of various parameters upon the 

machining of complex forms, (hybrid refractive-diffractive optical components). There 

were two principal findings. The first dealt with which cutting fluid reduced tool-wear 

most effectively. The second was identifying that different diamonds that were made to 

the same specifications showed large variance in tool-life. Indeed, that “the most 

noticeable influence on the results achieved, during the examination of tool life, whilst 

single point diamond turning single crystal silicon was the tool gem itself” [2]. This 

result is extraordinary; that seemingly identical gems can give hugely varying tool lives 

is far from intuitive. 

During the work of Jacklin [2] the term “supertool” was used to describe those rare 

tools that consistently display an ability to cut unusually long cutting distances before 

inducing brittle failure in the silicon workpieces. In contrast to the supertools there are 

“normal tools”; natural diamond tools which can not achieve the same cutting distance 

as supertools. Supertool diamonds are prepared to the same tolerances and 

specifications as normal diamond tools so the difference between normal tool and 

supertool performance was an unexpected result. It is noteworthy that a natural diamond 

tool will not change from being a supertool to a normal tool, or vice versa, after the 

reconditioning process [2]. As “supertool” and “normal tool” are convenient terms for 

natural diamond tools they will be used within this text. 

 

 

2.2 Diamond turning of brittle materials 

Simple refractive lenses are increasingly becoming unsuitable for many of the most 

demanding applications. These simple lenses lose too much image quality from 

aberrations, particularly chromatic aberration. Chromatic aberration is an error that has 

its root in dispersion; an optical effect where different wavelengths of light experience 

different refractive indices while travelling through the same material. This effect is 
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how a prism is able to separate white light into its constituent colours; in lenses it causes 

different wavelengths to come to different focal points. However, by combining a 

refractive surface with a diffractive surface, a single hybrid lens can be made which 

cancels the defects of the individual surfaces (see figure 2). 

 

 

Figure 2: The refractive and diffractive lenses focus red and blue ends of the spectrum at different points, 

combining them into a single lens creates a single focus for the different ends of the spectrum [2] 

 

These hybrid lenses are impossible to manufacture using traditional polishing methods 

the required form is just too difficult. Increased demand for diamond turning for 

producing IR-optics has grown as demand for higher quality optics increases.  

 

Germanium is the material of choice for IR-optics as this is slightly easier to machine 

compared with silicon. However, germanium is denser and more expensive than silicon 

and therefore not ideal for weight sensitive applications. Despite the need for silicon to 

be made into IR-optics the diamond tools are currently displaying far too great a 

variability in tool-life, this is limiting the maximum diameter of the optics that are 

capable of manufacture. Using multiple tools is not an option because of the errors that 

will be introduced by replacing the tool. A silicon optic of 200mm diameter requires a 

tool-life of 31.4Km; this is a cut length that many natural diamond tools struggle to 

reach. Machining with a worn tool will ruin the optic that is being made and will result 

in a costly waste of a workpiece. Variability in diamond tool-life is poorly understood at 

this time. This project was instigated to investigate the variability of diamond tools and 

will investigate the latest synthetic diamond materials. 
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Figure 3: Damaged germanium on the (111) plane. [3] Left is a photograph of a turned surface and right 

is the mapping of the damage. This level of damage is extreme, and would certainly ruin an optical 

component. 

 

For many early efforts the turning process was causing subsurface damage to the turned 

piece (figure 3). These micro-scale fractures that extended under the surface of the 

turned work piece make the workpiece unsuited for optical applications (figure 4).  

 

Figure 4: Cross section of subsurface damage from diamond turning of silicon [4] 
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Sometimes the turning successfully produced a damage free surface, and sometimes not. 

A theoretical understanding of why was presented in arguably the most important paper 

in the field of diamond turning, when the work of Blake and Scattergood managed to 

both formulate a reason for the subsurface damage and identify a method for 

eliminating it, back in 1990 [5]. Their work was developed using information gleaned 

from nano-indentation experiments and from fracture mechanics work developed by 

Lawn and Evans [6].  

 

An idea central to their results was that of the critical depth for crack initiation. They 

knew that ductile removal was needed to keep the surface smooth and from the fracture 

mechanics knew that while ductile removal energy scales with volume, the energy of 

crack propagation scales with crack area. This has several consequences, firstly, that 

even extremely brittle and hard materials can be plastically deformed. Secondly, that 

there is a minimum crack size. Understanding this they could start to look at tool 

geometry and specifically, how this affects crack propagation and chip removal (figure 

5). 

 

Figure 5: Schematic of the diamond-turning process. [5] 
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The diamond turning process creates a chip of increasing thickness up the lead-edge of 

the tool. The key to the turning of these very brittle materials is to make sure that any 

cracks are not long enough to reach the surface by ensuring that they start far enough up 

the lead-edge.  

 

 

Figure 6: Brittle fracture occurring in ductile-regime turning [5]  

 

Figure 6 clearly shows this crack propagation issue. As long as cracks form exclusively 

within the removed material, the surface will appear to have been machined in a ductile 

manner.  

The tool geometry and the feed-rate both influence the chip thickness along the lead-

edge. At the point at which the tool is removing more than the required amount of 

material to cause cracking is called the critical chip thickness, tc. This critical chip 

thickness is the transition point; the point where the ductile removal (where energy 

requirement scales with volume) is no longer more favourable than the brittle chipping 

removal mechanism (which scales with surface area).  

 

Measurement of the critical chip thickness is extremely difficult. There are two 

documented methods though; interrupted cutting of the turning process (Blake and 

Scattergood display this in their paper [5]). Via this method, the cut shoulder of the 
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workpiece material is made visible and the transition to brittle removal methods can be 

directly observed; though it should be noted that the transition requires some 

interpretation. 

 

 

Figure 7: interrupted cutting has led to regions of both, ductile and brittle removal to be visible [5]. 

 

The second method of observing the critical chip thickness was displayed by O’Connor 

using a flycutting method. The issue with critical chip-thickness is further complicated 

by anisotropy within the workpiece material [7]. Silicon and germanium both display 

similar anisotropy (they are both bonded in the same configuration as diamond). This 

leads to directional variation within the material, with the critical chip thickness varying 

as the workpiece is rotated. Furthermore, there is a variation with which crystal plane is 

being turned. 
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Figure 8: Variation in pitting damage with crystallographic direction for germanium. On the left the 

(100) plane has been turned, on the right the (110) plane. [3].  

 

While turning a crack can propagate in any direction from the point of critical chip-

thickness, possibly straight down into the workpiece material. This can result in 

subsurface damage and thus can ruin a potentially very valuable workpiece. Thus, 

predicting the length of crack will be extremely useful in combination with the critical 

chip-thickness as we can then start assessing if the surface of the workpiece will have 

subsurface cracks within it. The minimum crack length within silicon has been stated to 

be 0.4µm [8].  

Putting this into a mathematical framework; the critical chip-thickness is defined as: 

 

2)/).(/( HKHEt cc   

 

Where Ψ is the “process constant”; a constant related to the indenter geometry (though 

the authors of the referenced paper also say that it will vary “in a complex fashion upon 

machining parameters and tool geometry” [5]. E is the materials Young’s modulus, H is 

the Hardness of the material and Kc is the fracture toughness. The term Kc/H has been 

referred to as the brittleness index [8]. 

Surface finish in diamond turning is often of critical importance. Within an appendix to 

the same seminal paper [5] Blake and Scattergood detail the geometrical derivation of 
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the theoretical limit to the achievable peak-to-valley roughness parameter (defined as Rt 

in the ISO standard 4287:2000 [9]). The result of this derivation is displayed here: 

 

R

f

8

2

   

 

Where δ is the peak-to-valley measurement, f is the feed-rate and R is the radius of 

curvature of the tool. Despite having a geometrical minimum value for peak-to-valley 

roughness, (a “cusp” height), this ideal value is often not possible to achieve. (And 

indeed if the derivation is followed through they use an approximation that neglects 

another, admittedly very small, geometrical term). This ideal peak-to-valley value is 

often much smaller than real turned surfaces display. Thus often a corrected equation is 

quoted, which includes an extra error term. 
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Where the f{Asyn} term is a result of asynchronous spindle error (as defined in ISO 230-

7:2000 [10]). Any spindle error affects the z-position of the tool and thus form and 

roughness of the workpiece. The methodology for finding the critical chip-thickness 

displayed by O’Connor [7], makes a concerted effort to unravel the variation of critical 

chip-thickness with orientation angle. This method is shown in figure 9. 

 

Figure 9: The scoring of the silicon workpiece material by a diamond flywheel cutter [7].  
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The method utilised a flywheel cutting process while rotating the workpiece. This 

results in numerous shallow cuts at a full circle of angles. The crystalline face is the 

(001) plane. 

 

 

Figure 10: The SEM images from two different cuts. (a) A cut in the [100] direction. (b) A cut in the 

[110] direction. The pitting caused by brittle fracture removal mechanisms can clearly be seen to be 

closer to the surface in the [100] direction. [7].  

 

The measurement by SEM of these cuts allowed the depth of the pitting to be calculated 

via geometry. The results displayed clear anisotropy of the pitting depth; with the depth 

ranging from 40nm in the most difficult direction to 120nm in the easiest to machine 

direction: as illustrated in figure 10. 

A similar methodology was used by Leung et al. [11]. They examined a few variables, 

but significantly this time examining the effect of depth of cut.  
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Figure 11: The increasing depth of cut experiment performed by Leung et al. [11]. 

 

The experimental set-up in figure 11 confirmed that the greater depths of cut result in 

larger pitting damage rather than their theories about depth of cut. The depth of cut is 

something that the “process constant” equation from Blake and Scattergood [5] does not 

factor. Implying that either it is not a factor of any great significance or that the equation 

is for those cases where depth of cut is constant. Leung states that depth of cut is a 

parameter that needs optimising for successful turning [11]. Later in the paper they also 

report “the surface finish became very smooth as the feed-rate or the depth of cut was 

decreased below particular values.” This is interesting; while machining single crystal 

silicon on the (111) plane they found a depth of cut issue causing areas of brittle fracture 

to form. Initially this would appear to be a failure of Blake and Scattergoods’ equation 

to predict machining behaviour, it is explainable. Their efforts at 2 µm/rev feed-rate 

seem particularly unwise considering the sensitivity to this parameter that turning has. 

Why they used this parameter while referencing a paper that clearly states this issue is 

unclear.  

The trial uses tools with top-rakes of 0, -15 and -25 degrees (coincidentally supplied by 

Contour Fine Tooling) for some more traditional turning trials; finding that the 0 degree 

top-rake angle causes a higher RMS than the others. It is worth pointing out their 

roughness measurement technique using a Wyko interferometric device. 
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Figure 12: Unsurprisingly large Ra was recorded from this data. Questions about missing data seem not 

to have been asked [11]. 

 

Figure 12 appears to have large areas of missing data, further throwing doubts upon the 

results they have achieved.  Most interesting is that we are able to use 10µm depths of 

cut with very similar machining parameters without such dramatic roughness.  

 

 

Figure 13: SEM image of continuous chips of silicon. [12] 

 

Though not a unique methodology the work of Shibata, et al. [13], presents an 

interesting note upon the chips that are formed during diamond turning of silicon; it 

results in amorphous chips. Continuous chip formation, as shown in figure 13, has been 
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noted in silicon in several papers, (for example [5,12]). Analysis of these chips implies 

that they are composed of amorphous silicon [13-17], which clearly hints at a phase 

transformation during the plastic deformation of the silicon during diamond turning. A 

metallic phase may occur between the crystal and amorphous phases [18]. Under test 

conditions the transition to an amorphous phase requires significant pressure, 11.3-12.5 

GPa has been reported [17] but that value can be lowered by using a shear force, to as 

low as 8 GPa. The conditions during diamond turning contain a shear force element in 

the direction of the tool motion, so should satisfy that criterian. 

 

 

2.3 Properties of (natural and synthetic) diamond  

2.3.1 Introduction to the diamond type structure 

Diamond is made from covalently bonded carbon. The term “diamond structure” is 

sometimes used to describe structures formed not only of carbon, but also crystals of 

germanium and silicon that use the same bonding pattern.  In the diamond structure a 

unit cell includes 8 atoms [19], thus with the limited number of bonds per atom, not all 

the atoms within the unit cell are bonded to every other. The interesting bonding within 

a diamond-type structure (specifically the tetrahedral arrangement) leads to an 

intriguing structural geometry.  

 

The oldest synthetic diamond type, high-pressure high-temperature (often abbreviated to 

HPHT) is made in a process that seeks to re-create the geological conditions that create 

natural diamond. This simple principle can not match geological formation timescales 

and therefore the resulting stones tend to have high concentrations of unplanned 

inclusions. Most is in the form of nitrogen, which leads to a yellow colouration. Also 

notable is the boron and occasional transition metal inclusions [20]. For diamond 

turning applications this material is often made into tools that are used to cut softer 

materials (such as polymers) and are often orientated so that the tool is very wide 

(allowing for better surface roughness values).  

Chemical vapour deposition (often abbreviated to CVD), is a method often used to form 

a crystalline layer upon a substrate. This process passes the methane reaction gas over 
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the substrate, where the carbon in the methane starts to form diamond. This is usually 

done at high temperature and low vacuum. Significant here is that the size of sample is 

suitable for making a turning tool, while reported CVD growth rates are historically 

prohibitively small [21]. Element 6 have managed to increase the growth rate to make 

growing millimetre scale single crystal samples possible [22].  

 

 

2.3.2 Effect of crystallographic orientation 

The image displayed in figure 14 displays the unit cell of silicon in that distinctive 

diamond-type structure. It is worth noting that the unit cell dimension of the silicon is 

0.543nm which is longer than the unit cell of the carbon based diamond unit cell (which 

measures 0.3567nm [19]). This leads to the density differences between the materials; 

despite the lower atomic mass of carbon the shorter bond length makes it denser than 

the atomically heavier silicon structure.  

 

 

Figure 14: Detailing the complex bond structure in diamond type structures (silicon in this example). [7] 

 

The structure of diamond leads to some strong direction dependency in material 

properties. The geometry of the bonding structure therefore leads to a directional 

variability of the material properties; particularly clearly shown in a figure showing 3D 

variation of the Young’s modulus (figure 15). 
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Figure 15: Detailing the differences in Young’s modulus in different crystallographic directions for a 

diamond bonded material type: a perfectly isotropic material would appear spherical on this graph. [7] 

 

A consideration to remember on the diamond structure outlined within this section is 

that it is an idealised model of what a diamond really is. Though a diamond is an 

arrangement of carbon atoms as described here, it also includes a lot of interesting 

variations away from this ideal. Internal strains within the material will cause variability 

in bond lengths and unit-cell size [23]. Material inclusions within diamond can range 

from small but visible specks of metallic materials [24], to the substitution replacement 

of individual carbon atoms with atoms of nitrogen [21].  

 

Despite cubic crystal cells, diamond crystals grow in octahedral geometries (preferably, 

though not exclusively) [19]. M. Moore and others claim that the growth history of a 

diamond can be looked at in detail using X-ray topography techniques [19, 23, 25-31]; 

most natural diamonds exhibit residual stresses from their formation.  

 

The point of the diamond tool is typically in the [100] direction, though slight variations 

have been observed (see Chapter 5), with the (110) orientation on the top face of the 

tool. Natural stones have a very different orientation than the synthetic HPHT tools, 

which have the crystal orientated in a different orientation. HPHT tools have the (100) 

plane on the top-face.  
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Figure 16: The orientations of the tools. The left image is of the natural tool, while on the right the 

situation is complicated by the orientation of the supplied synthetic material. [32] 

 

Figure 16 displays the different orientation between the natural and the synthetic tools. 

(Denoted as (100/110) and (100/100) respectively). This is a consequence of the 

orientation the synthetic HTHP material grows in and causes complications for the 

grinding of the top-rake and results in a requirement to deliberately misalign the stone 

by angling how it sits upon the shank, as shown in figure 17.  

 

 

 Figure 17:  The orientation of the HTHP tools. [32] 

 

 

This results in the top clearance of -25 degrees and from a crystallographic orientation 

point of view, the (100) direction is no longer going to be normal to the workpiece. This 

means that the crystallographic direction that will be in the same direction as the axis of 

workpiece rotation is now approximately [210] (rather than the [100] direction normally 

employed by natural tools). Obviously changing two things at once (tool material and 
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crystal orientation) complicates direct comparison between natural diamond tools and 

HPHT tools. Discussing diamond properties with Andrew Cox from Contour revealed 

that there is variation in wear-resistance whilst grinding in different crystallographic 

orientations. The literature is able to confirm the same for polishing [33,34,35] and is a 

macroscopic effect of the crystals’ structure. The grinding result is important though as 

it obviously imposes limitations on the tools that are possible to make. 

 

 

2.3.3 Impurity effect 

Natural diamond is famous for being transparent but is also found in many different 

colours. Diamond, though often associated with purity, is frequently contaminated with 

traces of elements other than carbon. Roughly speaking, yellow stones arise from 

nitrogen content [36] while blue stones arise from boron content [37]. Brown and pink 

diamonds are due to the stone being stressed during its formation [38]. Other colours are 

possible too, but with increasing rarity.  

  

The term dopant is used extensively within the semiconductor industry for inclusions 

into crystal structures (though in that industry the dopant materials are deliberately 

included and a great deal of effort goes to ensuring the right concentration of these 

materials throughout the materials). As diamond is a semiconducting material, (though 

with a very large band-gap), and is used frequently in the electronics industry it is 

reasonable to term unplanned elemental inclusions as dopants. Larger scale macroscopic 

inclusions of various materials are quite common, especially within synthetic diamonds 

created through high-temperature, high-pressure techniques [20].  

 

Within diamond the most numerous inclusion is nitrogen, which has been linked to 

changes in mechanical properties, such as hardness (see figure 18). 
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Figure 18: Nitrogen lowers the hardness of diamond [39]. 

 

Very small amounts of nitrogen will be found within clear gems, while yellow and 

brown stones will display progressively higher concentrations of nitrogen [38]. This 

crude visual method of establishing the nitrogen content is a clear indication that 

spectroscopy methods can be used to accurately establish concentrations within the 

material.  

 

There is an established system of labelling diamonds by their nitrogen content. The 

majority of diamonds (~98%) have nitrogen impurity concentrations within the range of 

0.003 to 0.3 percent nitrogen (percent by atomic constitution not weight). Such 

diamonds are labelled type I diamonds. Depending upon which form these type I 

nitrogen atoms coalesce together they can be further subdivided into type Ia and type Ib; 

where Ib has mostly substitutional positioning of the nitrogen content, while Ia type 

diamonds contain more advanced complexes of nitrogen [40]. It is worth noting that 

natural gems of type Ib are very rare (approximately 0.1% of natural gems are this 

type), but is much more common among HTHP synthetic diamond, where the nitrogen 

content is high and the synthesis time is too low to allow migration of the nitrogen into 

more complex optical centres.  
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Having stated the type I as the more numerous high nitrogen type of diamond it remains 

to explain that the type II diamond is composed of the very pure examples, (loosely 

defined as having lower than 0.003% diamond as a percentage). As can be easily 

imagined such pure gems are very rare and are thus very valuable. 

 

Historically, the synthetic gems have included large quantities of nitrogen, (specifically, 

those crystals created via high-temperature, high-pressure methods). These inclusions 

are due to the manufacturing process trapping quantities of nitrogen within the mixing 

chamber. Under high temperature and pressure the carbon within the reaction chamber 

starts to crystallise into diamond, but without having any escape method for it, the 

nitrogen starts to become included within the structure. Nitrogen within synthetic 

diamond tends to be dispersed and isolated. A single nitrogen atom within a diamond 

unit cell will have to either substitute with a carbon (forming a substitutional defect) or 

will have to try and find space within the structure within the gaps (forming an 

interstitial defect) [21].  

 

Nitrogen can also form more complicated defect centres, with various intricacy. These 

formations occur when multiple nitrogen atoms are close to each other within the 

structure. Their interaction causes shifts in the spectroscopy behaviours, thus allowing 

detection and classification. The simplest optical centre, is an aggregation of a pair of 

nitrogen atoms. Such a nitrogen pair have been identified by IR absorption spectra, and 

are known to strongly absorb at 1282cm
-1

 wavenumber. Commonly this defect is called 

an A-centre or an A-aggregate [21]. A more complex form of aggregate is the B-centre, 

formed when four nitrogen symmetrically surround a vacancy [41]. The B-centre is 

known to have an absorption peak at the 1175cm
-1

 wavenumber [21]. 

 

Aggregation into larger defects is a process that happens to diamond under geological 

conditions and over suitably large time scales. This is generally accepted as true, and is 

supported by the lack of aggregation within the rapidly formed synthetics. However, the 

exact reaction route to aggregation remains unclear and somewhat controversial [42], no 

aggregate being less controversial than the platelet. The “platelet” (also referred to as 

the B2-platelet in some literature [43]) is a source of great interest and contention within 
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the field of diamond study. This defect is said to form within the {100} equivalent 

planes [43]. The size of the platelet is far from clear. At least one source claims “smaller 

than several tens of nm” [43], while others claim up to a micrometre in length [43], 

while another claims its size is “varying between a few nanometres and a few 

micrometres” [42]. This is quite a staggering range of scale for one classification of 

defect, though all sources seem to agree the thickness does not exceed a single unit cell, 

the platelet is a comparatively huge defect structure. Frustratingly, little firm 

information is known about the platelet but may well be of critical importance for 

understanding variability in natural tools. The platelet is suspected to be critical because 

it has been suggested [44] that it can retard the propagation of a crack within diamond.  

 

The significant difference between high nitrogen content synthetics and the high 

nitrogen content natural gems though is in the formation of aggregates. In the synthetic 

the formation of aggregates has not been observed [21], implying that the reaction time 

for crystallisation is a factor in aggregate formation. This has led some to speculate on 

the rates of aggregation however, as Collins [24] is quick to point out, calculations then 

imply that the formation of the concentration of aggregates within some measured 

samples would take longer than the age of the earth (~10
11 

years as opposed to ~10
9
). So 

clearly, aggregation of nitrogen into optical centres is far from fully understood. 

 

In general, high nitrogen content has been linked to lower attritious wear resistance 

within diamonds, while the platelet (also linked with nitrogen) has been linked to higher 

crack resistance [44]. Thus nitrogen appears a double-edged sword; wanting low overall 

nitrogen content to increase wear resistance, while simultaneously being extremely 

interested in the platelet defect which has so clearly been linked crack resistance. From 

this information an early prediction can be made about MCC: it may well resist the 

initial wear very well (most likely making the tool shaping more difficult), but by not 

including any platelets the critical failure of a tool due to crack formation may well be 

more likely compared to natural gems. This behaviour would arise solely as a 

consequence of MCC possessing extremely low nitrogen content.  
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Infra-red spectroscopy is a very well established technique for non-destructive testing, 

frequently used within chemistry to identify specific bonding behaviour. The technique 

basically has two experimental versions; absorption and reflection. In absorption IR-

spectroscopy, infra-red light is passed through a sample of known thickness. (The 

thickness needs to be known as the transmitted light falls as an exponential decay of the 

product of length and the characteristic absorption co-efficient; as described by the 

Beer-Lambert absorption law). In reflection the spectra will be different from but 

related to the absorption spectra. However within the reflection arrangement alignment 

becomes more of an issue, as reflection varies with incident polarisation and incident 

angle. Often the specific variation used is dependent upon the transparency of the 

material.  

 

 

Figure 19: Infra-red absorption spectra of two diamond samples. [43].  

 

Above (figure 19) are typical IR-spectra of two diamond samples, showing the peak 

lines at the higher end and the lower intensity broad absorption region from the 

diamond crystal structure.  

 

One of the recurring names in IR-spectroscopy of diamond is Shimada. An early, but 

very useful, paper on IR-spectroscopy of diamond was published in 1985 [44]. In this 

paper IR-spectra of diamond tools were collected and then compared against the 
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hardness data collected via diamond indentation (a Hertzian fracture test). The 

qualitative finding of this paper is, “the higher the IRA coefficient at 7.3µm, the lower 

the microstrength”. The 7.3µm absorption line is reported to be due to the “platelet” 

[44].  

 

A difficulty comes with establishing how the 7.3 µm peak intensity corresponds to a 

given concentration of platelets. This sounds deceptively simple to work out but is 

greatly complicated by the inability to measure the concentration of platelets. The 

difficulty with the platelet is that it is far from an established idea. It is quite 

controversial, in part because direct observation is not possible. All the evidence of its 

existence is in the IR-spectroscopy and other indirect methods. Returning to the work of 

Shimada, it is clear from the papers since this early reporting that the issue is not 

resolved. In particular conclusions from his recent work [43,45] seem to complicate the 

conclusion from this earlier work. This paper backs up the previous statement by once 

more linking nitrogen content to a softening of the diamond, but then states that though 

lower nitrogen content tools are harder, this does not stop them from failure. Indeed, the 

B2-platelet (the optical centre responsible for absorbing at 7.3µm) that he has already 

reported as contributing to weakening the crystal, (“the platelet is one of the defect 

highly detrimental to the micro-strength of diamond” [44]) paradoxically is now 

reported to help impede fracture.  

 

 

Figure 20: The progress of a crack being impeded by the platelet. [43] 
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The principle is quite attractively simple. The crack that propagates continues to do so 

until meeting the platelet. There, the platelet is able to disperse the energy of the 

fracture into a volumetric strain across and around the platelet which is below the 

critical strain for further cracking. This platelet as “shock absorber” idea is an elegant 

one; but does it stand up to any serious consideration? At the moment, there is no 

answer. There are no identified images of platelets having been sundered by proceeding 

crack fronts in the literature yet. So, the evidence is based upon the IR-absorption and 

the Hertzian strength data reported.  

 

Shimada has developed an interest in acoustic emission (AE) to monitor tool-wear [43], 

and to predict tool failure [46]. Acoustic emission seems to be quite a popular 

processing topic at the moment. However, none of the data seems particularly 

convincing for the challenging silicon machining application. Furthermore, though 

monitoring for a tool break via this method would seem sensible, and, an advantage of 

using this process could be that it will allow more accurate determination of the distance 

cut by a tool before its failure. Potentially it is very helpful for trials using large 

workpieces.  

 

Another, further, complication to the nitrogen debate is the report [47] of a series of 

diamonds from the Argyle mine which display the presence of two differently coloured 

areas within the same crystal.  

 

 

Figure 21: The three samples from the Argyle mine. The crystal in picture “c” was mechanically 

separated [47]. 

  

Brown diamonds are quite common, the surprising attribute of these stones is the fact 

that two regions with different colours have managed to maintain a single crystal 
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structure. These three diamonds (shown in figure 21) each displayed extreme stress 

when examined using X-ray topography rocking-curve analysis, particularly in the areas 

with the brown colouration. The different parts of the diamond both displayed large 

full-width half-maximum (FWHM) rocking-curves, particularly the brown section, 

which displayed a hugely stressed structure. The conclusion of that work was that 

nitrogen contributed towards preserving the integrity of the crystalline structures of 

these specimens. This result therefore greatly complicates the role that nitrogen plays 

within the structure of diamond.  

 

Boron is another common impurity within diamond. Any boron within the material is 

often found in substitutional sites, causing p-type doping of the host diamond. This can 

make it useful for electronics applications, (and has been added deliberately to some 

synthetics in some cases [20,37]). The mechanical effect of including boron within the 

diamond structure does not appear to have been specifically studied at any point, though 

the optical properties arising from this dopant are clearly known. Boron-doped 

diamonds are known to absorb strongly in the red and infra-red regions and thus have a 

blue tint, (though this tint will appear black within samples of sufficient crystal 

thickness and/or boron concentration). 

 

Figure 22: The visible absorption spectra of a boron-doped diamond [37].  
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IR-absorption spectra of boron are known to strongly absorb at 2,460 and 2,790cm
-1 

wavenumber [48]. It is therefore possible to search specifically for boron concentrations 

within diamonds and start examining their effect upon the mechanical properties. 

Though in the literature it is stated that “although boron is one of the fundamental 

defects in diamond, we are still a long way from understanding the acceptor spectrum 

in detail” [24]. Based upon the literature searched, the possibility of a dopant material 

other than nitrogen or boron having a strong effect upon tool-wear is looks unlikely as 

concentrations of materials other than nitrogen or boron are almost always negligible.  

 

Finally, while discussing possible variation in composition of diamond the possibility of 

isotropic differences causing changes in material properties needs to be examined. From 

the literature it is known that samples containing larger quantities of 
13

C have been 

found to have ~0.5% higher elastic moduli [49]. This is a relatively small effect 

compared with, for example, crystallographic orientation. The natural abundance of 
13

C 

is low (only 1.1%), therefore naturally grown diamond crystals that contain large 

quantities of this isotope are extremely unlikely. In the paper a HPHT type of tool was 

prepared using an extremely high concentration of 
13

C (99%). 

 

 

2.3.4 Effect of crystallographic defects on crystal properties 

Crystals are defined as having long range repeatable structure, and theoretically have 

very high fracture strength. However, the perfect crystal is a theoretical construct.  In 

practice, despite the huge advances in crystal growth technology (mostly driven by the 

electronics industry), a range of structural defects will arise in even the highest quality 

crystals. Therefore even a perfectly compositionally pure crystalline material (i.e. no 

unplanned inclusion of unwanted elements) will hold structural defects and depending 

upon the number of these defects, exhibit lower fracture strength than the calculated 

theoretical maximums.  
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Defects within crystals are extremely small. Direct optical viewing of defects is 

impossible due to their scale: all are orders of magnitude lower than the diffraction 

limit. Even using extremely short wavelength X-rays does not allow direct viewing, but 

instead allows imaging of the effects such defects have upon the surrounding material. 

Using X-rays to examine crystalline structures is well established. When X-Rays 

interact with a crystal, the X-Ray wavelengths and the atomic separation are 

approximately the same, leading to strong diffraction effects. X-ray topography uses 

diffraction to effectively image information about one specific plane within the 

crystalline sample. The presence of a crystallographic defect disrupts the crystal plane it 

is on. The difference in lattice spacings will change the diffraction angle for X-rays 

travelling through that point, resulting in less X-rays propagating in the original Bragg 

angle (though there will be a different angle fulfilling the Bragg criteria). In short, 

different points across the diffraction spot will experience intensity differences from 

different parts of the crystal, depending upon the crystal perfection. Thus, if the 

diffraction spot is magnified we will see where the crystal quality is good (there’ll be 

more photons delivered from these regions to the Bragg spot), but regions with poor 

lattice spacing behavior (due to defects) will send fewer photons in the Bragg angle 

direction, thus resulting in a darker spot. 

 

The technological requirements for this experiment technique are extremely high as the 

required X-rays have to be well collimated in phase [50]. Thus, X-ray lasers or 

synchrotrons are the only method of truly performing this sort of work. Due to the 

spread of X-ray energies (so called “white” radiation) from a synchrotron source using 

white radiation allows much easier alignment of the sample. Thus in many cases it is 

preferable to use this type of source. 

 

Analysis of X-ray topography results is extremely difficult. Telling the difference 

between surface scratches, and true defects is difficult, while differentiating between 

types of crystalline defect is even more challenging. 
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Figure 23: An XRT of a diamond (not a turning tool). This diagram shows four of the commonly observed 

crystal defects: (I) an inclusion, (SF) stacking faults, (D) dislocations and finally, (SD) surface damage. 

[50] 

 

 

A particular difficulty is if the synchrotron optics have any artefact defects as these are 

displayed onto the results. Analysis of the gathered information is accomplished by 

either, great expertise and experience within the field or via use of complex numerical 

methods. [50] 

 

A major contributor to the knowledge about XRT of diamond is Moore of Royal 

Holloway (University of London). He authored a very good review of the various 

techniques for XRT imaging of imperfections in single crystals [30].  
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Figure 24: XRT has been used to investigate an unusual growth history. (a) SEM of the diamond in 

question. (b) and (c) the two intertwined structures [30]. 

 

The above figure clearly shows how complex diamond growth can be: here a single 

diamond has two distinct growth regions. Such twinning is the subject of many XRT 

related papers, (for example [28,29]),  but such diamonds are unlikely to be used for 

diamond turning tools. 

  

Detection of twinning is just one application of XRT. Another useful technique is the 

rocking curve. The rocking curve technique is a method for examining lattice spacings 

within a crystal. Rocking curves are gathered by tilting the crystal slightly away from 

the Bragg angle. Because the synchrotron generates highly correlated X-rays the 

detected intensity from a diffraction spot drops dramatically when the angle is changed 

away from the Bragg angle. Plotting intensity against angle gives the rocking curve. The 

rocking curve relates to the lattice spacings and therefore has a direct correlation to the 

strain within a crystal structure.  



49 

 

 

Figure 25: Rocking curve measurements of a HPHT synthetic diamond sample. [26]. 

 

The rocking curve shown in figure 25 is of a high-temperature high-pressure synthetic 

with different sections of the diamond being examined around an inclusion type defect.  

 

Though crystallographic defects were considered a possible cause of the variation of 

tool-life characteristics, later on we were able to drop this as a possible hypothesis. The 

reported [2,51,52] wide deviation in tool-life is considered not to be due to 

crystallographic defects. Such defects have an exceedingly small scale and would be 

entirely removed when the tool was reconditioned. From earlier Cranfield work [2,52] it 

is known that superior performing diamond tools maintain their superiority despite a 

repair process that removes ~30 µm of material from the top-rake. Therefore we are 

clearly looking for a bulk property that is responsible for the variation of tool-wear 

behaviour between identical tools. Strain of the crystal or nitrogen impurities are 

examples of such a bulk property.  
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2.4 Tool-wear  

Tool wear during single point diamond turning is strongly dependent upon the 

workpiece material. The definition of a worn tool is dependent upon workpiece 

material. Furthermore, the method in which the diamond experiences damage is 

workpiece material dependent. When machining some materials attritious wear is the 

dominant material removal mechanism experienced by the tool, however for other 

workpiece materials the removal mechanism is a chipping of the tool-edge.  

 

 

2.4.1 Diamond turning soft materials 

During diamond turning of soft materials (principally soft metals such as copper or 

aluminium) there is no well defined failure point for the tool, (unlike machining of 

brittle materials where it switches from ductile to brittle material removal). However 

attritious wear of a diamond tool can lead to problems for soft metals. For example, a 

given roughness tolerance which eventually will be exceeded by an excessively worn 

tool. The effect is primarily one of print through; attritious wear changes the shape of 

the tool and this changing profile is cut into the generated worksurface. The effect of a 

small chip upon the tool edge can in this way raise the roughness parameters quite 

markedly. It is common for machining with a worn tool to result in a marked change in 

the optical properties of a surface. Worn surfaces often diffract light, separating 

different parts of the spectrum. This colourful effect is a direct effect of tool wear 

increasing the roughness and helps machinists to determine when a tool is worn.  

 

Conversely the effect of wear can have a positive effect upon a work surface. For 

example, a tool displaying a flat wear area at the nose of the tool will have a much 

larger effective radius than the tools’ original radius value. This can be good for 

machining flat surfaces, but when the intended surface is something more complex the 

retreat of the tool point can lead to form errors.  

 

Various studies upon the wear caused by soft metals are in the literature, with various 

metals and machining parameters being tested. One of the oldest wear-studies examined 

was that of Keen from 1971 [51]. In that study Al/Si piston skirt finishing is performed 



51 

 

using diamond tools. A particularly relevant quote is, “Though two tools might appear 

identical, one might produce ten or more times as many finished pistons as another.” 

Interestingly this is the earliest found expression of a very pertinent problem with 

diamond tools: tool-life of similar tools varies widely and for an unknown reason. This 

effect would later be found to be very important in the diamond turning of large silicon 

optics [2].  

 

The work of Oomen and Eisses [48] focuses on machining of non-ferrous materials 

using single crystal diamond tools. This trial tested a range of seventeen diamond tools, 

including some synthetic tools and various naturals with various nitrogen concentrations 

and identified imperfection types. The trial also used various non-ferrous materials; 

copper, aluminium and electroless nickel. The trial design does not consider that 

identical tools wear at vastly different rates, and therefore fails to ensure that there are 

multiples of each type of tool. This is a critical consideration when attempting to 

perform wear analysis of single point diamond turning tools. Despite the number of 

tools and the overall scale of the trial, the findings are limited. The most useful are the 

observations on tool wear when machining the various metals. Their results show that 

aluminium resulting in “severe tool edge rounding and clearance face wear”. Wear 

resulting from copper is mostly confined to crater wear on the top-rake, while 

machining electroless nickel resulted in chipping of the tool-edge. When examining the 

other conclusions from the Oomen paper [48] the innate variability of diamond tools 

needs to be considered. As repeat trials with identical tools are not mentioned and 

considering the number of tools used this effect is likely to have arisen at some point 

during the trial. The material wear analysis displaying the trends of the wear patterns is 

of interest though, as these results are taken over various tools.  

 

This work by Oomen and Eisses [48] used a 2D methodology for measuring wear (see 

figure 26).  
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Figure 26: The wear progression of the tool edge while machining aluminium [48]. 

 

The tool-tip recession is measured by bringing the tool into contact with the spinning 

workpiece by only using the Z-axis. This plunging cut leaves a clear 2D cross-section 

within the tool material which can be clearly measured using a contact profiler. This 

work focused upon measuring wear in terms of the tool-tip recession and measuring 

crater wear. Because the tool-rake was zero for the tools used in this trial the above 

wear patterns could easily have been used to calculate the wear volume. However this 

raises further questions as there is no clear consensus on which metric is more suitable 

for describing diamond tool wear. Tool point recession, wear-area, wear-volume and 

wear on the top-rake (so called crater wear) are all measurable aspects of the diamond 

tool, though with different degrees of accuracy (volumetric wear analysis can be 

particularly demanding, see appendix A for details concerning a methodology 

developed but ultimately unused for the work within this thesis).  

 

The tendency of electroless nickel to lead to chipping of the tool edge is confirmed in 

the work of Yamaguchi [46]. This paper examining potential methods of tool-life 

monitoring examines the cutting forces and records the acoustic emission from the tool. 

This machining process used a tool with a pointed profile. The use of a pointed tool 

edge might be to accentuate the wear (a relatively small cut distance would result in an 
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obvious wear pattern on such a tool). After a distance of just 0.6 Km the tool is said to 

be experiencing chipping of the tool edge. The typical tool-life of the tools examined in 

this paper was exceedingly short (less than 1 Km) however, leading to some concern 

about the suitability of the experiment and the applicability of the findings. The effort to 

monitor tool life rather than predict it is of limited application: in most cases the onset 

of failure makes the workpiece unsuitable for use. 

 

Wear behaviour of diamond while machining electroless nickel is in strong contrast to 

the wear behaviour seen when machining copper. Shimada’s work [53] details a very 

clear attempt to find a chemistry based explanation for the wear of diamond tools during 

diamond turning. The argument put forward in his work states that the copper 

workpiece can act as a catalyst, with oxygen initially forming an oxide with the copper 

before reacting with the diamond.  

 

 

Figure 27: The experimental set-up used to examine the wear of diamond when in contact with copper. 

[53] 

 

As can be seen from figure 27, the experiment is performed in a sealed container. This 

does allow the experiment to determine the effect of the quantity of oxygen in the 

chamber and the chambers temperature.  
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Figure 28: The wear result from the copper reaction chamber experiment [53]. 

 

The lack of any significant error bars in figure 28, and the very small volumetric wear 

that is recorded add doubt to the result, but the finding is an interesting one. The 

catalytic breakdown of diamond is an interesting idea and might help explain some wear 

behaviour. The results from the reaction chamber trial are supported somewhat with a 

diamond turning trial. During this trial nitrogen was passed over the tool and workpiece 

to reduce the quantity of oxygen in the tool engagement volume. Crater wear is clearly 

visible (in validation of Oomen’s work [48]) during this turning experiment.  

 

The body of work completed with non-ferrous metals allows an important conclusion 

about the behaviour of diamond turning to be drawn: different workpiece materials can 

cause varying wear behaviour upon the diamond tool. Some inspire chipping while 

others can promote large wear volumes via the continuous removal of carbon atoms in 

an almost atomic scale wear process. That some materials can act as a catalyst for 

oxidisation of the diamond tool is a finding of some interest and adds a chemistry based 

aspect to the already complex issue of diamond tool wear. 

 



55 

 

2.4.2 Tool-wear against IR materials 

This thesis follows from the findings in an MSc thesis (by Tony Jacklin of Qioptiq [2]). 

In summary this work initially focused upon the effect of cutting fluids, the coolant 

flow-rate and the tool rake-angle. Though the experimental work was well planned all 

the findings were dominated by the effect of tool-life variability; (nominally identical) 

tools were displaying differences in tool-life that made interpreting the results more 

difficult. For some unknown reason, identical tools were being damaged by the 

machining process at very different rates. Though the thesis initially sought to perform 

process optimisation trials the findings were dominated by the tool variability. Though 

searching the literature has found evidence of similar tool variability findings dating 

from the 1970’s [51], there are profound differences in the way the tool fails while 

machining non-ferrous metals than when machining brittle IR materials.  

 

While there is a lot of literature detailing difficulties in achieving ductile machining 

with unworn-tools there is remarkably little literature on causes of a worn diamond tool 

to fail to machine a brittle material. What causes the onset of failure is too-often ignored 

in favour of testing machining factors like depth of cut.  

A few of the things that are known are:  

 Seemingly identical tools can display very different tool-lives 

 Top-rake is a factor on tool-life 

 Coolant is a factor on tool-life 

Clearly a tools failure to machine in a ductile manner is related to wear of the tool, but 

no found literature links any of the wear-metrics (wear-recession, wear-area, wear-

volume, crater-wear) to a failure mechanism that leads to brittle failure. Lacking this 

knowledge on any potential failure mechanisms makes predictions difficult. 

 

 

2.4.3 Modelling cutting forces of worn diamond tools 

Wear recession of tool edges is thought to be linearly proportional to the applied 

pressure and therefore accurately predicting tool-wear depends upon accurate 

predictions of the magnitude of force generated in the normal direction.  
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The turning process has received a lot of attention from researchers interested in 

developing cutting models. When modelling cutting forces during turning some have 

used a multiple regression analysis (for example Ravindra et al. [54]). This technique 

uses multiple linear or even nonlinear components to find the value of interest. From a 

scientific point of view this technique is problematic as it does not use any measurable 

parameters to determine the values sought and introduces many coefficients that can not 

be experimentally determined. This all makes multiple regression analysis a technique 

that appears to lack scientific rigor and was therefore not considered useful for the 

modelling within this work. 

A paper from Huang and Liang [55], though focused on hard turning using CBN tools, 

indicates a link between contact area and thrust force, elaborating on Waldorf’s wear 

force model (outlined in the appendix of that paper). This paper is extremely useful for 

several reasons:  

 The similarity between the machining process studied (hard turning) and 

diamond turning. Similarities like low feed-rate, small depth of cut and moderate 

cutting speeds.  

 Cutting forces generated are not significantly dependent upon cutting speed for 

many metal cutting situations. Assuming this is still correct for diamond turning, 

this makes predicting cutting forces for diamond turning simpler. 

The Waldorf cutting force model provides a method for calculating cutting forces from 

a tool that is experiencing wear using values that can be calculated using the 

experimental data gathered. The validity of applying this method is extremely 

dependent on the accuracy of the method used for wear-area calculation. The accuracy 

of cutting force predictions (and therefore attritious wear calculations) are dependent on 

the accuracy of the wear-scar contact area.  

 

 

2.5 Modelling wear of diamond 

2.5.1 Molecular dynamics 

Molecular dynamics is a computationally intensive technique that calculates the 

intermolecular potentials of a given volume and then adjusts the model accordingly. The 
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steps between calculations tend to be very small (Cheng used 10 femtosecond steps 

[56]) thus the total length of time successfully modelled tends to be very short. For 

example, the paper by Tanaka, Shimada and Ikawa [57] reports results from models 

lasting at most 250 picoseconds (0.25 nanoseconds). Similarly, the paper from Cheng et 

al. [56] runs a subnanosecond simulation (0.136 nanosecond). Small time-scale 

iterations are caused by the frequently required recalculations of the intermolecular 

potentials. The near constant recalculation is required as the forces are position 

dependent (and follow a nonlinear dependency making calculations further 

computationally demanding). Also the motion of a particular molecule is dependent 

upon all nearby potentials, making the final calculations a process of calculating all the 

potentials, moving the molecules and then recalculating the new potentials based upon 

the new positions. It should therefore be obvious that the number of molecules in the 

simulation greatly adds to the complexity and the computation time. Therefore the 

number of molecules acts as a further limitation. Both of the aforementioned papers deal 

with very small systems: the paper from Tanaka et al. [57] deals with indenter initiated 

crack phenomena within a two modelled bars of defect-free monocrystalline silicon of 

24.4x2.7x1.09nm and 97.7x10.9x1.09nm (the first with 3802 atoms and the second with 

58402 atoms).  

 

 

Figure 29: Model set-up used in Tanaka paper. [57] 
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The indenter geometry is similarly scaled, with a ring of diamond of only 0.53nm and 

2.22nm for the two models. There are several problems with these model parameters. 

The interest into the how and when of the change from plastic deformation changes to 

brittle fracture is worthy of investigation, but results from experimental indentation 

testing can not be ignored. Lawn [6,8] has indicated that there is a scale issue and that 

silicon will deform plastically when the indented volume is small, this makes any claim 

of crack nucleation from their molecular dynamics paper difficult to believe but this 

exact claim is made. 

 

Figure 30: Crack nucleation for Tanaka’s larger model, at t=231.5ps. [57] 

 

The difference in findings between the model and experiment might be explainable 

through the differences in the substrates. The thin silicon layer is essentially an unreal 

situation. Few systems are ever going to be that slender. The difference could therefore 

be considered the difference between an almost 1D model and the behaviour of a 3D 

bulk. The velocity of the indenter (50m/s) is also considerable in an effort to “reduce the 

total computation time” [57]. Typical indentation testing uses a significantly lower 

indenter speed and the conclusion we are inevitably led to is that the set-up of the model 

is erroneous and that the findings are at best extremely specific or at worse meaningless. 

 

The paper from Cheng et al. [56] deals with a similarly small volume of material. Here, 

the nanometric cutting is really a process of dragging a diamond AFM (atomic force 
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microscope) probe over a surface. The model deals with a limited volume of silicon (as 

shown in figure 31), just 5.99x1.18x3.64nm, again to limit the calculation time required. 

 

 

Figure 31: Images from reference 57. (Left) The AFM probe after machining and (right) the modelled 

AFM probe displaying some tip damage and some microdelamination damage. 

 

The experimental validation for this paper is performed via machining of a 2x2 µm 

square of silicon (at an undisclosed feed step rate making working out the total distance 

machined impossible). The wear on the AFM probe is measured (presumably using 

AFM, due to the difficulties with measuring such a small sample) and compared against 

the models findings. Depth of cut is also unclear, as is the preparation method for the 

silicon workpiece surface. Though a simplification of diamond turning, this paper is 

looking at the attritious wear of diamond and is relevant. The experimental technique 

used by Cheng [56] is very similar to an experimental paper [15] that used a Vickers 

indenter to show that silicon behaves in a ductile manner when the removed volume is 

small, (see figure 32).  

 

Figure 32: (Left) The trench left after ductile-type groove machining with a Vickers indenter. (Right) An 

indent in silicon displaying extruded material around the site. [15] 
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This is mentioned as it clearly demonstrates that the ductile regime is so much larger 

than the size of model frequently used. This is perhaps an unintuitive thought as the 

ductile mode of silicon is so often considered small, but it reinforces the small scale of 

the molecular dynamics models.  

 

Looking more specifically at diamond turning we can start to appreciate the difficulties 

involved with a molecular dynamics approach. Depth of cut is significant when dealing 

with SPDT of brittle materials and this is a difficulty for molecular dynamics 

simulations. Within the literature molecular dynamics work on SPDT of silicon carbide 

uses very small depths of cut to draw quite bold conclusions about the suitability of 

diamond versus CBN as a SPDT tool material [60] or flank wear of a diamond tool [61]. 

Furthermore using the experimental set-up described in this project (machining at 

1200rpm) a tool that lasts 20.1Km (25cuts) will require ~20,000 seconds of machining 

time. This would be a huge task for a model system containing very few molecules 

within it, but the number of atoms involved in SPDT is exceedingly high. We therefore 

get to a situation where if results on a sub-nanosecond simulation have any error, then 

that error is hugely magnified. Clearly molecular dynamics is a very suitable method for 

some extremely short timescale and small scale problems. Unfortunately the conclusion 

that those sort of boundary conditions are suitable for diamond turning problems can not 

be supported: diamond turning tools are large compared to molecular dynamics 

simulations and this problem can not be rationalized away easily. Neither can the huge 

disparity between timescales be ignored.  

 

While all the above criticisms are valid the primary and most obvious reason to avoid 

molecular dynamics is cracking of the diamond tool. Cracks and chips along the tool-

edge are large compared to the volumes a molecular dynamics model can simulate and 

their importance and effect can not be predicted.  

 

A simulation that has a suitable scale was performed by Cai [58] and focuses on the 

stresses and temperature rises experienced by a silicon workpiece during turning. Again 
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with molecular dynamics the time-scale is very limited. This particular model focuses 

upon the silicon workpiece and has limited application to diamond tools. 

 

Limited simulation times, limited model scales and ignoring cracks: for all these reasons 

molecular dynamics is considered an inappropriate methodology for the investigation of 

total cut-life. Though, for more isolated work dealing just with the fundamentals of 

attritious wear (a smaller sub-sect of the total problem) it would appear to be a suitable 

methodology. Indeed, any such work carried out in the future dealing with predicting 

attritious wear as a function of crystallographic orientation would be considered an 

important contribution to the field. 

 

 

2.5.2 Finite element analysis 

Finite element analysis (FEA) is a well established method for solving engineering 

problems. In general terms, FEA simulates the physical system by using a series of 

nodes which are linked using 1D calculations, the result is a mesh of calculable 

equations that model the bulk effects of the subject of the model. This simplification 

allows the extremely complex to be modelled within a reasonable degree of accuracy. 

Traditional uses of FEA are the loading behaviour of engineering components or 

systems, such as in the aeronautical industry where effort is put into modelling of wing 

flexing behaviour or in the automotive industry where deformation during crashing is 

modelled. 

 

Another very successful area for FEA modelling is modelling heat flow. Temperature 

modelling becomes very difficult as so many properties are heat dependent. For 

example, thermal conductivity and thermal diffusivity (both very important for working 

out how heat travels through a material) are both temperature dependent. Potentially the 

most disruptive is the thermal expansion, which will require a quite complicated 

software package to successfully model the behaviour of a system that is being exposed 

to a thermal gradient.  
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There are numerous varieties of software that use FEA methods, many are highly 

specialised for the industry they are targeted towards. Metal cutting is difficult to model 

using FEA as any cutting process, by definition, will require the severing of some of the 

mesh strands. However the FEA software “Third Wave” is a package that is specifically 

designed for metal cutting industries.  

 

“Third Wave” has an interesting approach to the modelling of problems. Specifically; 

meshes will, if put under sufficient pressure, form new nodes where the model is being 

deformed. Initially this seems quite sensible, giving the software the freedom to resize 

the mesh size to a more appropriate value, (mesh size is always something that needs to 

be carefully thought about when designing the simulation). However, (from discussions 

within the Precision Engineering Centre), the Third Wave software can give different 

answers when simulations are repeated. Third Wave is therefore not deterministic. The 

working assumption within the group is that method of determining the new mesh uses 

a random number generator to determine the new mesh size. From these small 

variations the changes grow and propagate throughout the model.  

 

 

2.5.3 Other model methodologies 

In previous work [59], the widely used program MATLAB (and the add-on simulink) 

was used to model the surface of a workpiece created through diamond turning. The 

great strength of MATLAB is the versatility it offers. The FEA and molecular dynamics 

modelling techniques would be suitable for modelling in 3D however the problem has 

historically been dealt with most successfully by using a 2D cross-sectional 

methodology (Blake and Scattergood’s method [5]).   

 

 

2.5.4 Thermal effects on diamond behaviour 

Thermal effects are difficult to calculate as temperature changes so many of the 

qualities we would wish to remain constant [62]. For diamond the Youngs modulus 

displays a strong decline over a temperature range of 300 to 1400 Kelvin. The change 
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also varies with crystallographic orientation (with the [111] direction displaying the 

most noticeable decline) [62].  

 

Figure 33: Brillouin scattering data from two scattering geometries at different crystallographic 

orientations. [62].  

 

 

It is also worth noting that the heat capacity of diamond changes with temperature too. 

Thus even a simple calculation to discover the temperature difference between two 

different sized tools becomes complex very quickly. At higher temperatures chemical 
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effects can become significant [63] and at temperatures of 1800K [64] Diamond will 

change to graphite.    

 

2.6 Wear processes 

The field of tribology deals extensively with the damage occurring from surface 

interactions and has categorised several wear types. From reference [65] there are seven 

types of wear: 

1. Adhesive 

2. Abrasive 

3. Corrosive 

4. Erosive 

5. Cavitation 

6. Fatigue 

7. Fretting 

Of importance are the various situations that the different wear-methods are likely to 

create and what physical variables have the most effect on wear rates. 

 

 

2.6.1 Adhesive wear 

In adhesive wear, material moves from one surface and forms on the other contacting 

surface. Adhesive wear arises from bonding between surfaces. In the case of Van der 

Waals forces it is comparatively light, but for true covalent bonding this is extremely 

heavy. Loading of the surfaces increases contact and therefore can act to increase 

adhesive wear.  

 

Considering the diamond turning case while cutting silicon a process will inevitably 

lead to severing silicon-silicon bonds and the very similar bonding structure of diamond 

and silicon, adhesive wear could be considered important for diamond turning silicon. 

However as adhesive wear tends to lead to the less strongly bonded material adhering to 

the more strongly bonded material, we would expect silicon to be adhering to the 

diamond. Wear of the diamond tool is perhaps because of another mechanism. 
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Aluminium is not bonded together in a way that is similar to diamond and therefore 

adhesion between such surfaces is unlikely to occur. 

 

2.6.2 Abrasive wear 

Abrasive wear occurs when hard asperities on a surface, or free particles rub against a 

surface, resulting in cutting or plastic deformation of the worn surface. From SEM 

images [2] it is known that small chips of diamond have been removed from some tools 

during the machining process, resulting in diamond particles free within the machining 

zone, along the clearance face.  However when softer materials are machined tools 

display wear-scars that are free of chipping damage. Therefore for most diamond 

turning situations the effect of abrasive wear would appear to be limited.  

Abrasive wear of diamond tools during diamond turning is considered a minor effect at 

best and unlikely to have much effect on generating the volumetric wear of the diamond 

tool that has been consistently visible. Abrasive wear requires abrasive particles (fixed 

as in grinding wheels or free as in polishing solutions), and during diamond turning they 

are not here in any serious quantity. 

 

 

2.6.3 Corrosive wear 

Corrosion or oxidisation wear is a chemical process and is therefore extremely 

dependent upon the constituent parts that are brought into contact. In the book (surface 

effects in adhesion, friction, wear, and lubrication, [65]) nickel is used as an example of 

a material that readily forms an oxide layer and therefore resists oxidisation attack. 

However, it is known that electroless nickel is a material that can strongly wear 

diamond tools during turning [48]. Though it is possible to speculate that this high wear 

is linked to the workpiece materials tendency to form an oxide layer and the diamond 

materials weakness to oxidisation.  

If in some cases corrosive wear was the cause of diamond tool wear, then in those cases: 

 The wear rate would depend upon workpiece oxygen adsorption. 

 Wear would be pretty much independent of the depth of cut and any cutting 

forces (except for any associated thermal effects) 
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Silicon does not form a protective oxide layer, so this wear mechanism might not be 

applicable for this material. While aluminium tends to make very thin oxide layers and 

is unlikely to be corroding diamond in any traditional sense of the word. 

 

 

2.6.4 Erosive wear 

Erosive wear occurs through particulates bombarding a surface. This can occur using 

solid, liquid or even gases as the bombarding material (in the case of gases, an ionic gas 

is mentioned and chemical attack from a stream of gas could be considered possible). 

For the diamond turning case, this is not happening (there are no fast travelling particles 

travelling through a gas layer), our tool is within the deforming material, a gas layer 

separating workpiece and diamond tool is implausible. Speeds during turning also tend 

to be slow enough that this method appears unlikely. 

 

 

2.6.5 Fatigue wear 

Fatigue is a controversial topic for diamond. The concept of defect mobility within a 

crystal as hard as diamond is considered by some to be unlikely. However there are 

papers upon the subject [66,67]. Fatigue results in cracks and subsurface damage, which 

is very different from the sort of wear that is resulting in smooth wear-scars on diamond 

tools. Because of the controversy surrounding fatigue of diamond this wear mechanism 

is therefore not considered important to diamond turning at this time. 

 

 

2.6.6 Fretting 

Fretting is a two stage process, composed of initial adhesion and then chemical attack 

via corrosive wear. The corrosive wear works to liberate the material that had adhered 

from the worn surface. For example, Iron that adheres to another surface which is then 

given a chance to oxidise, the Fe2O3 then is free to form loose debris. Though 

interesting, this is not considered to be especially likely with diamond turning. 
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2.6.7 Cavitation 

Wear of a surface from a stream of liquid containg trapped gas bubbles that impact with 

the surface. High stream velocities is a requirement for any considerable wear in this 

situation. High velocities jets of fluid are not typical when diamond turning and 

therefore the effect of this wear-type is ignorable.   

 

 

2.6.8 Wear summary 

As we see from looking at the various wear mechanisms and thinking about diamond 

turning there is no obvious candidate that explains all of the behaviour seen across 

various tool-workpiece combinations. This is a clear indicator that the subject is going 

to resist simple analysis.  

 

As will be shown later, even if we were to know with complete certainty the type of 

wear that causes volumetric wear of diamond tools, the chipping damage to tool-edges 

will make the situation more complex. 

 

2.7 Omissions within the available literature 

Despite the extensive nature of the literature review some relevant facts remain 

unknown. For example it is worth noting that despite the significant number of wear 

studies against various workpiece materials, there is not a definitive wear metric for 

defining diamond turning tools. Previous work at Cranfield [52] examined both the 

flank-wear and the volume of material removed, though it is unclear if either are 

particularly relevant to the problem. Related to this problem is the lack of any literature 

detailing the method in which a worn tool is failing to cut in a ductile manner when 

machining brittle materials. These two unanswered questions will make experimental 

design more difficult as it is unclear which factors are important to measure. 

Though the existence of the supertool phenomena mentioned in the available literature 

[51], causes of this behaviour are not given much of a theoretical basis. We therefore 

are no closer to discovering the root cause of supertool behaviour after the literature 

review. There is some evidence linking low nitrogen content with better resistance to 



68 

 

polishing [35] and to improved hardness [39] so it is likely the cause is related to 

nitrogen, but nothing within the literature definitively answers the supertool question. 

The literature review has helped to confirm that the three project aims described in 

Chapter 1 are going to lead towards an original contribution to knowledge. 

 

 

2.8 Literature summary 

Limited tool-life when diamond turning silicon exhibited by most (but not all [2,52]) 

diamond tools is a clear problem. It has been observed that some tools will exhibit 

extraordinary tool-life [52] and through an understanding of what makes these tools 

special it may be possible to either screen natural diamond for such gems or engineer a 

synthetic diamond that will display extraordinary tool-life. 

 

During this chapter various causes for variation of diamond have been examined and the 

mechanical properties of diamond have been found to most strongly vary due to the 

following three properties: 

 Crystallographic orientation 

 Nitrogen and other impurities 

 Crystallographic defects 

 

The new MCC single-crystal CVD diamond is therefore an interesting test material as 

the growth conditions ensure consistent internal stresses and low nitrogen impurity 

content [22], eliminating two of the main influences on mechanical properties. Also 

explored within this Chapter were several minor causes of influence upon mechanical 

properties of diamond such as temperature [62], unusual growth history [19,28,29] and 

isotropic composition [49]. 

 

Looking at nitrogen content, there is indirect evidence from polishing trials that 

suggests high purity will be beneficial for tool-life when machining silicon [35] and 

more direct evidence of purity benefiting the machining of softer workpiece materials 

[43]. However the literature on the effect of nitrogen on the diamond turning properties 

of a tool can not be simply summarised as saying nitrogen is bad for tool-life. There is 
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considerable literature detailing the defects that nitrogen can form within the diamond. 

From simple inclusion within the structure of the diamond unit cell (as is common for 

the HPHT diamond material [21], ranging to large (in crystallographic terms) 

complexes that involve slow aggregation of many nitrogen atoms to form the platelet 

[24]. Some argue [43] that the form of nitrogen complex is more important to tool-life 

than low total nitrogen quantity, implying that a little nitrogen in specific arrangements 

is beneficial. 

 

Previous cutting trials [48] have shown that silicon causes measurable volumetric-wear 

after short cutting distances and that brittle-failure can occur after a short distance [2]. 

None of the surveyed literature explains how diamond tools fail. The mechanism or 

mechanisms for inducing brittle damage into a brittle workpiece remain unknown, 

though there is an assumption that volumetric wear is related [52]. However, there is no 

confirmed mechanism linking the failure of a diamond-tool to any measurable wear 

behaviour (volumetric-wear, wear recession-distance, flank-wear, wear-area). Clearly 

tool-failure is related to the changes the tool experiences, but there is no literature 

reporting which metric is important and why, making explaining supertool phenomena 

perplexing: seeking tools that behave in unknown ways to unknown failure mechanism. 

 

What little we know about the onset of brittle damage comes from the work of Lawn 

[6,7] and Scattergood [5] we know that geometry of the cutting regime can lead to 

brittle damage being introduced into the workpiece. Though the work of Blake and 

Scattergood is good, it focuses on the geometrically simple unworn diamond tool [5]. 

This is an approximation that does not stand over any sensible cutting distance while 

machining silicon (or to a lesser extent the other brittle IR materials).  

 

While we know from the literature that machining of brittle-materials posses unique 

problems, machining soft non-ferrous metals is comparatively simple, with failure 

typically being defined by rising surface roughness (typically defined using either the Ra 

or Pa parameter [9]). Or alternatively the tool-geometry changes to the point at which it 

is unsuited for machining an intended complex workpiece geometry. Failure during 
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aluminium machining is highly application specific. Interestingly, while machining 

aluminium diamond tools can display supertool behaviour [51].  

The hypothesis can therefore be summarised as: does high purity diamond, as 

exemplified by the new MCC material, make diamond turning tools that display longer 

achievable cutting distances when machining silicon and aluminium workpieces?   
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Chapter 3- Experimental procedures and equipment 

3.1 Experimental design 

In chapter 1 three research aims were decided and the eight objectives decided. The first 

aim is to “explore the effect of diamond quality on cutting tools during SPDT of 

silicon” and led to the first three objectives: 

 

Objective 1: Test HPHT material against silicon workpieces 

Objective 2: Test natural diamond tools against silicon workpieces 

Objective 3: Test MCC material against silicon workpieces 

 

The second aim “explore the effect of diamond quality on cutting tools during SPDT of 

aluminium” and led to the definition of objectives 4 and 5. 

 

Objective 4: Test natural diamond tools against aluminium workpieces 

Objective 5: Test MCC material against aluminium workpieces 

 

These objectives were decided upon to fully explore the effect of diamond quality when 

machining silicon and aluminium workpieces. However as the findings from one 

workpiece material can not easily be claimed to be significant for another, designing 

different experiments for aluminium and silicon workpieces is therefore appropriate.  

 

The third research aim described in chapter 1 was to explore the root origins of the 

“supertool” effect. As a previously identified “supertool” was available the experiments 

performed using silicon workpieces would also have to explore this phenomena and 

complete objectives 6 and 7: 

Objective 6: investigate crystallographic orientation as a cause of supertool 

behaviour 

Objective 7: Investigate impurity content of natural diamond as a cause of supertool 

behaviour 

The design of the silicon machining experiment would therefore be investigating five of 

the eight objectives and require more testing of tools than the aluminium machining. 
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3.1.1 Design of aluminium workpiece cutting trial 

Aluminium is commonly used as a diamond turned workpiece metal which can achieve 

very long cutting distances. A simple comparison between natural diamond and MCC 

tools was sufficient to gather meaningful information and complete objectives 4 and 5. 

A single natural diamond tool was tested and compared with two MCC tools. 

Aluminium machining lacks the clear failure point displayed by silicon workpieces, 

therefore the cutting distance was fixed at ~480Km. During the trial the workpiece 

would be cut using a total of 80 cuts over progressively shorter distances so that a small 

area was left uncut.  

 

 

Figure 34: Experimental set-up of aluminium machining trials. 

 

Leaving a section of uncut workpiece, as shown in figure 34, resulted in a region that 

was suitable for measuring surface roughness of the workpiece. Any supertool effect 

would not be expected over the distance of ~480Km, the design of experiment therefore 

eliminated this effect from the experiment. A total cut distance of ~480Km is a short 

tool-life in industry but represents a long distance for academic cutting trials where 

distances of 50Km are considered to give usable information [48].  
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Diamond tools with zero degree top-rake angle and a clearance of 10 degrees were used, 

and are typical values for machining aluminium. The tool radius was 500 µm, 

comparatively small for machining flat components, but this radius size allowed easier 

comparison with the tools for silicon. Aluminium 6061 alloy workpieces of 150mm 

radius dictated we use the NION machine for diamond turning. The feed-rate used was 

10µm/rev, quicker than the feed-rate used for previous silicon machining [2,52] but 

appropriate for machining aluminium or other soft metals. The depth of cut for the 

machining of aluminium was 10 µm. The spindle speed was set at 600rpm. A white 

spirit cutting fluid was applied to the workpiece. 

 

The metrology of the trial includes measuring surface finish of the workpiece, 

measuring cutting forces and taking SEM images at various points during the trial. 

Force was measured in the thrust direction using a Kistler (described in section 3.3.1). 

Surface roughness (using the Ra parameter) was measured. Combined with periodic 

SEM images of the tools this design ensured there was a great deal of data gathered over 

the cutting life of each tool. 

 

 

3.1.2 Design of silicon workpiece cutting trials 

Previous work at Cranfield [2,52] highlights the need for care when planning 

experiments when machining silicon workpieces using diamond tools. The extreme 

variability of natural diamond was shown to dominate any planned experiments. The 

presence of a supertool within the sample group makes any investigation of other 

parameters extremely difficult. Synthetic diamonds are grown under carefully controlled 

conditions the expectation was therefore that these diamond tools would be more 

consistent than natural diamond. 

 

Two natural diamond tools (a previously identified normal tool and a supertool [2]) 

would be used, allowing comparison with previous work done at Cranfield. The MCC 

single crystal CVD tool material and the HPHT synthetic diamond will also be used 

within the trials. These two tool materials have different quantities of nitrogen [22] 

allowing the effect of this impurity material to be accurately determined. 



74 

 

Cost of diamond tools was a design consideration for the trials, as was the cost of 

machining time when using a diamond turning machine. A natural desire to minimise 

the cost of the trials and to maximise the findings from those trials made experimental 

design challenging. Design of experiments was therefore of critical importance. For the 

analysis of HPHT and MCC tool trials a statistical design (or Taguchi) methodology 

was selected.  

The Taguchi methodology allows maximising results from small data groups and has 

been successfully used for designing tests aiming to improve industrial processes [66]. 

The plan is for a 2 factor two level experiment, testing the two synthetic diamond 

materials in two different crystallographic orientations. This experimental design is 

shown in table 1.  

 

LEVEL Tool material Crystallographic orientation 

1 HPHT (100/100) 

2 MCC (100/110) 
Table 1: Levels and factors of experimental design.  

 

The Taguchi methodology allows a partial orthogonal experimental design in some 

cases, but due to the potential hidden factor that is giving rise to the supertool 

phenomena a full factorial design is required (with repetition of each factor-level 

combination required). The methodology allows all the results from one level to be 

averaged and then compared against the average results from the other level [68]. For 

example, all the results of the HPHT material, regardless of crystal orientation, can be 

averaged together and be compared with the similarly averaged MCC results to 

determine the effect of tool material. Testing levels against each other in this way 

allows broad conclusions to be made about the effect of tool-material and 

crystallographic orientation. Significantly, the most important factor on tool-life can be 

found, which is important for learning how to improve silicon machining.  

The two design factors are tool material and crystallographic orientation of the tool. 

Tool material levels are HPHT and MCC, while crystallographic orientation levels are 

(100/100) orientation and (100/110) orientation. 

 

Experimental responses for the silicon trial are: 

 achieved cutting distance before onset of brittle-fracture  
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 thrust direction cutting forces  

SEM images of the diamond tools are taken after failure.  

As there is some unknown factor causing supertool phenomena in natural tools 

expanding the Taguchi part of the trial to include natural tools was not possible. Testing 

natural diamond tools, including a known supertool [2], allows comparison of the 

synthetic tool types against the current industry standard and with work done previously 

[2,52]. 

 

Silicon workpieces with diameters of 32mm were supplied lightly doped with an n-type 

dopant. Workpiece thickness was 2mm at the start of machining and both sides were 

polished by Qioptiq ltd before the trials. Each workpiece was cut repeatedly until the 

onset of brittle failure. Silicon workpieces were typically cut using a spindle speed of 

1200rpm. For a few trials a 3000rpm spindle speed was used: these trials allowed better 

comparison between our work and industry. All silicon machining within this thesis was 

performed on a Moore Nanotech 350 UPL (detailed in section 3.2.1). Depth of cut has 

been shown to have little effect on the machining of silicon [5] so a depth of cut of 

10µm was used, keeping this parameter the same as previous work at Cranfield [2,52]. 

The work of Blake and Scattergood set a definite limit on the maximum achievable 

feed-rate for silicon machining [5]. To keep this trial consistent with previous work 

[2,52]  a feed-rate of 1 µm/rev was selected. The spindle speed was therefore constant 

and the option of using a constant surface speed was not used. Such a machining mode 

has difficulties with machining to the centre of turned objects: the required speed rises 

are greater than the capacity of the machines spindle. Also because changing spindle 

speed can cause changes in the machines dynamic behaviour; causing changes in 

vibration amplitudes if machining near resonances. Qioptiq also use constant spindle 

speeds, therefore results that were gathered in a way would be of more relevance to 

these industrial sponsors. The spindle speed was therefore kept constant and surface 

speed as a consequence tended to decay as the tool approached the workpiece centre of 

rotation. 

 

Deionised water was applied as a coolant using a needle spray at a flow rate of 8-12 

grams per minute. Using water as a coolant fluid for diamond machining of silicon was 
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established as superior in previous cutting trials [2]. In the literature released after those 

trails [52] the case is presented that the superiority of water over oil-based coolants is 

due to the higher thermal conductivity of water. This might not be the whole case, as it 

ignores many other factors. There is clearly a great deal of work that could be done 

testing different cutting fluids as the effect is quite considerable (tool-life increased 

approximately 200% when the fluid was changed from oil-based to water).  

 

Testing using silicon workpieces requires different tool specifications than the 

aluminium work. There is compelling evidence that negative rake angles are better 

suited for machining silicon [5]. Previous trials used -25 degrees as the top-rake angle 

[2] so this was used as the typical value. Clearance angle was specified as 10 degrees, 

tool radius was kept constant at 500 microns. The MCC tool material would also be 

tested using a -45 degree top-rake trial against silicon (with results in section 6.3). The -

45 top-rake angle tools required a special tool-insert to tilt forward the tool sufficiently. 

This resulted in a larger effective clearance angle than the 10 degrees nominally 

specified and changed which crystallographic orientation was normal to the workpiece. 

 

Natural diamond turning tools for machining brittle materials are supplied with a 

(100/110) orientation, (see figure 35). 

 

Figure 35: The orientation of natural diamond tools. 

 

The (100/110) orientation description is defined as the point of the tool is aligned along 

the (100) crystallographic direction while the top-face of the tool is identifiable as the 

{110} crystal plane.  
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The HPHT tool-material is typically supplied with a [100] top-plane (shown in figure 

36). However, because grinding a top-rake onto a tool with a [100] top-plane is not 

possible the HPHT tools were tilted to achieve the correct top-rake angle.  

 

 

Figure 36: The orientation of HPHT diamond tools. 

 

Most MCC diamond tools would be supplied in the (100/110) orientation but some 

would be supplied in the alternative (100/100) orientation, allowing clearer testing of 

the effect of crystallographic orientation on achievable cutting distance.  

 

 

3.2 Diamond turning machines 

The design of diamond turning machines should always comply with the guidelines for 

precision machine tools established by McKeown [1] in the 11 principles. These are a 

series of design considerations for precision machines. They are: 

 

 Structural 

 Kinematic/semi-kinematic design 

 Abbe principle or options 

 Bearing averaging 

 ‘Direct’ displacement transducers 
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 Metrology frames 

 Servo-drives and control 

 Drives 

 Carriages 

 Thermal drift 

 Error compensation 

 

Each are large topics, any of which could have an entire thesis dedicated to them. 

However the intention behind all these points is remarkably simple. It is all done to 

keep the tool and workpiece as close to the intended position as possible. Clearly 

however, the design of the machine is just one part of the machining process, and other 

factors such as tool-wear can badly effect the accuracy of the machined workpiece.  

 

For this project two diamond turning machines were used, each is described in some 

detail. Namely these are the; Moore Nanotech 350 UPL and the CUPE NION 

nanocentre. Both are high quality diamond turning machines suitable for producing 

parts to nanoscale tolerances.  

 

 

3.2.1 Moore Nanotech 350 UPL  

The Moore Nanotech 350 UPL (Or simply “Moore”) is a commercially available and 

used single point diamond turning machine from Moore nanotech systems. The machine 

uses an airbearing spindle to rotate the workpiece; these bearings are particularly 

suitable for ultra-precision because of the very low error motion. The spindle has a 

programmable angular accuracy of 0.0001 degree [69]. The maximum spindle speed is 

6000 rpm. Qioptiq (a project sponsor that produces IR equipment for defence 

applications), uses these machines to produce hybrid optics using IR materials at 

3000rpm [70]. Due to the tool-wear problems when machining silicon these hybrid 

lenses are currently produced in germanium. Previous work at Cranfield University 

machined silicon at 1200rpm and 600rpm [2] using the Moore, and selected results from 

this work were published [52]. The use of the Moore machine therefore allows 

comparison with previous work. 
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Figure 37: The Moore machine. 

 

The two axis slideways are made to precision ideals; using linear encoders and CNC 

control to achieve accuracy of less than 50nm [69]. These oil hydrostatic box-way 

slideways are designed to be stiff, ensuring the shape of the structure is maintained 

during machining; thus avoiding error motion. The Moore has a PID controlled chiller 

working to maintain the temperature of the spindle. Additionally the Moore machine is 

within a temperature controlled laboratory. This temperature control is necessary to 

minimise any thermal expansion that could affect machine tool accuracy. Depending 

upon the workpiece geometry that is being machined, a rotary B-axis can be used. This 

axis is removable and for the machining done as part of this thesis, the B-axis was not in 

place. Removing the B-axis improves the stiffness of the machine loop and eliminates 

any rotational error for the tool position.  
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Figure 38: A 32mm diameter silicon workpiece upon the Moore Nanotech 350 UPL. 

 

 

Tool position is determined using a removable optical tool-set. This is critically 

important for the accurate determination of tool position. The optical tool-set uses three 

points along the radius of the tool to accurately determine the centre of the tool’s 

circumference. Control is then performed using the centre of the tools radius rather than 

the tool edge. Therefore during very long cuts it is possible for wear to result in 

inaccuracy of the form of the workpiece; regularly re-establishing “touch” with the 

worksurface can help reduce this error. Wear can clearly be problematic for determining 

the tool-centre if wear has changed the tool to a non-circular geometry. 

 

3.2.2 CUPE NION nanocentre  

The CUPE NION nanocentre (or just “NION”) was developed by Cranfield Unit for 

Precision Engineering (CUPE) as a commercially available combined grinding or 

turning machine. Like the Moore the CUPE NION nanocentre has two hydrostatic 

linear axes and a hydrostatic spindle. However the spindle within the CUPE NION 

nanocentre has a lower maximum rotational speed of just 600rpm.  
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The NION has a smaller working volume than the Moore, but improved thermal 

stability. Another critical improvement is the fixed optical tool-set. This provides 

greater accuracy than the removable tool-set used, as any removable set introduces 

kinematic mounting type errors positional accuracy. The improved thermal stability and 

the fixed optical tool-set both contribute to an overall improvement of tool position 

accuracy for most machining when compared to the Moore.  

Despite some disadvantages the NION was used as it could accommodate the larger 

workpieces that were used for the aluminium machining trials. These workpieces could 

not be fitted upon the Moore machine and for the trials to be of a manageable timescale 

the trial was performed using the NION.  

 

A white spirit coolant/cutting fluid was used during the machining on the NION, and 

applied in a mist-spray arrangement. The coolant was applied as closely to the tool as 

practical. Due to the ductile nature of the workpiece material, long pieces of swarf were 

produced, and had a tendency to gather around the tool and act in an abrasive manner if 

not extracted. This could lead to surface damage and therefore misleadingly high 

surface roughness values so a simple vacuum extraction method was used to keep the 

worksurface as clear of swarf as possible while machining.  

 

 

3.3 Other experimental apparatus 

For precision engineering processes there are two clear stages that need to be 

performed; machining and metrology. Good quality metrology is essential for precision 

engineering. All but one of experimental apparatus described in the rest of this chapter 

are metrology devices. The great difficulty with metrology is the same as the great 

difficulty with precision engineering machine tools: no single machine is able to 

perform all the operations that are required for a given workpiece. 

 

3.3.1 Kistler  

The Kistler is a 3-axis dynamometer used for measuring cutting forces during the 

machining process. Forces are measured using three orthogonal piezoelectric sensors. 
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The piezoelectric effect arises in some crystals which lack symmetry centres. Applied 

forces across these crystals result in a proportional electric field. [71].  

A problem with piezoelectric sensors is that charge tends to “leak” (dissipate through 

imperfect insulation). This results in values of specific readings for static forces 

decaying overtime. Attempts to compensate for this effect are often imperfect and 

therefore force measurements using piezoelectric methods tend to have a slow change 

(or “drift”) of the zero value. Such drift needs to be compensated from the data as a first 

stage of accurate data processing. 

 

 

Figure 39: Cut force file with drift compensated (red) data and uncompensated (blue) data. Linear drift is 

shown in green. 

 

Figure 39 shows the adjustment of the cut force files using a linear readjustment factor. 

Drift compensation is possible using the software provided by Kistler but was done 

using MATLAB. This added considerably to the data processing time, but ensures that 

the method used is known and that the compensation is done using a simple linear fit. 
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Figure 40: The 9256C2 model Kistler as used in this project [72].  

 

The project used two models of Kistler, the smaller 9256C2 and the 9257BA. The force 

measurement range for the two Kistlers is different: 500 Newtons and 2000 Newtons 

(the 9257BA is more typically used for grinding where machining forces are higher). 

Understandably the first has a better force resolution compared to the second. This is the 

result of the digital-to-analogue converter causing a quantisation effect. However by 

using an average cutting force across the entire cutting time it is possible to reduce the 

effect of quantisation error. 

Though the Kistler measures in three orthogonal directions, most commonly measured 

was the thrust force (the force component acting orthogonal from the workpiece). This 

component (acting along the z-axis on the Moore machine) gives the largest force 

signal. Using the largest force component helps reduce the quantisation effect from the 

digital-to-analogue converter, as cutting forces in all of the directions are typically very 

small, especially at the start of the cutting process. 

 

 

3.3.2 Fisba  

The Fisba µPhase interferometer is commercially available from Fisba Optik. The Fisba 

is a 5 phase interferometer working on a Twyman-Green interferometer principle; 

(similar to a Michelson interferometer).  
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Figure 41: Schematic of the Twyman-green interferometer. [73]  

 

A Twyman-Green interferometer schematic is shown above (figure 41). A beam from a 

collimated light source is split into two directions by a beam spliter. One beam is 

reflected from a flat reference mirror. The second beam is reflected from the test 

surface. The two reflected beams are recombined, to form the interference pattern.  

 

 

 

Figure 42: An interference pattern formed using a Fisba interferometer. 

 

The difficulty with a static interference pattern is that though fringes are formed by a 

difference in height it is impossible to establish if the height change is from a rise or fall 

in the surface. A trench or a wall would both look identical to a static interferometer. 
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This problem is managed by the compensating plate which is moved through five 

different positions; the first and final positions are separated by one complete 

wavelength. A Helium neon laser is used as the source of coherent light required for the 

interference and works at a wavelength of 632.8nm. For the Fisba a CCD detector is 

placed at the observation plane, the phase information at each step is collected and 

analysed. This process allows calculation of the surface topography. 

  

Lateral resolution of this instrument is 49µm and vertical resolution is 3.2nm [2]. 

Therefore this instrument is particular suited for measuring form accuracy of 

components. Form accuracy is critically important for optics when trying to reduce 

aberration effects. In this project the Fisba interferometer was primarily used to check 

the flatness of polished samples. (It was observed that the polished samples were often 

showing different curvatures on each surface). The side showing the smallest radius of 

concave curvature was placed in contact with the vacuum chuck.  

 

 

Figure 43: Contour information from the Fisba, showing the curvature of a typical 32 millimetre 

diameter silicon sample.  
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In figure 43 the back of a 32 millimetre silicon disc used within the trial is shown. The 

concave sides were chosen deliberately for a better seal on the vacuum chuck and to 

ensure that the curvature of workpiece was, as much as possible, kept consistent 

between tool assessments.  

The resolution of the Fisba is insufficient to provide usable information on surface 

finish. Therefore, when machining optics the Fibsa must be used as part of a series of 

metrology steps if form and surface finish tolerances are to be measured.  

 

 

3.3.3 Talysurf CCI 6000 

The Talysurf CCI 6000 is a commercially available instrument that is used to accurately 

measure surfaces. The instrument works on the principle of Coherence correlation 

interferometry; a process where interference fringes are formed at a specific stand-off 

point from the imaging optics. In the CCI instrument this is achieved by using a Mirau 

interferometer. This focal point is then scanned across the surface by changing the 

height of the imaging objective (on this instrument the vertical range is 100µm). As the 

fringes form at a specific height above the surface accurately knowing the height of the 

microscope while it scans can be used to reconstruct the height across the scanned 

surface.  

 

Performance of the CCI instrument is dependent upon the microscope objective used 

and pixel size, but for this work the x50 microscope objective was used exclusively. 

Lateral resolution was therefore 350nm, over a measurement area of 0.36mmx0.36mm. 

 

A serious disadvantage of the CCI instrument is the maximum slope angle of the 

measured surface. The inability to gather information from surfaces that are angled too 

far from horizontal can result in significant numbers of lost data points when measuring 

complex surfaces. The CCI is therefore quite well suited for measuring low roughness 

surfaces with simple geometry such as a polished glass optic.  
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3.3.4 Scanning Electron Microscope 

Scanning electron microscopy (or SEM) is an established technique for high resolution 

imagery, with the first commercially available apparatus becoming available in 1965 

[74]. The SEM is widely used by both industry and universities to gather images at 

extremely small scales. The huge limitation of optical methods is the diffraction limit, 

which is limited by the wavelength of light used. Thus a very good optical microscope 

might have a resolution of approximately ~1 µm, but by using electrons rather than 

photons, the scale of the diffraction limit is dramatically reduced and resolution is 

greatly improved. 

 

The SEM works on a very different principle to ordinary microscopy. The principal 

components of an SEM are the electron gun, electron optics and the electron detector. 

The electron gun used in the SEM at Cranfield (a Philips XL30 ESEM) is a tungsten 

filament cathode type gun. The tungsten filament produces electrons by thermionic 

emission, a process where electrons are given sufficient thermal energy (at 2650-

2900K) to exceed the surface energy [74]. The free electrons can then be accelerated 

using electrostatic techniques. Electron optics uses electrical fields shape the electron 

beam in a way similar to glass optical components do in conventional microscopy, but 

make the beam raster-scan the target surface. Secondary electrons generated by the 

beams interaction with the surface are then detected.  

 

Due to the strong insulating properties of diamond, electrical charge will tend to build-

up on the diamond and cause distortions of the electron beam. Therefore environmental 

SEM (or ESEM) is used, which uses a low pressure atmosphere of water vapour. There 

are various applications for using this water vapour atmosphere over the vacuum 

normally used for SEM, but for this application it is the charge dissipation effect of the 

vapour that helps resolution. 

  

 

3.3.5 FIB 

Focused Ion Beam (FIB) is an apparatus that has found wide use in the 

electronics/semiconductor industry. It is limited by extremely small milling rates when 
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compared to other machining processes, but it has a number of advantages. Primarily 

the ability to machine very accurately at less than micrometre levels is important, 

however other advantages include the ability to construct nanostructures in 3D and 

some more niche applications such as ion implantation [75].  

 

Similar to an SEM the FIB accelerates charged particles within a vacuum chamber. The 

critical difference though is that instead of electrons, metal ions are used to bombard the 

sample. The FIB at Cranfield uses a Gallium source (which is the most popular option), 

but there are many other options. Alternative sources used include such expensive 

options as gold or silver. Stranger options such as uranium or caesium have been used. 

Alloys are also possible, for changing melting point and for deliberate implantation for 

some semiconductor applications. [76]. 

 

As charged particles, ions are subject to strong electro-magnetic forces. These forces 

allow correcting lenses to correct the flight of ions and controls spot-sizes. (It should 

also be noted that the focusing optics is just one aspect of spot-size limits; there are 

material interactions that also have a strong effect). The electromagnetic force is also 

used to accelerate the ions to the required energy. 

 

FIB milling is primarily a sputtering method [75]. Sputtering is a mechanism that uses 

bombarding ions to provide sufficient momentum for the atoms at the target surface to 

escape the surface energy.  

As an energy beam type of material removal process, FIB will inevitably be compared 

to laser machining. It is worth drawing attention to the huge difference in scale between 

the two processes though; lasers have minimum spot sizes of approximately 1 µm while 

FIB can write minimum spot sizes of considerably smaller scale (typically on the 10’s 

of nanometres scale) [77]. 
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Figure 44: Array of nanoscale holes milled using FIB, and measured using AFM (atomic force 

microscopy) [78]. 

 

Cranfield has pursued FIB based activities for a range of different applications [79], in 

each case the ability to machine small scale features is critical. This capability is 

provided by an FEI 200 apparatus, (imaged below).   

 

 

Figure 45: The FIB apparatus at Cranfield. [79]. 
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An interest in machining complex forms, in particular sinusoidal wave patterns into 

metal surfaces led to the development of a novel polycrystalline CVD diamond tool. 

 

 

Figure 46: The polycrystalline CVD tool that has been reshaped using FIB [79]. 

 

The tool displayed in figure 46 was used to successfully cut sine-wave patterns into a 

soft metallic work-surface [80]. The change from polycrystalline to single crystal 

diamond produced some unique challenges for the FIB milling. For example, single 

crystal is more prone to charge build-up on the surface, and therefore causes greater 

electrostatic deflection of the ion beam. 

 

In this thesis the FIB was used to re-shape a single-crystal diamond turning tool, to 

examine geometry effects on the diamond turning (results displayed in Chapter 5). In 

the FIB trial, a small section of the tool-edge was re-shaped to change an unworn tool to 

imitate chipping damage to the tool.  

 

 

3.3.6 Fourier transform infra-red (FTIR) spectroscopy 

Fourier transform infra-red spectroscopy is an analytical technique that can be used to 

identify the composition of materials. FTIR is an important non-destructive technique 

for analysis of diamond. 
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FTIR spectroscopy uses a tuneable IR light source to scan across different IR 

wavelengths and measure the optical response of the material. FTIR can be classified as 

either reflection or transmission depending on the experimental set-up. Obviously 

transmission FTIR spectroscopy is dependent on some of the IR light transmitting 

through the sample so the sample must be thin and/or a weak absorber of IR light. Once 

the raw data is gathered a Fourier transform is used to reveal the spectra.  

FTIR spectra can be analysed to show both the presence of various impurities as well as 

the concentration of these impurities. There are several examples within the literature of 

diamond samples being tested using IR-spectroscopy to find either the nitrogen 

concentration [36] or the presence of specific nitrogen optical centres [21,37]. FTIR has 

also been used to identify impurities such as boron within diamond samples [37] or to 

examine the spectra of coloured diamonds [38]. As an optical technique FTIR is limited 

to testing the bulk properties of a sample and could not, for example, be used to 

precisely locate a platelet defect. 
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Chapter 4- Diamond turning results for aluminium using MCC and 

natural tools 

 

Aluminium is a very useful material for many applications and is very suitable for 

diamond turning. The softness of the metal and the chemistry of the diamond-

aluminium interaction all help to minimise tool-wear. Machining of the aluminium 

workpiece was performed using the NION machine (detailed in reference [81]). Cutting 

parameters are detailed in section 3.1.1. Workpieces were of 6061 aluminium and 

300mm diameter. The composition of aluminium alloy 6061 is shown below: 

 

 

Magnesium 1.0 % 

Silicon 0.6 % 

Copper 0.30% 

Chromium 0.20% 

Aluminium The remaining % 

Table 2: Composition of aluminium 6061 by weight [71] 

 

 

In the above table the percentages are done by weight. Aluminium 6061 is an alloy that 

is used in a huge number of roles, from space-applications to furniture.  

 

 

Each cut of the surface was made deliberately shorter than the previous cut. This left an 

area suitable for profile measurement and allows the Ra to be monitored against total cut 

length. In total three tools and three aluminium workpieces were used. Periodic plunges 

into the uncut area of the workpiece surface were later used to calculate wear volume. 

Contact profile measurements of the plunge combined with SEM images were used to 

establish wear volume of the diamond tools using a method established within the 

literature [52]. 
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4.1 Natural tools machining aluminium 

Natural tools are used widely for the machining of aluminium. For example, they were 

used in the MIRI instrument for the James Webb space telescope project [82]. Though 

total achievable cut distance is so long with aluminium that tool-life is not a limiting 

factor for most industrial applications, industry does find the unpredictable tool-life of 

natural tools undesirable.  

 

 

Figure 47: Cut force progression for natural tool while machining aluminium. 

 

Testing the natural tool in this way provides the base-line for comparison with the MCC 

synthetic diamond tool. Differences in cutting forces, surface finish (measured using the 

Ra surface parameter) and analysis of the wear-scar all provide important metrics for 

the performance of the tool materials. 
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4.2 MCC tools machining aluminium 

To the authors knowledge, this thesis is the first significant wear trial for the MCC 

single crystal CVD diamond material against aluminium. The MCC material is a 

synthetic material and therefore free from most of the issues associated with natural. 

MCC diamond has lower internal stress and lower concentrations of nitrogen and other 

trace impuries typical of natural diamonds. Crystallographic defects such as stacking 

faults area also found in much lower concentration within the MCC material [22]. The 

purity and the consistent quality of the MCC material makes it exciting as a possible 

tool material for single point diamond turning. 

 

 

 

Figure 48: Cut force progression with increasing cut distance for the MCC synthetic diamond tools while 

machining aluminium.  

 

MCC tools were tested twice. The results are consistent with each other and display a 

lower cut force is being generated when compared to natural tools. Graphing these two 

tool materials together aids this comparison. 
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Figure 49: Comparison of cutting forces between natural tool and MCC tools. 

 

From the above graph, it is clear that MCC tools are generating less force than a natural 

tool does over the same distance. A tool that generates lower cutting forces can be 

extremely useful when machining workpieces that easy distort. Regardless of workpiece 

geometry, the form accuracy can be compromised when forces rise to a level where they 

are causing a displacement of the axes or spindle. Cutting forces are not typically the 

deciding factor on the failure of a diamond tool. Most often, it is either the geometry of 

the tool changing due to volumetric wear or the surface roughness will rise to an 

unacceptable level. 

 

 

4.3 Wear behaviour of MCC and natural tools against aluminium 

The work of D.Keen [51] presents results on the wear of diamond tools when machining 

aluminium and is an early paper to observe the fluctuation of wear behaviour between 

tools: the earliest example of the supertool phenomena found for this project. 
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Oomen’s paper [48] is another useful work that takes a broader interest in the different 

possible tools and a range of workpiece materials. This paper is relevant for the work on 

the synthetic diamond tools and because of the testing on the aluminium alloys T633 

and T094. A more recent paper that machines aluminium 6061 [83] and which features 

a very similar machining methodology and shows a great interest in the removed chip. 

 

 

Figure 50: SEM image of a chip of aluminium swarf. [83] 

 

All the references mentioned [48,52,83] note the variability of the wear characteristics 

of diamond tools but few agree on what is the most important cause of that variability. 

Composition of the diamond [48] and orientation [84] are both given as critical reasons. 

The work presented in this thesis is interesting as the impurity concentration is much 

lower for MCC than in natural diamond tools. 

 

A difficulty that large wear volume brings is the error in tool position that occurs. The 

tool centre position is important for cutting radiuses or free-form optics. Excessive wear 

of the tool-tip can cause an offset error of the tool-centre and this error will propagate 

into the cutting surface if machining any surface more complex than a flat. Therefore 

with aluminium machining (and soft materials in general) the effect of wear upon 

surface finish is not the only effect of concern. Indeed a large volumetric wear can give 
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the diamond tools an effective tool radius that is much larger than the original value; 

therefore wear can imply an improvement of the cutting performance when for many 

applications the level of wear would be problematic in regards to form quality.  

 

 

Figure 51: MCC tool (number S83781) after completion of cutting trial.  

 

The above figure displaying the wear behaviour of the MCC, wear-scar length is 202µm 

and 24µm wide. The other MCC trial gave a wear-scar length of 198 µm and a width of 

32 µm.  

The wear behaviour of the MCC synthetic diamond material displays a very similar 

wear-scar to the natural diamond.  

 

Figure 50: Natural diamond tool after completion of cutting trial. 

 

SEM images of the natural diamond tool displayed a wear-scar length of 204 µm and a 

width of 28 µm: very similar dimensions to the MCC tools. 
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All wear-scars from the aluminium trial grew to large scales (large when compared to 

the wear-scar images taken during machining of silicon), however this did not have a 

negative effect on the machining being performed. Indeed the formation of a large wear-

scar can be advantageous when cutting flats, though it can lead to form inaccuracies 

when machining more complex geometries.  

Surface finish, often defined using the Ra parameter, is critical for many applications. 

The profile parameter Ra is often the main parameter used for defining if a surface is 

within tolerance. When machining soft materials this is most often the method to 

determine tool-life. Uncut flat areas on the aluminium workpiece were deliberately left 

for measuring Ra.  

 

 

Figure 53: Roughness of the aluminium workpieces against tool cut-length  

 

Roughness can be seen to generally rise as tool cut distance increases for all tools. Tools 

made from the MCC material display a generally lower increase in Ra when compared 

to the natural tool.  

 

While turning silicon there is a clear transition of cutting mode from ductile to brittle. 

As aluminium does not display this behaviour the failure of a tool to cut satisfactorily is 
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almost entirely dependent upon the workpiece demands. For example a particularly 

small or thin workpiece could be distorted out of tolerance by rising cutting forces. A 

workpiece of higher geometrical complexity requiring high form quality could be cut 

out of tolerance by larger volumetric wear, or from higher cutting forces causing 

distortion of the machine axes. While cutting flats, large volumetric wear can have the 

result of increasing the effective tool radius. This effective increase of radius works to 

lower the theoretical Pt (a detailed derivation of this calculation method can be found in 

the paper by Blake and Scattergood [5]). However any small chips to the tool edge will 

likely cause roughness to rise as these defects are printed through into the workpiece. 

but this surface parameter is also highly dependent on the spindle error motion of the 

diamond turning machine that is being used. Therefore during cutting of flat 

workpieces, a tool that is experiencing a lot of wear is going to indicate that the surface 

is still of good quality (possibly even improving), making it a poor indicator for the 

condition of the tool on its own, and should be used with other metrics.  

 

Tools made from the MCC CVD material were also used in industrial trials. These were 

performed at Qioptiq ltd, and though specific data was not forthcoming from these 

trials, the reported general impression was that these tools are a better performing 

alternative to natural tools for aluminium machining. The only possible disadvantage to 

be mentioned was a tendency for MCC to cut a rougher surface once the tool had failed, 

when compared to natural tools. This transition was found to be more sudden with the 

MCC and after a greater cut distance than the natural tools had machined. This sudden 

transition is going to be of more interest when discussing the results from the MCC 

machining of silicon, discussed in Chapter 6. 

In summary of the aluminium trial results, the MCC tool material has been shown to be 

extremely well suited for this application. As machining aluminium is similar to 

electroless nickel and copper (and other non-ferrous metals) the MCC synthetic 

diamond material would appear to be particularly suitable for this application. Though 

machining trials to validate this would be a suitable future action. Regardless of which 

criteria the tool is tested against, when machining aluminium the MCC tool material is 

shown to be superior tool for machining aluminium.   



100 

 

Chapter 5- Diamond turning results for silicon against HPHT 

and natural tools 
 

5.1 Natural tool trial 

Testing of natural tools was required to provide a baseline comparison for the synthetic 

diamond materials that would be tested later. The natural diamond tools tested (tool 

serial numbers S65315 and S65317) had been previously tested as part of another trial 

at Cranfield [2,52], however that trial was primarily seeking to determine optimised 

cutting conditions though tools were tested until the onset of brittle fracture on the 

silicon workpieces. These previous results indicated one of tools (S65317) could 

achieve (consistently) superior cut distance, the other tool (S65315) is taken as a 

representative of normal tool-life tools. The previous work also confirmed that the 

refurbishment of the tool did not have any significant effect upon the tool life [2]. 

Therefore by including these tools the unusually long tool-life behaviour can be 

examined as well as normal tool behaviour. Testing these two tools gives the minimum 

number of trials required to examine normal tool behaviour and the unusual tool-life 

exhibited by some tools. Both tools were nominally identical: 0.5mm tool radius, -25 

degree top-rake angle and 10 degree clearance angle, (the standard configuration for the 

tool trials in this work).  

 

The total cut distance achieved by the normally performing natural diamond tool 

(S65315) was 32.17 Km (40 cuts). The superior tool (S65317) achieved a total cut 

distance of 64.34Km (80 cuts).  
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Figure 54: The comparison of results for tool S65317 and tool S65315.  

 

During the trials the cutting forces were measured using a 9256C2 model Kistler 

dynamometer. The thrust force against cutting distance is shown in figure 55. (Each 

data point is the mean average of the thrust force during the length of the cut), while 

standard deviation of force is used as the error bar.  

 

Figure 55: Mean average thrust force against cut distance for natural diamond tool S65315 
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In the above curve (figure 55) the forces rise to a higher final value than the mean 

average cutting forces achieve for tool S65317; as can be seen in the graph below 

(figure 56). 

 

 

Figure 56: Cutting force progression of natural tool S65317. 

 

It is notable that the cutting force progression of S65317 appears to have a strong linear 

trend initially. This is similar to S65315, which indicates that maybe this is common 

behaviour for all natural diamond tools. To better see the tool behaviour differences the 

two data sets are graphed on the following page (figure 57). 

 



103 

 

 

Figure 57: Comparison between natural tools S65315 and S65317. 

 

The cutting force progressions appear similar, though there were two critical 

differences. First and most obvious, is the achieved total cut distance for tool S65317 is 

almost twice that of the S65315. Second, the mean average cutting forces at the end of 

the useful cutting life are different. During the final cut using tool S65315 3.4 Newtons 

was being generated, while tool S65317 was generating just 2.9 Newtons on its final 

cut.  

 

Looking at the SEM images we see an interesting feature develop on the cutting edges 

of both natural tools.  

 

 

Figure 58: SEM image of tool S65317 taken after the onset of brittle failure. 
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The SEM image above in figure 58 is of tool S65317 (the superior performing tool). 

The tool engagement area is showing a narrow band of attritious wear, the so called 

“wear-scar”. The wear-scar appears smooth on first inspection but after careful 

examination it can be seen that the wear-scar is marked by some regular vertical marks, 

(assumed to be at the same spacing as the feed rate of the machining process). This tool 

edge is also showing clear damage in the form of many small volumes of tool that have 

been removed by fracture (and not attritious means). These small areas of chipping 

damage along the tool edge are themselves less noticeable than the large volume of 

damage near the cut shoulder where a large section of the tool edge has been removed 

by some form of fracture removal.  

 

 

Figure 59: Closer images of (a) the large area of damage on the leading edge and (b) the area of many 

smaller fractures closer to the tip of the tool. (Tool S65317).  
 

Note that the large fracture area shown in figure 59 (a) propagates entirely through the 

wear-scar generated by attritious wear. Also in image (b) the smaller chipping damage 

at the front of the tool which also propagates all through the wear- scar. When the 

chipping damage propagates all through the wear-scar the removed material per pass (or 

alternatively, the area that the tool removes with each revolution) is suddenly changed 

by this fracture. Furthermore from the work of Blake and Scattergood [5] we know that 

tool geometry, (in the form of the process constant Ψ), can have an influence on the 

machining process. Another important consideration arises from the work of B.R Lawn 

[6,8]; the geometry of removed material is important for predicting if the removal 

mechanism is going to be ductile or brittle. 
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If geometry changes are causing the failure of the tool to machine in a ductile manner at 

the generated surface, then many of the papers on the topic of tool wear, especially 

those focusing on attritious wear rates (such as J.Wilks [82]) are not of any use when 

trying to explain this failure mode. 

Examining the SEM image of the other natural tool (S65315), the similarities to the 

SEM of S65317 are numerous.  

 

 

Figure 60: SEM image of the tool engagement area for tool S65315. 

 

However, it is interesting to note that this tool achieved approximately half the cutting 

distance of S65317 and both have wear-scars of very similar thickness. Implying that 

the formation of the wear-scar is independent of the cutting distance after a sufficient 

initial cut distance. Note however that the large fracture damage on the leading edge of 

the tool does not propagate all the way through the wear-scar. Therefore the original 

geometry is effectively preserved, (at least in the 2D cross-section examination of the 

tool which is so important when considering the model proposed by Blake and 

Scattergood [5]). 

 

The effect of crystallographic orientation was identified as a potential source of the 

variation in total achievable cutting distance early into the project. Within the literature 

there are many reports of the material properties of diamond type structures (including 

silicon and germanium) varying with orientation [3,7]. Links between the orientation of 

the crystal and the wear resistance (“wear” is used here in the sense of volumetric wear 

and not tool failure) have also been published [85]. 

 

X-ray diffraction is a commonly used method of determining crystal orientations. 

Measuring of several diamond tools (including tools used within this project and some 
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that were not) was outsourced to the Diamond Trading Company (DTC). The DTC are 

experts in analysing natural diamonds. The DTC is part of the De Beers group of 

companies [85].  

One of the difficulties with making any firm conclusion with the XRD work done by 

DTC is the small sample group, especially considering the three angular degrees of 

freedom that can have an effect. A main problem is possible inconsistency of the 

machining situation (not all results were gained using the same coolants, coolant 

application method and size of the workpiece varied, etc. Not all results were gained as 

part of this work, and therefore may or may not have been subject to similar enough 

conditions to draw meaningful conclusions. 

 

 

Figure 61: Yaw and pitch angles defined. Roll is clearly active in the third direction. 

 

Each angular degree of freedom is described by yaw, pitch and roll, explained in the 

previous figure.  Though the results were inconclusive, for completeness the results for 

S65317 and S65315 are given below.  

 

 Tool 65315 Tool 65317 

Pitch 4.5 -3 

Roll 2 0 

Yaw -8.5 3.5 

Table 3: Orientation angles of the two tested natural tools 
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As can be seen there is significant difference in both the pitch and yaw directions but 

not the roll direction. It has been mentioned previously that the Young’s modulus of 

diamond (and structures using the same crystallographic unit cell, such as silicon or 

germanium) has an orientation dependency and that the polishing rate in different 

directions and orientations varies [86]. How (or even if) this relates to diamond turning 

tool-life is unclear. 

 

 

5.2 Original orientation HPHT (100) top-face tools 

HPHT is rarely used for machining of silicon. The HPHT tool-material is typically 

supplied with a [100] top-plane. HPHT does not have a good reputation for wear-

resistance, but because it can be supplied in slightly larger sizes than natural diamonds it 

is possible to make HPHT tools with a very large tool-radius. The [100] top-plane is 

very resistant to grinding the top-rake onto a tool so the (100/100) orientation HPHT 

tools were tilted to achieve the correct top-rake angle. Three HPHT tools were tested: 

three was considered the minimum sensible number considering the variability in tool 

life known to be such a strong effect in natural tools.  

 

The three tools, S82372, S82373 and S82374, achieved total cut distances of 19.3Km, 

20.0Km and 21.7Km respectively. It should be noted that the spindle speed was 

changed from the standard 1200rpm to 3000rpm for tool S82373. This was done to see 

the difference between the typical machining speed used at Cranfield (1200rpm) and the 

machining speed used by Qioptiq (3000rpm) in their manufacturing of IR optics.  
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Figure 62: HPHT (100/100) orientation cutting distances compared to natural diamond tools. 

 

It should be noted though that while machining a 32mm diameter part at 3000rpm did 

not show any excess wear, for larger parts thermal problems could start to manifest. 

This would originate from the surface speed increase associated with machining close to 

the edge of the larger workpiece.  

 

The HPHT tool material was found to provide very consistent results, though achieving 

lower total cut distance than natural tools. It is worth noting that this difference could 

originate from orientation of the crystal, the HPHT (100) top-face tools have all had the 

[100] crystal direction tilted by 25 degrees. This idea would be tested when the (110) 

top-face HPHT tools were used. 

 

The cut forces appear to develop in a different way to the natural tools. While the 

natural tools display a non-linear curve shape, the HPHT (100) orientation tools fit well 

to linear trends. This is shown in Figure 63.  
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Figure 63: HPHT (100/100) orientation cutting forces. 

 

An interesting point to note is the similar final cut force for each of the tools. The SEM 

images taken of the tools after failure help explain the difference in cutting forces 

between the HPHT (100) orientation tools and the natural tools.  

 

 

Figure 64: HPHT (100/100) orientation tool (number S82374). 

 

The SEM image in the above figure is displaying a large wear-scar region that is mostly 

free of fracture damage.  
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5.3 Variant orientation HPHT (110) top-face tools 

Due to the project’s close links to Element 6 we were provided with diamond material 

that had been grown in the correct orientation for use in (110) top-face diamond tools;  

the same orientation as both the natural tools and the MCC tools. Results from HPHT 

(110) orientation tools are very important: comparison with the other HPHT (100) 

results allows analysis of the effect of a change in orientation, while comparing HPHT 

(110) with natural diamond allows direct comparison of the difference in composition 

of the diamond materials. The (110) HPHT tools are the best way of linking the results 

from the (100) HPHT and the natural tools (which are supplied in the (110) top-face 

orientation) and allowing some sort of determination of the effect of the two variables 

that are different between the first two tool types (specifically the orientation and the 

tool material).  

 

Two tools were supplied in the (110) orientation, with three results gathered from them. 

This is considered the minimum number required for meaningful results. These tools 

were tested after the first HPHT (100) top-face tools. It was therefore known that the 

HPHT (100) orientation tools were known to perform consistently and therefore two 

tools in the HPHT (110) orientation was considered a suitable size of sample for this 

tool material.  
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Figure 65: Cut distance achieved by (100/110) orientation HPHT tools. 

 

HPHT in the (100/110) orientation results appear to be much less consistent than the 

HPHT (100/100) orientation results, implying innate variability in this crystallographic 

orientation. Also average achieved cut distance with this orientation is lower than the 

(100/100) orientation.  

 

 

5.4 Discussion of observed wear-scar behaviour and failure modes  

From the cutting force graphs displayed of the HPHT (100) orientation and natural 

diamond tools it can be seen that cutting forces evolve in different ways for the two tool 

materials. HPHT (100) tools fit closely to linear trends while natural diamond tools 

display non-linear trends.  

 

From the SEM images of the tools, contact areas can be estimated and using the force 

measurements it is possible to calculate an estimate average contact pressure during the 

final cut. It should be noted that the calculated values are for average pressure over the 

entire tool engagement length, and that the peak pressure could be significantly higher 

than these values.  
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Tool Contact 

area (m
2
) 

Force 

(Newtons) 

Pressure 

(GPa) 

Uncertainty 

(GPa) 

S82372 9.42x10
-10 

4.34 4.61 ±0.58 

S82373 9.37x10
-10

 4.47 4.78 ±0.21 

S82374 9.62x10
-10

 4.40 4.58 ±0.38 

S65317 8.22x10
-10

 2.88 3.50 ±0.52 

S65315 8.92x10
-10

 4.10 4.59 ±0.44 
Table 4: Contact and pressure information at tool failure [87] Natural tools are S65315 and S65317, 

remaining tools are HPHT (100) orientation tools. 
 

In the above table, uncertainty values are calculated using standard deviation of 

measured cutting force and are not an exhaustive treatment of the uncertainty value.  

 

Clearly each HPHT synthetic diamond tools exerted very similar pressure upon the 

workpiece on the final cut, indicating that there may be a pressure driven failure 

mechanism. Above a critical average pressure a tool will generate cracks of sufficient 

length that the generated work surface will have experienced some areas of brittle 

fracture. Blackley and Scattergood discussed pressure as a route cause of failure to 

ductile machine silicon [3]. These hints at a pressure failure mode are extremely 

interesting. 

 

Pressure during diamond turning of silicon is very important, there is a growing body of 

literature that discusses the possible pressure related amorphisation of silicon (Shibata et 

al. [12], Jasinevicius et al. [14], Yan et al. [88]). The amorphisation transition for silicon 

requires significant pressure, 11.3-12.5 GPa has been reported [17] but that value can be 

lowered by using a shear force, to as low as 8 GPa. Conditions during diamond turning 

certainly contain a shear force component therefore lower amorphisation pressures will 

be relevant. There is evidence that the amorphous phase is preceded by a metallic phase 

[15]. 

 

The natural diamond tool S65315 reached a similar pressure to the HPHT synthetic 

diamonds. Interestingly the superior performing natural tool, S65317, despite cutting a 

greater distance does not generate as high an average pressure on the workpiece. The 
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failure of the natural diamond is not adequately described by any pressure threshold 

related failure and therefore needs another, more complex, description of tool failure. 

 

Re-examining the SEM images taken after the onset of brittle fracture of the workpiece 

gives the most important clue to the failure modes at work for natural diamond tools.  

 

 
 

Figure 66: (a) SEM’s of natural tool S65317 (b) natural tool S65315 (c) HPHT synthetic tool (Images 

reported in [87]). The leading edge is on the left of the image. 

 

As can be seen from the images of the natural tools, by the onset of failure these tools 

have developed large damage areas on the leading edge. This is behaviour that was not 

displayed by any of the HPHT (100) synthetic tools.  

 

This chipping damage can be seen to extend vertically throughout the wear-scar in the 

case of S65317 but in the case of S65315 the damage does not extend all the way 

through the wear-scar. The two natural tools therefore have very different tool-edge 
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geometries when looking at them from a top-down direction. The tool S65315 and the 

HPHT (100) synthetics are therefore of a similar tool-edge geometry despite the 

difference. It appears that tool S65315 and the HPHT (100) synthetic tools are all failing 

via a pressure related mechanism, while it is now thought tool S65317 is failing via a 

different mechanism: possibly due to the different tool geometry. Specifically, it is now 

thought that chipping on the leading edge of the tool changes the shape of the removed 

material and the result is to generate cracks of sufficient length to propagate into the 

generated worksurface.  

When machining silicon (or other brittle) workpieces it appears that there are two 

possible failure modes, a pressure failure mode and a geometry failure mode. It would be 

hugely beneficial if the tool geometry can be experimentally proven to lead to a tools 

failure to machine in a ductile mode. 

 

 

5.5 Simulated tool-edge chipping damage using FIB 

From the fracture mechanics [6,8] we know that a tool that removes more than the 

critical thickness will result in cracks that will propagate to the minimum possible crack 

length. This was later used by Blake and Scattergood [5] clearly indicates that the 

critical chip phenomena is real. For silicon very small defects (the sort of defect that 

would remove a chip-thickness of approximately 57nm) produce cracks of 0.4 µm. 

Clearly if such a defect is less than 0.4 µm above the surface it will be damaged.  

 

However there is an open question about if the cracks can propagate into the generated 

worksurface from specific geometric defect. Of particular interest was the damage being 

seen on the leading edge of the natural diamond tools and if they have been causing 

sufficiently long cracks to damage the workpiece. Can defects that develop on tool 

edges further above the generated worksurface than the minimum crack length lead to 

brittle damage of the workpiece. Clearly experimental testing would be needed to 

establish if such damage on tool-edges could lead to tool failure. It is clearly desirable 

during such an experiment to separate the effects of tool-edge chipping damage and the 

volumetric wear of the tool edge. The solution would be found by engineering artificial 

damage into an otherwise undamaged tool, by accurately removing some diamond from 
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the tool edge. FIB (focused ion beam) was selected as the method chosen to remove the 

section of diamond from a sharp diamond tool. This simulated chipping damage was 

designed to be similar to the large leading edge damage that was found on many of the 

diamond tools. To keep the damage simple the FIB pattern was formed from sharp 

edges at right angles to each other.  

 

 

Figure 67: Top row- Tool profile and removed material from an undamaged tool. Lower row- FIB 

modified tool edge and resulting material removal. 

 

As can be seen in figure 67 the inclusion of damage dramatically changes the 

distribution of damage across the tool-edge. The position of the FIB damage is 

extremely important. To ensure the tool was as similar to the damaged diamond tools as 

possible, the SEM images of the damage on the leading edges of various tools were 

examined. This simple analysis indicated that the position and size of these defects is 

consistent, and showed that the tool-experiences larger damage further from the 

generated surface.  

 

A natural diamond tool (number S65316) was used for the FIB trial to try and reduce 

any effect from attritious wear on the experiment. Because the damage was positioned 

high up the tool when compared to the depth of cut two cuts were included in this 

experiment. The first cut used the side of the tool that had not been altered by the FIB, 

the second cut used the FIB altered edge of the tool. This ensured that the depth of cut 
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for the second pass of the tool was extremely accurate and eliminated any off-set error 

from positioning the tool. Though this added to the distance cut, the additional 800 

metres was not considered to add greatly to the wear of the tool, and the need for 

accurately measuring the depth of cut was considered critical. Normal distilled water 

coolant was applied and the spindle speed was set at 1200 rpm. 

The FIB has previously been used at Cranfield to machine complex shapes into 

polycrystalline diamond tools [79], but the change in tool material from polycrystalline 

to single crystal caused some processing difficulties. Specifically, single crystal 

diamond experiencing ion bombardment will start to gain electrical charge. A build-up 

of charge on the sample can lead to deflection of the ion beam, which makes imaging of 

the sample difficult and can cause machining of the sample to be extremely challenging. 

It was found that a coating of amorphous carbon onto the diamond tool dramatically 

reduced the problems and can be simply cleaned after the tool has been machined.  

 

 

Figure 68: The diamond tool during FIB machining; viewed from directly above the tool using the FIB 

apparatus. 
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In figure 68 the damage placed on the tool edge is clearly seen. The image is taken from 

the FIB equipment. The ability to check the machining in-situ is valuable when 

machining natural diamond using FIB. The horizontal and vertical sides of the 

machined area are clearly visible. Also visible is the amorphous carbon, which is left 

after the ion bombardment. The bombardment of diamond with ions can result in an 

amorphous residue forming. Due to the softness of this amorphous material, it is 

expected that it will be easily removed when washed in ethanol or during cutting and 

will not contribute to the cutting edge during machining. 

 

 

Figure 69: SEM image of natural tool S65316 with FIB damage size indicated. 

 

 

The deliberate FIB damage is shown above (figure 69). While from the following SEM 

image, the removed section of diamond is shown to be extremely small.  

 

It is surprising that such small damage on the tool-edge could have such dramatic 

effects on the workpiece during turning. Forces were monitored using the higher 

sensitivity Kistler, (the 9256C2 model), as forces of unworn tools had already been 

demonstrated to be very low. The effect of the FIB damage on the cutting forces was 
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unknown: the geometry of the tool is unique. However such a small volume of damage 

was expected to produce only a small rise in the generated cutting forces. This turned 

out to be exactly the case, as cutting force was found to remain extremely low through 

the machining of the workpiece. 

 

The machining resulted in the familiar three-lobed brittle fracture pattern being 

observed on the workpiece. However, the damaged area did not cover the entire surface 

area and was limited to the outside edge of the workpiece. 

 

 

Figure 70: SEM image of damaged area of the silicon workpiece used during machining.  

 

Above, the brittle fracture damage to the silicon workpiece is shown. This clearly shows 

both the feed-lines produced by the path of the tool and the areas where fracture damage 

has crossed into the generated worksurface. Despite the presence of brittle fracture 

though, the Ra values were found to be below the stated industry tolerance of 10nm. 

However as a contrast an SEM image of the same workpiece was taken at an 
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undamaged location closer to the centre of the workpeice. This clearly indicates the sort 

of finish that the diamond turning process can routinely achieve. 

 

 

 

Figure 71: SEM image of a silicon workpiece that has been successfully machined in a ductile manner. 

Note that this image was taken at x5000 magnification (a greater magnification than the previous SEM) 

and still remains damage free. 

 

Surface parameters were measured using contact Talysurf, AFM measurements and the 

non-contact CCI instrument. AFM data from an evaluation length of 25 µm found a Pa 

of 6.70nm in the areas that have experienced brittle damage and only 3.65nm in the 

areas that have been ductile machined. 

 

Profile Parameter Damaged workpiece area Undamaged workpiece area 

Pa 6.70nm 3.65nm 

Pq 12.10nm 4.49nm 

Pt 97.96nm 21.10nm 

Table 5: Profile parameter comparisons of brittle damaged zone and ductile machined area. Values 

calculated from rough AFM data over a 25 µm evaluation length. 
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It is clear from the above AFM profile parameters that the brittle damaged area, though 

within tolerance, has had number of large cracks propagate into the surface. The Pt 

values in particular indicate that the damaged area has been subjected to deep cracking 

damage, images of the workpiece profile confirm this. 

 

 

Figure 72: AFM profiles of two regions of the silicon workpiece after machining with the FIBed tool.  

 

In the above figure, the AFM profiles are displayed. The two sets of data shown above 

are presented on identical scales. Brittle damage is leading to the large cracks into the 

surface of the workpiece and is responsible for the difference in Pa.  
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Figure 73: AFM images of the silicon workpiece, showing the difference in surface quality. 

Above the AFM images of the workpiece machined in the FIB-induced damage trial is 

displayed. On the left is the image of the workpiece close to the outer edge of the 

silicon, the rightmost image is of a section of the workpiece further towards the centre 

of rotation (and therefore cut last). 

 

Clearly something is causing a change in machining mode from brittle to ductile. As 

geometry is suspected to be so critical SEM images of before and after machining 

became important.  
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Figure 74: SEM image of the FIB damaged tool prior to machining. Note the sharp edge on the right side 

of the damage. 

 

Above can be seen the FIB tool before machining and clearly showing the sharp edge to 

the right of the image.  

 

 

Figure 75: FIB tool after machining silicon. 

 

The above SEM image of the tool after machining confirm that the tool suffered fracture 

damage during the machining process, appearing to fracture along the (111) cleavage 
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planes. Total “wear-volume” has increased in this new geometry, but is leading to 

ductile machining of the workpiece material. 

 

 

Figure 76: SEM of tool S65316 after machining, taken from a top down direction. Flat area on the left 

was a section of the original FIB design. The altered geometry from the failure, though unplanned, 

provides more evidence of the importance of the tools geometry. 

 

This is much more revealing about the nature of the failure mechanisms at work during 

the diamond turning of brittle materials than the experimental plan anticipated.  It shows 

that a tool that is in the original FIB damage geometry will fail to machine in a ductile 

manner, while the second image shows that total volumetric wear damage is not linked 

to failure to machine in a ductile mode.  

It also shows how damage accumulated along the tool edge can act as a focus for 

gathering further damage, (as stated by Jacklin [2]). From the point of view of 

engineering complex diamond tool edges using FIB it is best to design the edge to run 

as close to parallel with the (111) plane as possible. 

The most important finding from the FIB work was that brittle damage could be found 

at the generated worksurface using an unworn tool that had specific tool geometry. 

Failure in this small experiment was therefore solely a result of the geometry of the tool. 

This is proof that tool geometry is critical when machining brittle materials and is a 

strong indicator that the geometry failure mode is a real phenomena.  
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Chapter 6- Diamond turning results  

for silicon using MCC tools 

 

During this trial the MCC synthetic diamond material was used for the first time as a 

tool material for diamond turning of silicon. This chapter outlines the extensive results 

gathered (including (100/110) orientation the alternative (100/100) tool-orientation 

tools), the wear behaviour displayed by this new tool material and the work done on 

higher-negative rake angles.  

 

The expectation at the start of the project was that the MCC material would display 

exceptional tool-life characteristics because of the extremely low nitrogen content. 

Consistency was also expected to be very good as the creation process of MCC is done 

in laboratory conditions and should not show the random growth histories that natural 

diamond is known to display [2]. Also, the defect concentration is expected to be 

consistent between MCC samples [22].  

 

 

6.1 Original orientation MCC (110) top-face tools 

Five MCC (110) top-face tools were prepared by Contour Fine Tooling to have 0.5mm 

tool radius, -25 degree top-rake angle and 10 degree clearance angle. The MCC tools 

were therefore in the same specifications as the natural diamond tools. The MCC (110) 

top-face tools were also in the same crystal orientation as the natural diamond tools. 

Variation of tool life found among natural tools made this large testing group a sensible 

precaution; the larger testing group makes finding tools with significant tool-life 

variations more likely; though the high variability shown in the natural diamond tools 

was not expected from the reportedly very consistent [22] MCC synthetic diamond 

material. 

 

The tools had the following serial numbers; S83775, S83776, S83777, S83778 and 

S83779. The tool-life assessments were measured under the same cutting conditions as 
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those used for the natural and HPHT synthetic diamond tools detailed in Chapter 5. The 

total achieved cutting distances are shown in the following figure (figure 79).  

 

Figure 77: Total cut distance before the onset of brittle failure for the first set of MCC diamond tools. 

 

The distance achieved by the MCC tools is disappointing from a silicon machining 

point of view. The two natural tools which were evaluated for tool-life performance 

using the same experimental set-up achieved cut distances of 32.17 Km and 64.34 Km. 

An MCC result showing a tool-life of less than 5 Km was particularly surprising from 

the tool material that was expected to supersede natural diamonds as a suitable single 

point diamond turning tool material.  

 

Examination of the SEM images of the (100/110) orientation MCC tools proved 

interesting. 

 

 

Figure 78: MCC tool (S83778) after cutting distance of 12.8Km and onset of brittle failure.  
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The above image is typical of all the MCC tools in the (100/110) orientation. All tools 

in this orientation display frequent small points of chipping damage along the tool edge.  

Testing using a spindle speed of 3000rpm was performed on the relapped tool S83778. 

This spindle speed was previously tested with a HPHT tool (see Chapter 5), and had no 

detectable influence (a result that helped to confirm that machining results at 1200rpm 

maintained their relevance to industrial practice).   

 

 

Figure 79: Difference between 1200rpm and 3000rpm spindle speeds for the MCC synthetic diamond tool 

S83778. 

 

Cut distance results for MCC tool S83778 at the two spindle speeds are shown above in 

figure 79. Both results are within the previously found standard deviation: when taken 

with the results on HPHT tools there is a strong indication that industry is using a 

spindle speed that is not detrimental to total achievable cutting distance.  

 

The best and worst performing tools (S83775 and S83779 respectively) were retested to 

check to see if the relative performance of these MCC results would repeat; in a similar 

manner to how natural diamond tools would expect to behave. Tool S83778 was also 

used for a repeat trial, give more complete repeat data. 
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Figure 80: Original and repeat trial of tools S83775, S83778 and S83779. 

 

As can be seen in the above figure, the MCC does not display the same repeatability 

that natural diamond tools do when repeat trials are performed. One tool displayed 

poorer performance on the second cut, while the other two displayed marginal 

improvements. An example natural diamond tools are consistent with themselves while 

MCC (100/110) clearly don’t have that consistency. This inconsistency of achievable 

cut distance is a very interesting and important difference between natural diamond 

tools and MCC diamond tools when machining silicon. This strongly implies both that 

the failure mode is different for the MCC material and that the failure mode of the MCC 

material is less predictable.  

 

 

6.2 Variant orientation MCC (100) top-face tools 

MCC (100/100) orientation tools are important for comparison against the HPHT 

(100/100) orientation tools and the MCC (100/110) orientation. Clarifying if the 

consistent behaviour of the HPHT (100/100) orientation tools was a consequence of 

orientation or tool-material. Furthermore there was a desire from the industrial 

collaborators to find a way of using the MCC for machining silicon. The HPHT had 

proved surprisingly long lived in the (100) top-face orientation and it was hoped that 

MCC would also display a large improvement in cutting distance.  
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The MCC (100/100) orientation tools were subject to the same grinding problems 

during manufacture and were therefore made as 0 degree top-rake, 10 degree clearance 

angle tools and deliberately tilted the 25 degrees, just as with the original (100) top-face 

HPHT diamond tools. 

 

 

 

Figure 81: Individual MCC (100/100) results with average MCC and HPHT results. 

 

From the above graph it is clear that the MCC (100/100) orientation results are less 

impressive than the HPHT (100/100) results: displaying poorer achieved cutting 

distance and a bigger standard deviation of results (MCC standard deviation 5.04Km, 

HPHT standard deviation 1.23Km).  

 

Though disappointing this is a very interesting result that implies that HPHT is a better 

tool-material for machining silicon. An odd result considering the higher nitrogen 

content and the vast numbers of papers that tell us the wear resistance of diamond is 

inversely proportional to nitrogen content.    
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6.3 High negative rake work  

The work of Blackley and Scattergood [3] indicates that pressure is important for the 

successful machining of brittle materials and proposed a model linking excess pressure 

to the generation of brittle fracture upon the generated worksurface. While Blake and 

Scattergood [5] confirm that top-rake angle has an effect on critical chip thickness. The 

work of Jacklin [2] also performed some trials upon various negative rake tools, 

including -45 degree tools. That work tested tools at -15, -25 and -45 degree top-rake 

tools. They found that the tool-life was highest for -25 top-rake tools. There is clearly a 

lot of work to be done on explaining the effect of rake angle upon the diamond turning 

process and finding optimum rake angles to extend tool-life against various workpiece 

materials. 

For this thesis a principal reason for testing the high negative rake tools was to examine 

if different top-rake tools cause failure by different failure mechanisms. Furthermore, as 

the fracture damage on the tool-edge is causing failure finding a method for minimising 

it was assumed to be beneficial for tool-life for the MCC synthetic diamond material.  

 

Two MCC synthetic diamond tools were set at -45 top-rake. This involved preparing the 

diamonds at the normal -25 top-rake angle and then brazing the tool stones on a 

specially manufactured tool insert, tilted by the remaining 20 degrees to achieve the -45 

degrees. The machining process was kept at the standard testing parameters; 1200 rpm 

spindle speed, 10 µm depth of cut and 1 µm/revolution feed-rate. Deionised water was 

applied as coolant using the hypodermic set-up used previously in this trial. The 

workpieces used were single crystal silicon 32mm diameter discs. The tools used were 

S83776 and S83777 which had previously been used at -25 top-rake angle. While 

planning this trial, the fact that previous results did not reflect the performance that 

could be expected from repeat trials was known. Therefore the results gained while 

using the high negative rake angle of these tools would not be influenced by their 

previous results. The two extreme negative rake tools were reconditioned and re-tested: 

there are four total results at this rake angle. The results are shown in figure 82. 
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Figure 82: High negative rake angle results. 

 

Normal top-rake MCC tools averaged 11.62Km before brittle failure while the -45 top-

rake tools averaged 10.25Km. Changing the angle of the tool from the normal -25 to the 

high negative rake MCC tools displayed was found to lower the achievable cut distance, 

but in the case of the MCC tool material, neither top-rake angle would provide a 

suitable cut length to produce silicon optics of a sensible size. Of interest though is the 

insight these results give on the failure mechanism at work. 

 

The measured cutting forces from the first high negative rake testing of tool S83776 are 

shown below (figure 83).  
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Figure 83: The progression of cutting forces during machining of S83776 (first trial at -45 degrees top-

rake angle). 

 

A -45 top-rake angle has the effect of raising cutting forces for the first cut when 

compared to the -25 top-rake tools. The final cut is generating a lower cutting force than 

expected. Final cutting force for -25 top-rake tools is typically in the range of 

approximately 3.5-4.5 Newtons. All -45 top-rake tools tested fail at significantly lower.  

 

Another hint to the failure mode used is that all the -45 top-rake tools generated similar 

cutting force at failure. The consistency of the cutting force at failure indicate that there 

is a rake-angle dependency upon when the pressure failure mode is selected and that by 

tilting to -45 degrees the pressure failure transition is preferred. The generally lower 

cutting forces measured at failure of the high negative rake tools when compared to the 

-25 degrees top-rake are not an indication of the geometry failure mode. The high 

negative rake tools are known to focus greater pressure upon the workpiece than the -25 

top-rake tools (as reported by Blackley and Scattergood [3]).  

 

The SEM images help confirm that all the high negative rake tools displayed fracture 

free wear scars (therefore excluding fracture driven geometry changes as the cause of 

failure). 
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Figure 84: High negative rake tool after failure. 

 

SEM images of the high negative rake tools all display small wear-scar areas and 

generally lack any regions of fracture damage, much like the HPHT (100/100) 

orientation tools. The assertion that the high negative rake tools are failing via a 

pressure driven mode is supported by the lack of any serious geometry change at the 

tool-edge due to fracture damage.  

 

The change in wear behaviour is quite considerable when the rake angle is changed. 

This is due to the changed orientation of the diamond tools, arising from the tilting of 

the crystal. For tools at normal rake angles the [100] direction is aligned normal to the 

workpiece for diamond tools. Tilting therefore changes the wear behaviour experienced 

by the tool and changes the cause of the failure mode to a pressure driven failure.  

 

Tilting the tool also results in a slightly different tool-profile. 
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Figure 85: Change in 2D tool geometry introduced by a 20 degree tilt of the tool. 

 

From the above it can be clearly seen that tilting a tool by 20 degrees changes the 

geometry of the machining process. It should be clear that the tool engagement length 

can be made longer by tilting the tool, the removed chip of material therefore becomes 

wider in the horizontal direction, but also thinner in the vertical. 

 

Tilting the tool also changes the orientation of the crystal cleavage plain (which lies 

along the {111} equivalent plains) and therefore changes the energy required for 

chipping damage to occur on the tool edge. Clearly from the lack of chipping damage to 

tool-edges when orientated in such a way, (as demonstrated by the HPHT tools and -45 

top-rake tools), the energy required to cause chipping damage is not being efficiently 

coupled into the {111} cleavage plain.  
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6.4 SEM monitored tool trial 

After examining all the SEM images of the MCC synthetic diamond tools there was 

considerable interest in the way that the fracture damage accumulated upon the tool 

edge. In particular, the distance along the tool cutting life at which these defects start to 

appear was unknown. The solution was to SEM the tool after each cut. The cut distance 

is only 0.8Km per cut, so a very detailed picture of how the wear scar develops could be 

gained using the SEM in this way. 

This approach was considered as the initial methodology for all the tools tested as part 

of the project but was rejected for several reasons. Firstly, the time involved with 

removing the tool, measuring using the SEM and resetting the tool before finally 

finding the correct tool position is considerable. The time taken to successfully test a 

tool until the onset of brittle failure at the generated worksurface is already large. 

Secondly, this would likely introduce an error in the tool position between each cut, 

resulting in fluctuations in the depth of cut. This would have made the cutting force 

measurements significantly more difficult to interpret. As cutting forces were of interest 

from a model development point of view this was considered unhelpful. Therefore a 

single MCC diamond tool was selected as suitable for this sort of very detailed testing.  

 

Of specific interest was if chipping damage formed on the tool edge during the initial 

stages of the machining process. A particularly interesting question that needed 

answering was if chipping occurred during the first few cuts, or happened later during 

the tool-life. 
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Figure 86: The first four cuts of MCC tool during the tool monitoring trial.  

 

From the above SEM images, (figure 87) we can see that the wear scars are generally 

smooth and do not show any signs of significant chipping to the tool edge. Images 

shown above are of the tool after the first, second, third and fourth cut, (at which point 

the tool has cut 3.2 Km). These results help to confirm the (100/110) orientation MCC 

tools do not experience fracture when initially put into contact with the silicon 

workpieces. 

 

 

Figure 87: A close-up of the leading edge of the tool after the fourth cut.  
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From figure 87, an SEM taken after the fourth cut for this tool, it is clearer to see that 

the wear-scar does not have any chipping damage. There are features within the wear-

scar on the leading edge of the tool, but this appears to be due to uneven wear of the 

tool, (possibly arising from slight variations in depth of cut) and not due to any 

fracturing of the edge. This result also helps to provide evidence that the onset of the 

chipping damage and the resulting change in tool geometry is the root cause for failure 

of the diamond tool.  

 

 

6.5 Wear behaviour of MCC against silicon 

As can be seen in the SEM images the wear behaviour of MCC is very orientation 

dependent. At a top-rake of -45 degrees the MCC synthetic material appears to adopt a 

pressure driven failure mode, while (100/110) orientation MCC tools seem to favour the 

geometry driven failure mode. It is suspected that orientation of the crystal causes a 

change in wear behaviour when moved from -45 top-rake to a -25 top-rake. This effect 

is not surprising, differing wear rates based upon crystal orientation has been noticed 

previously while diamond turning [48], and performing other wear experiments 

[33,34,35,89] .  

 

Interesting though is how a relatively small orientation change of the diamond tool can 

result in a change in the way the tool will eventually fail to machine silicon in a ductile 

manner. It is clear that the (100/100) orientation MCC and the -45 top-rake MCC tools 

are both failing to machine silicon due to a common failure mode. This failure mode is 

clearly the same as the (100/100) orientation HPHT tools. The implication is that, like 

the HPHT (100/100), the pressure that is being applied by the tool onto the silicon 

workpiece is leading to brittle fracture reaching into the generated surface. The failure 

point appears quite consistent for these -45 top-rake tools and the threshold pressure for 

the pressure failure mode is lowered by the geometry change from -25 degrees to -45 

degrees. It is interesting that such a relatively modest change of orientation (by only 20 

degrees) can eliminate the obviously frequent chipping that was experienced by the -25 

top-rake tool. The work on the two orientations of HPHT tools confirms that it is an 

orientation effect and not a tool material effect.  
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Tool material does however have a clear effect on tools in the (100/110) orientation.  A 

notable feature of the MCC (110) top-plane tools was that wear-scar SEM images have 

a lot of fracture type damage. These wear-scars show more numerous examples of the 

small fracture damage. For MCC (100/110) orientation tools the geometry failure mode 

is much more likely as these tool edges experience significant issues with brittle-

fracture. As hinted at in the literature review (Chapter 2), the MCC clearly has a 

tendency to fracture easily when directly compared to the natural diamond tool material. 

The cause of this brittle behaviour is due to the extreme purity of the material. It is 

known from the work of Shimada [43] that the higher nitrogen aggregates could well be 

helping limit crack formation. In particular small cracks that could be causing the small 

fracture areas are thought to be suppressed in diamonds that contain larger nitrogen 

aggregates. Also the work of Moore [47] indicates that the presence of nitrogen helped 

the crystalline structure to distort from the idealised structure. 

 

When all the data on MCC is gathered, it is clear that the new MCC material is less 

desirable as a tool material than natural diamond tools for machining silicon. 
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Chapter 7- Modelling approach of diamond tool-wear 

7.1 Tool-wear behaviour that requires modelling 

A wear model for predicting tool failure while single point diamond turning is 

potentially useful to industry: allowing modification of cutting schedules with the aim 

of minimising wastage of tools, workpieces and machining time. From the SEM images 

of the tools used during machining trials it is clear however that there are two failure 

modes at work. First a geometry failure mode caused by edge chipping which effects 

most of the (100/110) orientation tools while machining silicon. There is also a failure 

mode that is caused by attritious wear of the tool which is linked to the thrust force and 

is the primary failure mode when using (100/100) orientation tools to cut silicon or 

when machining soft metals. 

 

 

 

Figure 88: Diamond tool failure can be divided between the geometry and pressure failure mode. Specific 

diamond orientations and top-rakes will preferentially fail through a single failure mode. 

 

 

With two failure modes possible during diamond turning it is logical to develop two 

models. A first model detailing attritious wear (the most widely applicable wear-

situation) and a second model detailing brittle fracture. This Chapter details the 

development of the two models, details the structure of the models and the assumptions 

that have been made. 
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7.2 Attritious wear model 

The tool-orientations and workpiece materials that are unlikely to result in brittle 

damage of the tool are best described using an attritious wear model. The majority of 

diamond tools do not experience significant brittle-damage when turning many 

workpiece materials such as non-ferrous metals or polymers. An attritous wear model is 

more significant in these cases where brittle-damage to the tool is less common. 

Attritious wear of diamond tools appears to be a deterministic process and is therefore 

well suited for modelling.  

 

7.2.1 Initial planning of the attritious model  

Wear is related to cutting distance therefore when structuring the model a decision had 

to be made concerning what resolution of distance to use. The decision was to enable 

the model operator to input the total number of cuts used and also allowing the user to 

define the length of each cut. The user therefore has control of the maximum distance 

used and the distance resolution. Rather than continuing until an output value is met 

(such as thrust force) the model is designed to perform a fixed number of cuts before 

stopping. 

Cutting forces and wear is calculated separately for each cut, with the results 

influencing the following cut. Cutting forces are calculated using the Waldorf model 

[90] and wear is calculated using the Preston’s equation [91]. 

At the start of the model some parameters need defining. Parameters such as clearance 

angle, top-rake angle, tool radius and feed-rate. Workpiece dimensions are also 

modifiable. The model also has a predefined horizontal resolution. The default 

resolution is set at 100nm, which over a 500 µm tool-radius gives more than 10,000 

points to describe the tool-edge.  

 

Assumptions 

All models are an abstraction of a real system. The assumptions that are made are 

disclosed here and their effect on model accuracy is considered.  

Principal assumptions are:  

 Circular and flat workpiece geometry 

 Uniform pressure distribution 
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 Wear is independent of contact sliding speed 

 Thermal effects are not significant to attritious wear 

 

Workpieces are assumed to be flat and circular. This assumption also has the effect of 

fixing the contact conditions between the tool and the workpiece.  

Pressure is also assumed to be uniform across the tool-workpiece interface and assumed 

to result in uniform wear across the tool-workpiece contact. Pressure fluctuation caused 

by workpiece anisotropy (which is particular associated with brittle workpieces) is also 

considered unimportant.  

The model ignores any non-linear effect on wear from sliding speed. This is deliberate 

as the non-linear wear dependency upon sliding velocity seen during polishing (by Hird 

& Field [33]) has not been seen in our experiments. This assumption within the model 

may lead towards inaccuracies: especially for larger workpieces and high spindle 

speeds. However few diamond turning machines have the capability of turning 

particularly large workpieces or have access to high spindle-speeds.  

 

Ignoring thermal effects is considered a valid assumption based upon work done with 

FEA modelling software Thirdwave which was used to model thermal changes 

experienced by a diamond tool while machining 32mm diameter silicon workpieces at 

appropriate sliding velocities of 2.01m/s and 5.03m/s. These velocities correspond to 

spindle speeds of 1200rpm and 3000rpm respectively. The 2.01m/s simulation found 

tool temperatures peaked at 396.9K, while the 5.03m/s simulation found tool 

temperature peaked at 482.6K. It is known that high temperatures can cause change 

diamond into graphite at 1800K without catalytic help [63]. Therefore the assumption is 

that machining will not raise diamond tool temperatures above 1800K. As generated 

heat is related to sliding velocities between the two surfaces the assumption that thermal 

effects can be ignored may not be applicable for large workpieces or high spindle 

speeds.  

 

Ignoring thermal effects is likely to be a poor choice for ferrous workpieces which are 

known to act as a catalyst for an oxidation reaction of the diamond-tool. The rate of this 
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reaction is shown to be related to temperature, as demonstrated by work on cryogenic 

cooling of diamond turning tools showing reduced wear [92].  

 

7.2.2 Calculating Preston’s Co-efficient values 

The Preston’s equation was developed to explain optics polishing. The Preston’s 

coefficient (denoted using Kp) is the critical value for this equation. The Preston’s 

coefficient is a value that must be found using direct experimentation. The recession 

depth must be found before the value of the Preston’s coefficient can be calculated. The 

total recession value is dependent upon Kp, applied pressure and the total cut distance. 

Rearranging the Preston’s equation into terms of Kp:  

PK
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To complete the calculation of Kp the wear area and applied load (in the direction 

normal to the cutting force) need to be established. As these values evolve during the 

process, average values need to be used.  

Area is approximated by multiplying half the maximum wear-scar width by the total 

length of wear-scar. This creates a pair of triangles each with bases equal to the 

maximum width of the wear-scar and equal to half the length of the wear-scar. The 

average area was found by halving the final area, a method that assumes the wear-scar 

area grows linearly and that using a 2D quadrilateral to model the area of a much more 

complex 3D shape is a suitable method.  

The cutting distance, Δs, is the total cutting distance achieved by the tool before the 

onset of failure. The value of the load, L, is an average of all measured force values over 

the life of the tool. Finding the maximum recession distance, ΔH, is not trivial on a 

diamond tool and requires use of an SEM to find the maximum width of the wear-scar 

and then using trigonometry to find the recession distance.  

 

7.2.3 Structure of the attritous wear model 

MATLAB was selected as the model development tool. This program was chosen 

because of its flexibility and to make it easier to add further features later on. Its use 
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within the literature also gave encouraging results [59, 93,94]. MATLAB has a number 

of advantages over other modelling methods. For example the scale of the model can be 

tailored to the problem faced: A molecular dynamics methodology would typically have 

extremely small spatial and time dimensions (nanometres and nanoseconds scales are 

usual). Applying molecular dynamics findings to diamond turning is questionable 

because of the very different scales involved. With the selection of MATLAB as the 

modelling program an initial structure can be decided (shown in Figure 89). 

 

 

Figure 89: Initial flow of the attritious wear model. Each loop models a single cut. 
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For the silicon machining results presented in chapter 8 the total distance machined was 

~32Km and distance per cut was ~0.8Km. For aluminium machining results, the total 

distance was ~490Km and distance per cut was ~7Km. 

 

Establish tool profile  

Using the circular cross-section approximation, the known radius of the tool and by 

limiting the tool to a 2D cross-section it is simple to establish the tool profile. 

Establishing a 2D tool-profile is simple when the majority of diamond tools are half or 

full radius tools that have the front clearance face following the cylindrical tool 

geometry.  

 

Using an array (a single column of numbers representing the Z-axis measurement) for 

the 2D tool-profile rather than a matrix describing a full 3D shape may seem an 

excessive simplification, but is valid. From that 2D profile the full 3D values can be 

extrapolated, while keeping the required number of calculations low. For example the 

contact area can be established from the 2D profile and from the area calculate volume. 

Establishing the tool in full 3D would therefore add greater complexity to every 

subsequent operation without adding significant information. 

 

Calculate cutting forces 

Each cut is modelled individually and the results looped back to perform the 

calculations for the next cut. As cutting forces are influenced by the wear-state of the 

tool it is necessary to recalculate these forces after each simulated cut.  

 

As discussed in section 2.4.3, the Waldorf force model uses the contact area between 

tool and workpiece to calculate thrust force. Using the Waldorf model causes problems 

for the first cut as contact area is extremely small. As thrust force will be linked to wear 

this could lead to artificially low wear for the first and every subsequent cut. We 

therefore need to define the initial value for thrust force. Thrust forces for second and 

subsequent cuts are calculated from the wear-area value calculated after wear is applied 

to the tool. 
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Calculate wear 

In optics the Preston’s equation has proven valuable in the low removal-rate application 

of polishing. Because both polishing and diamond turning wear are low removal rate 

processes applying this equation is considered an appropriate approximation. Here 

Preston’s equation is shown (as taken from the work of L.M. Cook [91]). 

)/()/(/ tsALKtH p 
 

 

Which can be simplified by the removing the time dependency, giving the following: 

sALKH p  )/(
  

 

Where ΔH is recession distance, Kp the Preston’s coefficient, L the load applied, A the 

contact area and Δs the distance the two surfaces have moved against each other. This 

makes the recession distance (measured normal to the workpiece) proportional to cut 

distance and the pressure being exerted upon the tool.  

 

Apply wear to tool-profile 

Following calculation of wear-recession the model needs to apply the wear-recession to 

the tool. As pressure and wear are both assumed to be evenly distributed along the tool, 

wear is applied evenly across the tool and workpiece contact.  

Establishing where on the tool wear is applied is a process that needs repeating with 

each cut as tool-nose recession increases contact between the trailing edge of the tool 

and the workpiece.  

 

Calculate wear-area wear-volume and other parameters 

Wear on a diamond tool results in the tool forming a more complicated geometry than 

for an unworn tool. This very complex problem can be greatly simplified by breaking 

the complex 3D wear-volume into a series of smaller 3D shapes. This approach is used 

within the literature [52], where a wear-scar was broken into triangle-prisms.  
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Figure 90: Geometrical approach to analysis of tool-wear within the literature [52].  

 

It is possible to use the difference between the unworn tool profile and the worn tool 

profile to establish vertical recession distance at each point across the profile, giving the 

magnitude of the BD measurement on the previous figure.  

 

Figure 91: Difference in worn and unworn tool profiles. The recession distance is measured vertically 

between the curves and at 100nm intervals across the tool engagement length. 
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Contact area is found by comparing the worn tool profile with the unworn tool profile. 

The difference at each point across the tool is stored, giving a total recession distance at 

each point across the tool profile. The wear-area is geometrically related to the vertical 

recession value and the horizontal resolution. Wear-area at each point can be found by 

multiplying the length of the vector AC (shown in figure 90) by the horizontal 

resolution of the model (default is 100nm).  Total wear-area is therefore easily found by 

calculating the contribution to wear-area from each point along the tool and summing 

together the resulting values.  

 

Wear-volume at each point is also clearly found by finding the area of the triangle 

formed by points ABC and multiplying by the horizontal resolution of the model. Total 

wear-volume is found by summing each component of wear-volume. 

 

End model 

When the distance simulated matches the required cut distance the model ends. The 

predicted values for force in the thrust direction can be compared to the experimental 

data for this metric. Because of the thoroughness of the experimental measurements of 

force this comparison is the best guide to the performance of the model.   

 

7.3 Modelling tool-edge geometry effects 

Chipping damage on the tool edge leads to changes in the geometry of the tool edge. 

The experimental evidence from Chapter 5 indicates that these changes can lead to the 

failure of a single point diamond tool to machine in a ductile manner.  

The tool-edge geometry code developed for the project was designed to examine the 

geometry failure mode, and was heavily influenced by the work of Blake and 

Scattergood [5]. By examining perfect tools and determining the thickness of removed 

material Blake and Scattergood [5] were able to link successfully machining of brittle 

materials to feed-rate. Perfect, unworn tools are an ideal situation clearly not present in 

many real situations due to attritious tool-wear and chipping damage geometry changes. 

The MATLAB based code is detailed in Appendix B, but the relevant findings are 

discussed here. 
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Figure 92: Flow of tool-edge geometry code 

 

When tool-edge geometry changes the chip-thickness is the interesting parameter that is 

changed. Taking an undamaged 500 µm radius tool as a first example the calculated 

chip thickness using the developed code is shown below. 
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Figure 93: The top graph shows the tool-edge positions before and after a single revolution of the 

workpiece (a single feed in towards the centre of rotation). The lower graph displays the thickness of the 

removed material along the tool-engagement length.  

 

Unworn tools produce uncomplicated chip-thickness graphs. From fracture mechanics it 

is known deformation of brittle materials will depend on energy scaling and that below 

a critical volume the material will preferentially deform. Above a critical thickness of 

chip a fracture mode of material removal is favourable. Clearly the point along the tool 

edge where the removed material chip is as thick as the critical chip thickness will be 

the transition line where removal of material is primarily a brittle cutting mode. With 
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the critical chip thickness for silicon being ~60nm we see that this transition of removal 

modes will occur close to the tip of the diamond tool. 

 

Analysis of chip-thickness gets more interesting with damaged tool-profiles. A simple 

tool profile with a small vertical section is an abstraction of the true profile of a 

damaged tool, but can provide useful results. The damage section is 6.4 µm wide and 

4.91 µm above the workpiece surface the vertical section of the damage, chip height as 

illustrated with the h notation, is only 0.9 µm high: this damage will be demonstrated to 

result in dramatic changes to the removed chip. 

 

 

Figure 94: The damaged tool edge profile at start and end of a feed. The distance h shows the chip height 

which will also be shown to be responsible for the thickest part of the removed material.  

 

Figure 94 shows the outlines of the tool-profile before and after a single revolution of 

the workpiece. The area contained within the boundary of these two lines is the 

removed material during that workpiece revolution. That removed material is shown in 

figure 95. 
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Figure 95: Calculated thickness of chip across the simplified tool damage models engagement length. 

 

The large spike in the removed material is 0.9 µm high and 1µm wide (width is shown 

to be equal to feed-rate in this case). The height of the chip in the tool profile h is the 

origin of with this spike. As this chip is less than 5 µm from the generated-worksurface, 

cracks from this point do not have very far to propagate to result in a damaged 

workpiece surface, however predicting the length of cracks from this tool-edge damage 

is not possible. Such predictions would require detailed knowledge of the stress state of 

the material [71], information we do not have access to. This lack of knowledge about 

the pressures acting within the cutting zone causes other problems as it means despite 

knowing some criteria for causing damage to the tool-edge of a diamond tool we can 

not predict exact locations along the tool-edge which will fracture.  

It is perhaps useful to note that damage to the tool profile does not change the volume of 

removed material, but redistributes which parts of the tool are removing the most 

material. 
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Figure 96: Material removal by a damage free tool and a chipped tool (the FIB tool from chapter 5).   

 

Displayed in the above figure and confirmed by integrating the two areas, the chipping 

damage does not reduce the amount of workpiece material removed. 

There are a few conclusions that can be drawn from this work:  

 Firstly, that small chipping damage close to the front of the tool is very likely to 

introduce cracks into brittle workpieces. Location of damage is therefore very 

important. 

 Secondly, the shape of damage is important. As the FIB trial in chapter 5 has 

shown, large chipping damage can lead to cracks in the workpiece but are 

dependent on the geometry of the damage.  

 Thirdly, the size of a chipping damage location is not the most important aspect. 

It is perhaps unexpected but as the FIB trial in chapter 5 has demonstrated, a 

large area of damage can still result in a tool generating a damage free 

workpiece surface.   
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7.4 Summary of model development 

Predicting which part of a diamond tool will experience damage is not possible. 

Fracture mechanics can predict the conditions required to initiate a fracture but not the 

location on an object where that fracture will initiate. Diamond is known to cleave along 

the (111) direction [95] and the mechanical properties relevant to fracture of diamond is 

also explored in the literature [23,96-99]. The calculation to establish the energy 

required to remove a small fragment of diamond from the tool edge is simple and 

primarily depends on the surface area of the removed fragment. However, there is no 

way of predicting the scale of the damage section removed from the tool edge as micro-

cracks from subsurface damage, internal stresses and even crystallographic defects can 

all change the likely crack initiation site and the path of the crack. This is a big problem 

for SPDT as damage location on a tool is extremely important.  

Constrained by a lack of detailed predictive theories about fracture of the tool-edge 

means model development will have to focus on modelling attritious wear. Fortunately 

attritious wear is the dominant wear mechanism for most diamond turning workpiece 

materials.  
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Chapter 8- Model results and refinement 

 

During model development, several iterations of the model were constructed and tested. 

Presenting all the data gathered from all these tool-workpiece combinations and 

different models would be unclear. This chapter will be structured in the following way: 

results from the first model are shown here followed by a brief discussion of the 

changes made and finally the results from the very latest model.  

 

8.1 First Model Results 

The first model is detailed in chapter 7. Predictions were made for HPHT (100/100), 

natural diamond (100/110) and MCC (100/110) tools machining silicon. Further 

predictions were made for (100/110) orientation natural and MCC diamond tools while 

machining aluminium workpieces. To verify these models the predicted forces can be 

compared against experimentally measured forces. This is considered the primary 

method of testing accuracy, but as an additional verification check the predicted 

maximum wear-scar width can be checked against measurements from SEM images.  

 

8.1.1 HPHT (100/100) machining silicon verification 

Modelled cutting forces of the HPHT (100/100) tool correlated well with the 

experimental data gathered while machining silicon workpieces with this type of tool 

(see chapter 5 for details of machining results). Results are shown in the following 

graph (figure 97).  
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Figure 97: HPHT (100/100) cutting forces, model and experimental. 

 

Cutting forces calculated by the model and gathered from the experiment are in good 

agreement however the model needs to accurately predict the size of wear-scar.  

 

Tool 

Cut 

distance 

(Km) 

Model 

determined 

Width of Scar 

(µm) 

Experimental 

Width of Scar 

(µm) 

Percentage 

difference 

S82372 19.3 3.41 4.81 70.9% 

S82373 20.9 3.71 5.14 72.2% 

S82374 21.7 3.87 4.02 96.2% 

Table 6: Experimental and model wear-scar widths for HPHT (100/100) machining silicon. 

 

From the above values in Table 6, the model is shown to have underestimated the true 

wear-scar width. For HPHT (100/100) tools the model was able to predict both the 

magnitude of the thrust force with increasing cut distance accurately but that the wear-

scar was consistently too small. This clearly shows that the predicted wear is generating 

sensible force values but is not sufficiently changing the form of the tool.  
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8.1.2 Natural diamond (100/110) machining silicon verification 

Natural tools exhibit interesting wear behaviour when machining silicon, showing some 

tool edge chipping, in addition to attritious wear. While it is not clear which failure 

mechanism is causing tool failure for these tools, geometry driven or pressure driven 

failure modes, it is suspected that geometry is the more important failure mode.  

 

 

 

Figure 98: Model data and experimental results for natural (100/110) diamond tools cutting silicon. 

 

Experimentally measured cutting forces for natural tools do not fit well to a linear form; 

with a simple linear stage preceding a change to a period where cutting forces do not 

substantially rise. This behaviour might be indicative of brittle damage on the tool-edge 

acting to reduce the contact between tool and workpiece and thus reduce generated 

forces. If this mechanism is working to reduce forces it would make predicting silicon 

machining with natural diamond tools almost impossible using any model that only 

calculates attrtious wear.  

Examination of the SEM images and the model calculated recession depth allow further 

comparison between experiment and model. The model predicted a maximum wear-scar 
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width of 3.56 µm. From the SEM image of S65315 the maximum width of the wear-

scar was found to be 4.64 µm. Therefore the model predicted a wear-scar that measures 

76.8% of the actual wear-scar width.  

 

8.1.3 MCC (100/110) machining silicon verification 

Machining silicon with MCC (100/110) tools is dominated by the frequent and often 

large chips in the diamond tool edge. Modelling these tools is complicated by this 

behaviour. 

 

 

Figure 99:  Model data and experimental results for MCC (100/110) tools cutting silicon. 

 

As is clear from the above, the model can only successfully predict the first 7Km of 

cutting forces with any accuracy before predictions and experiment diverge wildly. It 

should be noted that the MCC (100/110) tools averaged only 12.1Km and so the scale 

of divergence is limited by this very short tool-life. Also note that the cutting data used 

above comes from some of the most successful tools. 
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Analysis of the predicted and measured wear-scar (at a distance of 12.1Km) showed the 

model predicted a maximum width of wear-scar of 3.57 µm, while analysis of the SEM 

image taken of tool S83777 after failure at a distance of 12.1Km the wear-scar was 

found to be 4.31 µm. The model therefore predicted 83% of the wear for 

MCC(100/110) orientation tools.  

 

 

Figure 100: Wear-scar SEM of the MCC (100/110) tool S83777.  

 

So despite the failure to predict cutting forces accurately for MCC tools while 

machining silicon, the initial model is just as accurate when determining the MCC 

wear-scar width as it is with HPHT or natural. 

 

 

8.1.4 Modelling Aluminium machining: MCC (100/110) and natural tool (100/110)  

During the machining of aluminium no tool experienced significant chipping damage 

therefore the expectation was that the attritious model would produce accurate results.  
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Figure 101: Model and experimental results of MCC (100/110) and natural (100/110) tools while 

machining aluminium. 

 

Modelled forces are plotted with the experimental data for the MCC and natural tools. 

As with the silicon modelling, the model tends to predict values that are lower than the 

experimentally measured results. 

 

  Natural MCC average 

Experiment Max. Wear-scar width (µm) 28.58 27.31 

Model max. Wear-scar width (µm) 23.20 27.40 

Percentage 81.20% 100.33% 
Table 7: Wear-scar analysis of MCC and natural diamond  tools machining aluminium. 

 

Wear-scar analysis shows that despite problems with accurately establishing the forces, 

the width of the model wear-scar is quite accurate for aluminium machining. 

 

8.1.5 Summary of initial model performance 

Generally, the initial model predictions underestimated both thrust force and the wear-

scar width. The model was therefore re-examined: looking at the basic assumptions and 
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looking for any oversimplifications that could be amended. As the magnitude of wear-

scar and thrust force are related an effect that increases predicted values of either of 

these parameters will raise the other. 

 

8.2 Refinements to the model 

There were several refinements to the wear model as various simplifications in the basic 

model were re-examined and changed to closer resemble the physical situation. It is 

worth listing each amendment to the model and then detailing the effects these changes 

had. 

Changes to the model: 

 Addition of trailing edge 

 Cutting force calculation method  

 Updated force constants calculation method  

 Clearance angle amendment to geometry 

 

8.2.1 Addition of trailing edge 

The initial model was consistently under-estimating the cutting forces for many tool-

workpiece combinations. When the model was designed the contribution from the 

trailing edge was considered to be negligible as the contact area between the trailing 

edge of the tool is small.  

Adding a trailing half of the tool and applying wear to it had the significant effect of 

raising the wear-scar area (and related thrust force) but also lowering pressure; making 

the effect on the model was difficult to predict. Generally the cutting forces rose very 

rapidly once the trailing edge was added, particularly for aluminium machining (as 

shown in following graph).   
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Figure 102: Natural diamond against the two models. 

 

The addition of the trailing edge was therefore not a success. The implication from the 

results was that the method of calculating forces needed re-examining. 

 

8.2.2 Cutting force calculation method 

The cutting force calculation used to calculate the thrust forces of the initial model, can 

be represented as: 

FT =  k.A 

Where FT is the total Force in the thrust direction, A is contact area between workpeice 

and tool and k is the constant of proportionality linking the two parameters. That 

equation is a simplified version of the following equation, (taken from Huang and Liang 

[55] but here using alternative notation): 

FT = FINITIAL + k.A 

 

The new addition is the initial force component FINITIAL which is the force acting in the 

thrust direction arising from the deformation of workpiece material at the front of the 

tool.  



161 

 

 

The FINITIAL element was initially excluded because estimating the magnitude of this 

FINITIAL component was seen as risky. Any error in that value will propagate through the 

model and start to affect every calculated quantity of the model. The addition of a small 

force component would not simply shift the cutting force curve upwards by the same 

value as the component. Pressure and therefore wear of each cut will be increased, 

resulting in greater contact areas which affects the wear experienced by further cuts and 

changes the contact areas. The pressures generated are quite different for the two 

models during the first few cuts where FINITIAL is contributing proportionately more of 

the total force and resulting in increased wear. 

 

The only method determined as suitable for estimating the FINITIAL component was to 

examine the cutting force at the lead-on of the first cut. As it is solely related to the 

deformation of the material in front of the tool FINITIAL should only vary with tool-

geometry or workpiece material (tool-material should have no effect).  

 

Lead-on forces generated by various tools while machining silicon ranged from 0.04N 

to 0.12N. As the initial force component for each -25 top rake tool is independent of 

tool-material averaging over many results is possible and this greatly helps reduce any 

uncertainty in the result gathered: therefore an average value of 0.0736N was used. This 

value is likely a slight over estimate due to the very rapid wear expected for the first cut.  

Attempts to calculate the lead-on forces while machining aluminium proved frustrating, 

as the forces generated by this softer material were indistinguishable from experimental 

noise. This is due to the very small scale of cutting force when the tool starts cutting 

aluminium and made more difficult because the experiment used the lower sensitivity 

dynamometer (which was sensible considering the long cutting times and the tendency 

for the more accurate dynamometer to drift). Without a sensible experimental value to 

use, a range of potential values were tested to establish if the newer modelling approach 

would yield sensible predictions for aluminium machining. The test values were based 

upon the value used in the silicon machining modelling and ranged from 0.01N to 

0.08N in 0.01N steps. From these tests it was shown that there is only a very small 
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effect among the selected range of values. Eventually, 0.01N was used as the force 

component from deformation of workpiece material as it was suitably low.  

 

8.2.3 Updated force constants calculation method  

The serious amendments resulted in a slight improvement of wear-scar predictions for 

the tools that were machining silicon. Cutting force accuracy was poor for silicon 

machining and extremely high for predictions of machining of the aluminium workpiece 

material. Wear-scar analysis for aluminium predictions was also disappointing, showing 

wear-scar predictions that were much larger than experimentally observed.  

That the model over-estimated cutting forces and produced wear-scars that (for some 

tool materials) were far too large implies that the constant linking force to wear-scar 

area is too high (resulting in cut forces that are too high). As this was a problem 

affecting all the tools and workpiece combinations the problem was clearly with the 

method of calculating the constant. In particular the method for calculating wear-scar 

area from SEM images, leads to an error of the constant of proportionality between 

wear-area and cutting force (referred to as k-value). Low estimates of wear-area will 

produce a k-value that is too large.  

 

Re-examination of the wear-area approximation used to find both constants was 

illuminating. To compare wear-area values calculated by the model against the wear-

area method used to find the constants used in the model a simple MATLAB program 

(described in appendix D) was developed to efficiently perform these calculations.  
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Figure 103: Wear-scar form along the tool edge and perceived length of war-scar when using the SEM 

(red line).  

 

In figure 103 we see the difference in the perceived length of the wear-scar when using 

SEM and the real length of the scar. Clearly differences between these lines will result 

in differences when approximating the area.  

In figure 104 the error percentage is graphed against the maximum width of the wear-

scar. Where error value is defined as the value found by applying the method to 

determine the wear area from SEM as a percentage of the area determined by the model.  

 

 

Figure 104: Comparison of wear-area calculation using tool with zero top-rake and 10 degree clearance. 
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The method of approximating wear-area from SEM images is clearly inaccurate, and 

also shown to vary considerably for different wear-scar maximums. In addition to 

changing with total wear experienced error was found to be a small influence from tool 

geometry. Using this information the wear constants were recalculated and the model 

re-tested. Applying more accurate wear-scar area values to recalculate k-values we get 

new values shown in Table 8.  

 

Workpiece 

Diamond tool 

Material 

Old force 

constant corrected force constant  

Silicon HPHT 1.198E+10 3.823E+09 

Aluminium Natural  3.307E+09 9.425E+08 

Aluminium MCC 2.586E+09 8.361E+08 
Table 8: Old and corrected force constants for different workpiece/tool material combinations. 

 

New k-values for machining aluminium were applied to the model. 

 

 

Figure 105: Natural diamond machining aluminium, comparison of experiment against model. 

 

Though the updated force constant is worse at predicting the first 200Km of machining, 

after 200Km the model results start get closer to the experimental values. Examining the 

new values for MCC diamond tools machining aluminium are shown below. 
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Figure 106: MCC diamond machining aluminium, comparison of experiment against model. 

 

For machining of aluminium the model responded favourably to the adjustment of the 

force constant changes. However when applied to HPHT machining of silicon the 

model predicted very low force (achieving approximately 2 Newtons for the final cut).  

 

 

8.2.4 Clearance angle amendment to geometry 

At this time discussion of the tool form let to a final amendment. So far the cross-

section form of the tool had been assumed to be circular, an approximation that is very 

close to the truth. However, the clearance angle introduces a form error by tilting the 

tool. Tool form is therefore a very subtle elliptical form rather than circular. Adjusting 

the model to change the form in this way increased contact area between tool and 

workpiece. Results from this final iteration of the model are presented in section 8.3. 
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8.3 Results of the final model  

Comparison of the forces generated by the very first model described in 8.1 and the 

latest model incorporating all the changes in section 8.2, shows the comparative 

improvements gained. 

Explaining how a tool fails to generate a  ductile surface on a silicon workpiece is not 

going to be significantly explained by a model that only models attritious wear. A 

model attempting to model silicon machining would have to predict chipping damage to 

the tool-edge. This is further complicated, as the scale of the chipping damage and the 

location of the chipping damage are both important factors. A model predicting all these 

factors is clearly impossible. Because explaining the failure mode for SPDT machining 

of silicon can not be achieved using an exclusively attritious method, modelling of 

silicon machining was removed from the modelling work during the final model.  

 

 

Figure 107: Natural diamond machining aluminium, model predictions against experimental data 

 

The many adjustments have the effect of reducing accuracy before the ~300Km point 

but after this the final model performs better. For the final cut predicted cutting forces 

are within 0.98 Newton of the force measured during the experiment. To maintain 
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clarity the standard deviation of the experimental data is not shown, but the standard 

deviation of force measured at this distance in the experiment was 0.39 Newton.  

 

The results for the final model were better for the MCC tools, as shown on figure 110.  

 

 

Figure 108: MCC tool machining aluminium, model predictions against experimental data 

 

In the above figure the predicted force closely matches experimental work from 

~240Km onwards. The standard deviation of the experimental work is not shown here 

but will be discussed. 

At the final cut the model prediction is at closest 0.4 Newton away from experimentally 

measured average force (this experimental data had a standard deviation of 0.28 

Newton). The model prediction is 1.05 Newton above the lower experimental data set at 

the end of the curve, (standard deviation on that data point was 0.35 Newton).  
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Chapter 9- Discussion 

The discussion aims to clarify the contributions to knowledge gained from this work. 

The supertool phenomena is discussed first and the likely cause explained. Following 

this is the work on synthetic diamond tools which allows the effect of crystallographic 

orientation and the tool material to be analysed, each has a section dedicated to these 

issues. This leads to section 9.4 which is a discussion of the failure modes of diamond 

tools while machining brittle materials. Finally, the developed model is discussed in 

section 9.5 with a focus on the Preston’s equation and the Waldorf wear-force model.  

 

9.1 Explanation of the Supertool phenomena  

Early during this work three possible causes of the supertool phenomena were 

identified: 

 Nitrogen content 

 Crystallographic orientation 

 Crystallographic defects 

Experimental methods were used to analyse the properties of a group of diamond tools. 

A supertool had previously been identified [2] and confirmed by the results in chapter 5. 

Tools from the work of Jacklin [2] that had previously been identified as normal 

diamond tools were able to provide a control group for comparison against the 

supertool. 

 

9.1.1 Fourier transform infra-red spectroscopy 

Using FTIR spectroscopy different impurity elements can be identified and even 

bonding structures between impurity atoms can be found. Tools S65317 (supertool) and 

tools S65314, S65315 and S65319 were sent to the Diamond Trading Company (DTC) 

for independent FTIR testing.  
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Figure 109: Concentrations of different impurity types with natural diamond tools. 

 

Of interest in the above figure is the N[A] type of defect, a combination of two bonded 

nitrogen atoms within the structure of the diamond. Tool S65317 shows a high 

concentration of this defect type. The presence of this defect type could be linked to the 

extraordinary tool-life displayed by S65317. It should be noted that the supertool 

S65317 has the highest concentration of total nitrogen, a fact that puts it contrary to the 

widely held belief that nitrogen content is bad for a diamond tool. This apparent 

contradiction is likely the result of ignorance about the different failure mechanisms at 

work: researchers often assume that volumetric wear of the diamond tool leads to 

failure. For machining of aluminium (or other soft materials) this may be correct but 

this thesis has demonstrated that while machining silicon with diamond tools crystal 

properties that affect brittle fracture behaviour of the tools edge will be important.  

 

That purer diamond crystals experience lower volumetric wear is intuitive. Reasons for 

the link between a high concentration of N[A]-type nitrogen and a diamond tools 

resistance to the likely change in tool-geometry that leads to a failure to machine in a 

ductile way are not intuitive. One possible explanation is that the presence of the B-type 

nitrogen defect helps slow the progress of fracture along the {111} orientation cleavage 

planes by forcing energy to couple across into other planes. Similar theories have been 
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suggested previously [43] but for different defects. This new application of the recent 

platelet-hypothesis does not agree with the findings from this project, primarily because 

the S65314 and S65317 tools we have examined using SEM do not have significant 

differences in the number of chipped damage sites, chipping size or distribution of 

chipping damage. This knowledge about the composition of the supertool could be used 

to screen for diamonds with the relevant properties (as attempted previously [43]). 

Alternatively, engineering the tool-material for specific applications may be possible 

using the range of natural and synthetic diamonds available. One method is annealing, 

which has been performed on various grades of diamond [36,41,100] and has been 

shown to be able to alter the composition of diamond. 

 

 

9.1.2 X-ray topography and cross-polariser strain measurement of tools 

Another experimental technique used to investigate the possible origins of the supertool 

phenomena was X-ray topography (XRT). XRT is a technique that has been used 

successfully to investigate crystallographic properties of diamonds, and has high 

resolution. For example, M.Moore has used XRT to examine the more unusual 

diamonds that have been found, such as those showing twinning behaviour [28,29] or 

the extraordinary single crystal that displayed two different coloured sections [47]. Time 

was booked at the Daresbury synchrotron radiation source with the aim of seeing 

appreciable differences between normally performing natural diamond tools and the 

previously identified supertool. Specifically, station 16.3 was used (described in the 

literature [101]).  

 

Nothing significant was found while testing for crystallographic defects in the tool-edge 

of the tools tested. However, looking for a cause of supertool behaviour in an analysis 

of the crystallographic perfection of the tool-edge was a mistake. It was previously 

established that tools maintain their relative performance after re-lapping [2], a process 

that removes about 20-30 µm of material from the top-rake face. Knowing that 

supertool behaviour is preserved during this process it is possible to conclude that the 

origin of the supertool behaviour has to be related to one of the bulk properties of the 

diamond tool.  
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XRT can provide information on the crystallographic perfection of the diamond and via 

rocking curves examine the distortion of the crystallographic structure within the 

diamond, as shown in the literature [26,47]. As it is known that a bulk property that is of 

interest, using XRT to measure distortion within the crystal was excessively complex. A 

simple cross-polariser experiment would show the samples to have different internal 

strain behaviour, as used previously for diamond within the literature [102]. 

 

 

Figure 110: Cross-polariser image of diamond tool S65315. 

 

Cross-polar images were taken, but the results were not decisive. Diamond tool S65315 

displays a higher internal strain than tool S65317. 

 

Figure 111: Cross-polariser image of diamond tool S65317. 
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The identified supertool therefore has less strain than the normal tool. Internal strain is 

an artefact from the diamond crystals growth conditions [19,47] and is not significantly 

affected by the tool making process.  

 

9.1.3 Summary of the supertool phenomena 

At the start of section 9.1, three hypotheses for supertool behaviour were proposed; 

nitrogen content, crystallographic orientation and finally crystallographic defects. Each 

has been examined, using the supertool identified in previous work [2]. 

Purity of diamond appears to be of very limited importance. Certainly the high purity 

MCC (100/110) diamond tools have shown poor performance during cutting trials 

against silicon. Nitrogen content of natural diamond tools was examined using FTIR 

and by examining the concentrations of various different defects the supertool was 

shown to have an unusual concentration of N[A]-type nitrogen. It is now believed that 

this type of defect is very significant for supertool behaviour. 

 

As detailed in chapter 5, diamond tools were sent to the DTC for x-ray diffraction 

analysis to determine the orientations of the tools. Each tool was made to the (100/110) 

orientation but displayed slight offsets in pitch, roll and yaw degrees of freedom. The 

analysis did not reveal any unusual properties of the supertool and proved to be 

inconclusive. Orientation of the diamond tool is therefore considered unlikely to give 

rise to supertool phenomena. Crystallographic defects are also eliminated as a potential 

cause of supertool behaviour. If an unusual defect was causing supertool behaviour it 

would be removed during the re-lapping process and the cutting performance of the tool 

would change, but it is known that tool behaviour is unaffected by the re-lapping 

process. 

 

Many different analytical techniques were used to investigate different aspects of the 

supertool. Combined, these different investigative techniques show that N[A]-type 

nitrogen is the likely cause of the supertool phenomena, while other tool-life factors are 

less important. It is important to be clear that while many sources claim higher purity 

diamond is better for diamond turning tools, the ideal tool for diamond turning does 
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seem to be dependent on the workpiece material to be turned. For aluminium cutting the 

high purity MCC is clearly superior to natural diamond tools. For silicon the MCC 

material is much worse as a tool-material. 

 

 

9.2 Effect of tool material 

It is important to understand the effect that changing tool material has upon tool-wear 

during the SPDT process so that the correct material can be used for cutting a 

workpiece. Using an MCC tool will produce lower cutting forces and a smoother finish 

while cutting aluminium (as demonstrated by the thrust force data and lower Ra shown 

in chapter 4). For aluminium the requirements for choosing tool material is clear: a 

higher purity diamond is preferable and now with the availability of MCC the choice is 

clear.  

 

For the machining of silicon the criteria appears to be more complex and involve at least 

two possible failure modes. However, a comparison between MCC and HPHT is 

possible and gives clues to the effect of nitrogen content on tool-life.  

 

Figure 112: Average achieved cut distance for HPHT and MCC tools when machining silicon.  
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This graph implies that regardless of tool orientation the HPHT diamond is better suited 

for machining of silicon. However considering the very poor result of both synthetic 

diamond types compared to natural diamond clearly the composition of an ideal 

diamond material for silicon machining is more complex.  

 

It is sensible from the work performed in this thesis to conclude that MCC would be 

superior for machining all workpieces below a threshold hardness. This threshold may 

be much higher than expected, as tools machining silicon have a very limited tool-life 

even when compared with germanium or other workpiece materials used for IR-

applications. 

 

 

9.3 Effect of crystallographic orientation 

From the literature it is known that diamonds polish at different rates in different 

crystallographic orientations [33,34,35], a natural result of the strong anisotropic 

material parameters. When the natural variation of tool life was found during the work 

of Jacklin [2] a possible explanation was variance in the crystallographic orientation of 

the diamond tool. Using the data from both HPHT and MCC synthetic materials and 

both the (100/100) and (100/110) crystallographic orientations gave enough data to 

establish the effect of crystallographic orientation upon the attritious wear of diamond 

tools during SPDT.  
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Figure 113: Average (100/100) and (100/110) orientation tool cut distances. 

 

This finding is unusual as industry prefers to use (100/110) orientation tools for most 

roles. Generally the (100/100) orientation tools displayed linear cutting force 

progression (particularly the HPHT tools in this orientation) while the (100/110) 

orientation tools generally adopted a non-linear trend. Comparison of the SEM images 

gave the clearest indication of the reasons for this difference in cutting force progression 

with the frequent chipping damage seen on the tool-edge of the (100/110) orientation 

tools. All the (100/110) orientation tools displayed such damage, and would work to 

lower the contact area of the tool-workpiece interface. Therefore this damage type 

works to effectively lower the area and lower resulting cutting forces, however the 

attritious wear that is experienced will constantly drive cutting forces upwards and we 

therefore see the non-linear relationship develop. 

 

It is interesting that a change in crystallographic orientation of the tool from (100/110) 

to (100/100) eliminates any chipping of the tool-edge. Clearly the orientation of the tool 

results in the {111} equivalent planes being easier or harder to couple energy into. 

Related to the discussion about the (100/110) and (100/100) orientation tools is the 

effect of tilting the tool through the additional 20 degrees required for the -45 top-rake 
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angle work. This changed the orientation of the tool with respect to the workpiece, 

influencing the wear-behaviour seen and suppressed any chipping of the tool-edge.  

 

 

9.4 Failure mode of diamond tools 

A persistent theme during this thesis is the failure of diamond tools. With silicon the 

failure is clearly visible on the workpiece but the cause of this failure has never really 

been well defined in the available literature. There was a general assumption that 

volumetric wear of the diamond tool was linked to failure [52], but the work presented 

here clearly puts a case for that assumption to be rejected. Indeed, this work has shown 

that there are at least two failure modes possible when machining brittle workpiece 

materials. Here is a discussion of these failure modes, attempts to characterise and 

explain their origin.   

 

 

9.4.1 Discussion on the geometry failure mode 

Discovering that geometry changes of the tool can lead to failing to machine silicon in a 

ductile manner is a new finding generated by this project. This finding was reported at 

the Lamdamap conference [87] but to remain within the non-disclosure agreement the 

results from the MCC tools were withheld and the comparison between natural tools 

and HPHT tools was used to illustrate the failure mode.  

The basis of this failure mode is in the fracture mechanics demonstrated in the work of 

Lawn [6,8] while the MATLAB code that was used to calculate the thickness of 

removed material is an expansion of the work by Blake and Scattergood [5], and is 

similar to work done on grinding of brittle materials [103]. Though this thesis has 

focused upon silicon and may have given the impression that silicon is the only material 

which is affected by this failure mode when diamond turned. However all brittle 

materials will be susceptible to this failure mode. Many of the IR-materials used in 

optics are brittle and would have values of critical thickness of removed material similar 

to that of germanium or silicon. The minimum crack length of silicon is approximately 
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0.4 µm [8], while germanium has a lower minimum crack length (which allows 

germanium to be more easily diamond turned).  

 

It should be clear that for all brittle materials a detailed look at the thickness of removed 

material for a given tool geometry is important. Particularly as complicated tool 

geometries begin to be developed using sub-micrometre machining methods (such as 

FIB machining methods [80]). As shown in this thesis a FIB tool with a deliberately 

machined defect far from the generated cut plane was able to lead to fractures within the 

generated surface. This result illustrates the problem with trying to make predictions of 

crack length from a tool with any given geometry: because fracture mechanics can not 

predict crack lengths accurately (due to the geometry dependencies in existing 

equations). We are therefore limited to making predictions using minimum crack 

lengths of materials. For example, we now know that while generating minimum crack 

lengths a small chipping damage type defect at the front of the tool will almost certainly 

induce cracks into the workpiece.  

 

An interesting attempt to reduce tool-wear issues when machining silicon is the work of 

Marsh et al. [104] which used a rotating tool. Their experimental design is very similar 

to the traditional diamond turning arrangement but is intended to distribute wear across 

a much larger tool-edge than normal by rotating a rotationally symmetrical tool. 

Knowing about the geometry failure mode and the critical effect having even small 

areas of chipping damage close to the generated surface clearly means this methodology 

is unsuited for turning of brittle materials. There are problems with rotating tool 

methodologies when turning softer materials too. Such as the machining set-up 

introducing a second spindle which has the effect of reducing stiffness and increasing 

spindle error motion [104]. Furthermore, tools using this approach are also likely to 

experience uneven wear as a result of the effect of orientation on wear, with the likely 

effect that tool geometry will stop being circularly symmetric. For all these reasons 

future work should not focus upon this rotating tool method.  
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9.4.2 Discussion on the pressure failure mode 

Tools that are free of chipping damage have been shown to induce cracks into brittle 

workpieces. The cause of these failures is not clear, but pressure is considered related 

(details are in Chapter 5 and were presented [87]). A paper that discusses issues related 

to the pressure failure mode is the recent work of Yan et al. [105]. This paper 

extensively discusses pressure effects during an increasingly deep cut, (a cutting 

arrangement much like the work of O’Connor [7], but drawing very different 

conclusions). 

 

 

Figure 114: Cutting scheme used by Yan et al 2009 [105] 

 

The methodology shown above displays an ignorance of the work of either Blake and 

Scattergood [5] or Lawn [6] as both these papers would show that the increasing 

thickness of removed chip has lead to this brittle fracture: it was not caused by 

excessive pressure. Cutting forces presented within this paper also appear to be 

unusually high considering the extremely shallow depth of cut and the presumably 

sharp status of the tool. Calculated pressures offers the clearest comparison of the 

discrepancy between the data presented by Yan and the work within this thesis. The 

work of Yan [105] reported pressures regularly in excess of 10GPa while the work on 

HPHT in chapter 5 indicates that HPHT calculations of pressure gave values of 

approximately 4.6GPa [87]. From the error analysis of the model in Chapter 8 it is 

known that the simple method used to calculate wear-area is estimating approximately 

35% of the true wear-scar area value, therefore a closer estimate for pressure during the 
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final HPHT cuts is closer to 1.6GPa. Whatever the true pressures generated during 

diamond turning of silicon, it is clear that they are large. From examination of a 

diamond turned silicon workpiece Shibata et al. [16] was able to discover a thin layer of 

amorphous silicon and was verified by Tanikella et al. [15] and Jasinevicius et al. 

[14,16]. This is strong evidence that successful ductile machining of silicon requires 

sufficient pressure to change the workpiece material from the crystalline phase into the 

amorphous phase, possibly via a metallic phase [18]. 

 

 

Figure 115: Cross-sectional TEM micrograph from reference [4] 

 

From the above and the previous work of Puttick [4] we can assume that much of the 

removed material from a workpiece is in an amorphous phase. It should be noted that 

for many models attempting to predict thermal behaviour, the thermal properties of the 

chip is a required variable. Amorphous silicon is reported as having a thermal 

conductivity of 1.5W/mK and heat capacity of 992J/Kg K [106]. The same source 

makes it clear that the thermal conductivity of amorphous silicon is approximately 100 

times lower than the crystalline phase, and therefore this is clearly an important factor to 

consider for thermal modelling of diamond turning of silicon.  
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Knowing that there is a pressure threshold below which silicon will not undergo phase-

transformations it could be argued that the pressure failure mode arises not from a rise 

in pressure above a threshold limit, but from pressure dropping lower than the phase-

transformation threshold. Essentially a tool that is not causing sufficient pressure to 

initiate the phase-transformation could be causing initiation of cracks. It is known that 

wear-scars get bigger as cut distance is increased, so pressure may be lowered through 

this mechanism. However from the modelling work there is reason to believe that is not 

the cause. 

 

 

Figure 116: Pressure calculated from HPHT model results. 

 

Pressure values calculated from the amended model results do not show any significant 

drop in pressure. It is important to note that these calculations of pressure are average 

values across the tool-engagement length. With brittle materials we would expect 

fracture to occur high up the cut shoulder reducing pressure there and therefore greater 

force to be focused through the nose of the tool. Peak pressure within the tool-

workpiece interface can be reasonably assumed to be higher than average values 

calculated. 
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Much about the pressure failure mode remains unclear and the true failure mechanism 

could well be only indirectly linked to pressure. The exact method in which the brittle 

fracture of the workpiece material is being caused in the failure mode here termed the 

“pressure failure mode” is unclear. From the pressure calculations from the developed 

model it could be argued that it is not related very strongly to pressure. Not knowing the 

full origin of this failure mode would be a bigger concern if this failure mode was more 

widely applicable but so far it seems to be limited to the (100/100) orientation tools, 

which are not widely used for machining brittle materials. 

 

 

A case could be made that there is no pressure failure mode and this failure mode is 

actually a misdiagnosis of the geometry failure mode. Checking worn tool-edges and 

calculating the thickness of removed material using the technique described in appendix 

B would quickly determine if this is happening. Using the wear model to generate a 

worn tool edge (using HPHT tool material constants and a cut distance of ~32Km) and 

then analysing that curve using the chip-thickness code used to explain the geometry 

failure mode. From this examination we know that the removed material remains very 

similar to that of an unworn tool. As always it is the way material is removed closest to 

the generated worksurface that is of most importance. This examination of removed 

material, when combined with the evidence from the FIB modified tool-edge trial shows 

that the pressure failure mode and the geometry failure mode are not re-iterations of 

each other and are separate methods for diamond tools to fail. 

 

 

9.5 Discussion of the modelling methodology 

To the authors knowledge applying the Preston’s equation to diamond tool-wear is a 

new application of an old equation. The Preston’s equation is fairly simple, depending 

as it does upon force in the thrust direction, contact area and the Preston’s coefficient. 

Using a Preston’s equation method can generate worn tool shapes but despite many 

small revisions the data from the model thrust force predictions are not satisfactory.  
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One of the amendments made during the model updates was the inclusion of a small 

permanent force component from the deformation of workpiece material on the top-rake 

face of the diamond tool. This change moved the model closer to the cutting model it 

was based upon [83] and disposed of the previous estimated cutting force value used for 

the first cut. On its own the cutting force adjustment made only a small difference to the 

models outputs. However when wear of the lead-off tool-edge was combined with the 

adjusted cutting force calculation method the results were dramatically changed. Cutting 

forces were suddenly predicted to be extremely high, while wear-volume on the tool 

edge was adjusted down a significant amount. As noted in Chapter 8, this is a result of 

problems with estimating the constants and originates in the problems with estimating 

contact area. Better methods of estimating wear-area from SEM images would be 

extremely helpful to improve the accuracy of the values used to determine wear. The 

model appears to be describing the wear of a diamond tool quite well despite these 

difficulties. The final model predicted forces fit well to a straight line but many of the 

experimental data sets appear to be non-linear. A Preston’s treatment of tool-wear 

therefore appears appropriate; but the Waldorf cutting force model could be argued to 

be over simplified. 

 

 

9.5.1 The Waldorf wear force model 

The developed model used a version of the Waldorf wear force model simplified by 

ignoring the force in the fed direction and limited to the force component in the thrust 

direction. This greatly simplified calculations however it may have been an over 

simplification that adversely influenced model accuracy. 

 

By only calculating forces in the thrust direction the contribution to tool-wear from 

force acting in the feed direction was ignored. This is a sensible assumption when 

looking at the end of a tools life as the force in the feed direction is small compared to 

the thrust force. The assumption is much less accurate while modelling an unworn tool 

when the forces in the feed and thrust directions are of similar magnitudes. The first few 

cuts are extremely important for the tools further development and therefore force in the 

feed-direction may be more important to include than originally thought.  
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Implementing this second force component would get extremely complex very quickly 

and would be a significant technical challenge however we can anticipate some of the 

effects this would have and evaluate if this would be beneficial to the model accuracy. 

 

 

 Over the first few cuts we would expect calculated wear to be higher, resulting 

in greater contact area and therefore a quicker rise in thrust force. All would help 

the accuracy of the model. 

 

 Slight non-linearity would be expected. Initially the model would predict higher 

wear but once the contribution to total force becomes low the wear will change. 

This would likely change the linear thrust force progressions that the model 

currently produces and should help model predictions. 

 

 

Introducing a force component in the feed direction would subtly change the way that 

damage is applied to the modelled tool. Wear recession is parallel with force, so by 

introducing a second force component wear will also act across the tool profile in the 

feed direction.  
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Figure 117: Comparison of tool wear form. Top image: an MCC tool used to machine aluminium. Lower 

image: the tool profile predicted by model. 

 

 

As the above image shows the simplified wear direction used in the model provides 

suitable form predictions with a single component. It is therefore expected that the 

inclusion of the second force component would have only a very minor effect on 

geometry. If wear from multiple components need to be considered the anisotropic 

wear-resistance of diamond [84,85] will also need to be considered. If wear is applied in 

different directions at the workpiece-tool interface the problem quickly becomes 

extremely complex.  
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9.5.2 Application of Preston’s equation to wear of diamond tools 

The Preston’s equation can be arranged into the following form: 

 

sALKH p  )/(
 

 

Which links the wear-recession distance to pressure (load L divided area A) and distance 

traversed (in the case of diamond turning, the cut distance). Preston’s equation is 

therefore not dependent on the sliding velocity and agrees that wear should be 

independent of velocity considerations, which agrees with our work at 3000rpm and 

1200rpm. This finding contrasts with the work of Hird and Wilks [33], which looked 

specifically at diamond polishing upon a scaife type apparatus.  

 

 

Figure 118: Non-linearity of wear rate with linear velocity [33]  

 

It is not clear if this is particularly applicable to diamond turning, as the sliding 

velocities used during diamond turning tend to be quite low due to a combination of 

small component size and limited spindle speeds (for example the spindle on the Moore 

machine is limited to 6000rpm).  

Looking at the slightly earlier work of Hird and Field [34] we see their later claims of a 

non-linear dependency might not be real as the uncertainty of the experimental work is 

large. 



186 

 

 

Figure 119: Earlier scaife experiments from Hird and Wilks [34].  

 

As the paper explains, there were issues with experiments 7 and 10 that raise questions 

about their validity. Particularly experiment 7 where the diamond sample was 

reportedly set incorrectly. The maximum sliding velocity during turning a 32mm 

diameter workpiece at 3000rpm is only 5.03m/s. Even the extreme situation of a 200mm 

diameter workpiece being turned at 3,000rpm will produce maximum sliding speeds of 

31.4m/s. It is therefore clear that most diamond turning of brittle materials will happen 

at sliding velocities not well described by the scaife polishing work of Hird and Wilks 

[34].  
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Figure 120: Hird and Wilks attempt various fits to the data, (fits labelled I and II) [34].  

 

The scaife work is not ignorant of the data gap at 0-20 m/s, and considers the idea that 

wear-rate should probably be zero at 0m/s. Hird and Field speculate that the wear-rate 

of diamond would be small at first before “an activation energy has to be reached 

before significant wear can begin” [34] and also speculate that the “tail-off” type of 

non-linearity at higher sliding velocities is due to the softening of the scaife surface, an 

effect we would not expect to see while diamond turning brittle materials. 

 

From the findings of Hird and Wilks it would be reasonable to assume that diamond 

tools during diamond turning will experience an accelerated wear-rate when the surface 

speed is sufficiently high. Due to differences in the materials involved it is difficult to 

say at what speed this effect will start to have any measurable influence.  

 

Further evidence in support of the Preston’s equation comes from the more recent work 

of Scattergood [107] where the Archard model was used to predict wear of diamond 

tools while machining 6061 aluminium. Equation 1 of that paper states: 

V=kA.Ff.ds 
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Where V is the wear volume, ds is the slide distance and Ff is the flank force. The force 

Ff acts along the face of the tool in the direction of the sliding motion. The term kA is 

refered to as the Archard constant. Looking at Preston’s Equation once again: 

 

sALKH p  )./.(
 

 

And multiplying both sides of that equation by contact area: 

 

sLKAH p  .
 

 

 Logically AH.  must equal wear-volume. Therefore the above equation is stating that 

the wear volume is equal to Prestons constant multiplied by load and slide distance. 

 

kA.Ff.ds =V= Kp.L.Δs 

 

The Archard and Preston’s equations both link wear-volume to force and distance, the 

difference between the two is simply which force component is used and the value of 

the constants.  

kA.ds /Kp =L.Δs/ Ff. 

Which can be simplified to: 

kA /Kp.= L /Ff 

 

So the ratio of loading force to frictional force is the same as the ratio of the Archard 

and Preston’s constants. As all the components of cutting force are linkable the 

implication is that the Archard wear model and the Preston’s equation are both the same 

phenomena but previously used to describe different phenomena. Preston’s equation is 

primarily used to explain polishing, while Archard’s equation is typically used to 

explain wear of two surfaces in frictional contact. As polishing involves suspensions of 

fine but hard grits and the Archard equation describes wear caused by surface asperities 

maybe it is not surprising these are linked. 
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9.6 Summary of Research Aims  

It is useful to re-examine these aims decided in Chapter 1. The first Aim was to 

“explore the effect of diamond quality on cutting tools during SPDT of silicon”. The 

experimental trials performed using various tool materials and tool-gem 

crystallographic orientation were able to show that the high quality MCC material 

proved to be a poor substitute for the natural diamond tool, an unexpected result that led 

to the discovery of the two-failure modes. 

The second aim, “explore the effect of diamond quality on cutting tools during SPDT of 

aluminium”, was a greater success for the MCC tool-material. The clear implication is 

that high-quality diamonds that contain smaller quantities of impurities are superior to 

other diamond. This was expected, based on the available literature reviewed in Chapter 

2, but could not be assumed to be true once the MCC was demonstrated to be worse 

than the other tool materials for machining silicon. 

The third aim, “explore the origins of the “supertool” effect” was the broadest aim. The 

literature review was able to narrow the possible causes down to crystallographic 

orientation or nitrogen content. The XRT work performed at Daresbury looking at 

crystallographic defects was not particularly successful and from the knowledge 

gathered by Jacklin [2] it was possible to eliminate this as a possible cause. XRD 

techniques were deployed to examine the effect of orientation but the available results 

imply that this factor is not a dominant one for predicting “supertool” behaviour. Finally 

it was an examination of the nitrogen content via the FTIR method that gave the 

strongest indication of causality between a measurable quantity of the diamond material 

and the presence of supertool behaviour. 

While the cause of the supertool behaviour is a significant contribution to knowledge 

there are other findings that have been discovered which might be important. This thesis 

the first to test the new MCC CVD diamond material as a tool for SPDT. These results 

demonstrated that the popular belief that purity was significant to tool-life was only 

partially correct. This belief has been demonstrated to be wrong for harder workpiece 

materials, but appears correct for softer non-ferrous materials.  

 

This work is also notable for the extensive work on different orientations of diamond 

tool. There are other works looking at the effect of orientation upon the tool-behaviour 



190 

 

(for example Uddin’s 2004 work [85]) but because this trial tested to the failure of the 

tool rather than to a fixed cut distance the conclusions were reached without having to 

extrapolate the flank wear progression of a diamond tool to the final tool failure. Testing 

to the point of tool-failure led to the discovery of two failure modes while machining 

silicon. Before this work the wear problem appeared to have a simple explanation and 

could be summarised as “volumetric wear of tools during SPDT lead to failure”. It is 

now clear that this was an over simplification.  

 

 

  



191 

 

Chapter 10- Conclusions and recommendations 

for further work 

 

10.1 Conclusions 

From the wok presented in Chapter 4 it is clear that the MCC tool material is a 

significant improvement when machining aluminium workpieces and it is reasonable to 

assume that it will perform well against other non-ferrous metals. Contour Fine Tooling 

have been quick to establish this tool-material as a replacement for natural diamond 

tools. Unfortunately while machining silicon workpieces the MCC tool material proved 

to have a very poor cutting life when compared to natural tools, so a dependency on 

natural diamond material remains for some applications.  

 

The identification of the geometry failure mode for diamond tools machining brittle 

materials is an important advancement in understanding tool failure. Before this project 

understanding the failure of diamond tools to successfully machine brittle materials was 

limited to sharp tools, as described in the work of Blake and Scattergood [5] and 

Blackley and Scattergood [3]. In particular the work with Blake [5] linked a critical 

feed-rate to the failure to machine in a ductile way, and made clear that geometry of tool 

is important for causing or avoiding brittle fracture of the workpiece. This statement is 

backed not only by the experimental results from their paper but the field of fracture 

mechanics, specifically the work of Lawn [6,8]. This thesis is very much a continuation 

of these works. Having access to SEM images of the tools at failure proved important 

for identifying the geometry failure mode experienced by diamond tools while 

machining brittle materials.  

 

Using the FIB to modify the tool-edge geometry of a diamond tool and investigate 

failure modes was a novel trial. Though efforts have been made previously to modify 

the edge of diamond tools using FIB, these efforts were aiming to achieve “print 

through” of the FIB modification features onto the surface of the softer workpiece 

materials. These attempts to create specific geometry of the workpiece surfaces are a 

very different application to the more fundamental cutting theory research performed in 

this trial. The FIB trial was accidently able to prove more than intended, as the FIB 
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damage to the tool-edge proved unstable and the vertical edge was lost through chipping 

damage during machining. Despite increased damage the tool was able to achieve 

ductile removal of silicon. It was the vertical side of the FIB machined tool-edge 

damage that led to the damaging shape of the removed material and therefore the brittle 

damage of the workpiece. Evidence for the geometry failure mode exists in several 

forms: the FIB modified tool-edge trial, the analysis of the material removed from such 

a tool and the fracture mechanics. Together these make a convincing case for the 

presence of the geometry failure mode when diamond turning brittle materials.  

 

The geometry failure mode does not explain why some wear-scar images were free of 

chipping damage. Clearly the geometry failure mode for diamond tools does not apply 

to every tool that is machining silicon. Therefore there must be a minimum of two 

possible failure modes while machining brittle materials. Using the HPHT (100/100) 

results presented at Lamdamap [87], an argument was presented for a significant 

threshold pressure value. However it is not clear why there is a pressure threshold, or 

why machining with a very sharp tool does not cause fracture of the workpiece. The 

“pressure failure mode” is therefore a title that may bear little resemblance to the failure 

mechanism it currently describes. 

 

Probably the most significant finding is the FTIR spectroscopy results that imply a 

possible cause of the supertool phenomena. This vital clue is significant for the firms 

within the diamond turning industry which turn brittle materials. Finding a predictable 

method for improving the cutting life of tools while machining of brittle materials 

would enable larger and more valuable optics to be machined. This finding is of 

significance to the diamond turning industry and could have a significant inpact on the 

IR optics that are now possible to manufacture. 

 

 

10.2 Recommendations for further work 

To develop upon the work done in this thesis several further modelling tasks and 

outlines of experimental trials are given as ideas for potential work. Building upon the 

work presented here could give deeper understanding of the tool-wear process and help 
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industry to design relevant machining schemes that minimise wear of the tool and either 

reduce the number of wasted workpieces or allow machining of larger scale workpieces. 

The obvious continuation project needs to screen a batch of diamond tools for the 

presence of the N[A] nitrogen defect and confirm this is a predictor of supertool 

phenomena. As the concentration of the N[A] nitrogen defect is a likely factor the effect 

of this will also need quantifying. Unfortunately such a trial is likely to be time 

consuming as the work within this thesis has demonstrated that tool-life while 

machining silicon can not be predicted based upon the volumetric wear experienced 

over a limited cutting distance. The potential supertools will therefore need to be 

machined until the tool fails to produce a ductile surface. 

 

10.2.1 Finding more applications for MCC 

As MCC behaves so differently when machining silicon and aluminium it is thought 

that there is a transition point where the hardness of workpiece is low enough for MCC 

to be superior to natural diamond for SPDT applications. Unfortunately because of time 

constraints finding this transition point was not possible as part of this work. As total 

achievable cutting distance for germanium is much higher than silicon, (experiments 

with cut distances of 1000+Km are expected [108]), MCC could be suitable for even 

this hard wearing IR-material. A future trial looking at the wear behaviour of MCC 

while machining germanium could be a success for the MCC material.  

 

10.2.2 Improving cutting distance when diamond turning silicon 

Improving achievable cut-distance of SPDT of silicon workpieces through the process 

now appears to be a more approachable challenge than before. The work of Jacklin [2] 

was dominated by the variability within the natural diamond gem. However HPHT 

(100/100) tools appear to be very suitable as research tools for improving the silicon 

machining process as this tool material has the consistency between results that are 

needed to minimise the required number of trials. Also important is the ~20Km tool-life 

against silicon which allows quicker completion of trials. As a previous project has 

demonstrated a huge improvement by moving from an oil-based cutting fluid to a water-

based cutting fluid [2], further experimentation with cutting fluids could be considered. 
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An experiment similar to the one proposed here was conducted by Patten and  Mumford 

[109], which uses both acid and alkali chemical machining slurry in addition to 

deionised water and air as cutting mediums. Here a diamond profilometer stylus was 

used to scratch the surface of a (100) plane n-doped crystalline silicon sample and 

measured using AFM. This work found that using alkali polishing slurry increased the 

load that was required to initiate brittle fracture. Therefore experimenting with alkali 

cutting fluids might reasonably provide an improvement to the current cutting fluids for 

silicon (and due to the very similar chemistry, germanium).  

 

Another interesting experiment to perform would be testing different compositions of 

silicon. Silicon is frequently used for electronics applications in a doped state (with 

deliberately added impurities). If silicon can be doped without significantly changing 

the optical properties, using such a material would likely make machining easier as the 

hardness is lower for such materials [110]. Exploring cutting fluids and silicon dopant 

effects in this way would be likely to significantly improve tool-life for non-HPHT tools 

while machining silicon IR-optics. 

 

10.2.3 Recommendations for aiding further model development 

Non-linear wear dependencies such as the reported pressure non-linearity reported in 

work on polishing with soft-pads [111] and other possible non-linearities need 

examining to improve model accuracy. The model was forced to use fixed values of the 

Preston’s equation and the force-constant, calculated from the data gathered during the 

last cut of the tool. This assumes these values remain constant despite the following: 

 

 cutting speed 

 orientation of the workpiece  

 changing tool geometry  

Further experimental trials could help to establish how the constants are influenced by 

the above variables and lead to more accurate model predictions and a better 

understanding of the wear process.  
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Cutting speed 

The effect of cutting speed on wear is perhaps the easiest of the identified variables to 

start investigating. Cutting speeds are very predictable and easily calculated, but decay 

as the tool feeds towards the centre of the workpiece. Not cutting the entire workpiece 

would appear to be a sensible experiment design to measure wear as a factor of cut 

speed. From Hird and Wilks’ polishing results [33] (discussed in Chapter 9) we know 

that there is an expected non-linearity of polishing speed with velocity. Additionally 

there is some literature discussing non-linearity of the Preston’s equation in relation to 

sliding speed [34]. A test designed to machine a cylindrical boule type workpiece in an 

oblique type orientation (as used by Born [112]) would reduce variation of cutting 

speed, so a comparison trial between oblique and transverse cutting might be sensible. 

From the cutting trials done during this work we expect cutting forces to be relatively 

unchanged as the tool feeds across the workpiece: therefore the force constant is likely 

to be only weakly influenced by cutting speed. 

 

Orientation of workpiece 

Unless the workpiece material is completely isotropic there will be variation of 

workpiece properties as the workpiece is rotated. This is likely to add an angular 

dependency to both constants and require recalculating the wear at least six times per 

revolution of a {111} orientated workpiece. This will result in many more calculations 

required to make the model predictions. Gathering experimental data to base the 

recalculation of both constants will be challenging and will take considerable thought to 

separate the affect of the Preston’s constant and the force constant on the wear rate. 

 

Changing tool geometry 

Separating the affect of tool geometry on the constants used within the model is going 

to be an extremely difficult. One possible method would be to use a range of cut 

distances and examine the tool for wear at each distance. It is not clear if both constants 

will change as tool-geometry changes. Designing an experiment to separate the effect of 

geometry on these constants would be challenging, but as this work has shown, the FIB 

can be a useful tool during such tests.  
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 Though exploring the three outlined parameters would help model development it 

could also increase knowledge of the qualitative affect of these variables and aid 

practical machining.  
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Appendix A- Volumetric wear analysis: a 3D methodology 

 

At Cranfield there has previously been work done on characterising wear damage to the 

tools during diamond turning using a 2D series of geometric arguments to reach an 

understanding of the 3D wear. An example of how wear is defined is shown in figure 

A1. 

 

Figure A1: The 3D wear-scar is abstracted into a triangular geometry.  

 

The calculated wear-volumes from the work of Durazo-Cardenas et al. are displayed in 

figure A2. The origin of the uncertainty bars used in this methodology is not explained 

in the original text. It is also worth noting the range of calculated values, the highest 

wear-volume being only 500 cubic micrometres. Such a small volume is extremely 

sensitive to any error sources. 
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Figure A2: The previous reported results for diamond tool wear-volume.  

 

In the described method 3D wear is found by using a series of triangles to approximate 

the wear volume (in the work done previous to this project 10 such triangles were used). 

Defining the total 3D volume removed via wear in such a manner is an approximation 

(based upon ten previous approximations). Adding more accuracy to the process was 

considered a valuable activity at the start of the project, when the volumetric wear was 

considered strongly related to tool failure. 

 

The measuring methodology developed uses an indentation technique, by forcing the 

worn tool into a surface of oxygen free copper. The C-axis is locked to eliminate roll of 

the spindle (which could result in damage to the tool-edge) and the tool is very slowly 

pushed in the Z-axis towards the workpiece 15 µm into a diamond turned copper 

surface. This depth was selected to allow a definite positive capture of the parts of the 

tool that are worn by the 10 µm depth of cut and to allow for any error in the Z-axis. A 

series of indents are performed at the start of a trial and after each cut. This scheme 

allows averaging over the indent sites at a given cut-distance and gives the option to 
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discard a particular indent if any doubts exist about the quality of the print-through from 

the indent process or damage has occurred to the copper workpiece. 

 

Measuring the copper indents is done ex-situ on the Talysurf CCI.  This white-light 

interferometer instrument works on a Coherence Correlation Interferometer technique 

(hence the name CCI). The CCI uses a combination of a short correlation length light 

and a focusing microscope objective to create interference fringes at a very specific 

point in the vertical. By moving the focusing objective in the Z-axis, the interferometer 

fringes scan through the height of the workpiece and a detailed surface measurement is 

performed. The CCI instrument has a 1 megapixel detector. The sampled area (a square 

of approximately 350 µm in each direction) is divided between these pixels. Individual 

pixels therefore measure the Z-axis (height) for an area of approximately 350nm x 

350nm. The newer methodology developed as part of this work uses the idea of 

summing each of the measured data points to find the total volume of an indent into 

copper. This task is accomplished by exporting the data from the CCI using an ASCII 

format. This format is importable into MATLAB, where it is easily manipulated.  

 

Figure A3: Image of an indent site as measured on the CCI instrument. 
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Figure A3 shows a surface measured by CCI. This indent site shows clear plastic 

deformation of the copper material (red and white areas) and the indentation of the 

clearance angle face of the tool (yellow, green and blue). The large grey area is an area 

of missing data, arising from the extreme angle of the top-rake face (this effect is 

covered in more detail later). With this data in MATLAB the volume component from 

each pixel could be found and all these small volume components summed to find total 

volume. Comparison of this total volume against the volume measurement of the 

unworn tool allows the determining of the difference which should only be caused by 

the wear-volume of the tool. 

 

There are three serious issues with this technique that have caused it to be discussed 

here as an appendix. These are covered in detail so as to aid future researchers to avoid 

repeating the failures made in this work. Primarily there is an issue with depth 

uncertainty. Any inaccuracy of tool position (in the Z-axis) means there is an error in 

the planned indentation to a depth of 15 µm. For a tool performing 10 µm depth of cut 

much of the resulting 15 µm indent does not need to be considered. The data can be put 

through a deliberate threshold: where the data below the 12 µm level is kept and the 

data above this point is set equal to zero. Once the thresholding has been done (and data 

above the 12 µm depth is discarded) the remaining data-points can be summed to find a 

total volume for the indent. 

 

The greatest difficulty with this method is establishing where to set the threshold. There 

is no reliable datum to take this depth from. A sensible datum for an unworn tool is the 

tool-tip, but as wear-mechanisms work on the tool this datum would move. Moving the 

threshold causes two sources of error, the number of data-points that make the indent 

changes and the value of each data-point is altered. As there are so many data points 

that are summed to find the total volume and the expected volume is so small that the 

cumulative effect of setting the threshold at the wrong level leads to an unacceptable 

error on the final calculation.  

 

Another critical problem with the new methodology is the extreme sensitivity to the 

angle of the copper indentation surface and the subsequent CCI measurement. The CCI 
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has an angular limit, any slope of more than 22.5 degrees measured from horizontal (an 

objective dependent value: the value quoted is for the highest resolution x50 

magnification objective) will result in a point of missing data. Due to the angle of the 

diamond tool top-rake during silicon machining, there is guaranteed to be a large 

section of missing data. Furthermore, the wear-scar region is extremely rough and often 

has small regions of missing data due to this angular requirement.  

 

The third issue is that with the wear-scar development, parts of the tool which 

previously were the top-rake face are now nearly parallel with the workpiece. Areas that 

were previously missing data (and not contributing to the volume calculation) are 

therefore contributing towards the final volume. Oddly enough, because of this effect 

the calculated indent volume can appear to get larger, with the implication that the tool 

is starting to grow as total cut distance increases. Because the data points that appear 

with increased wear appear at the lowest point of the indent, each pixel that appears will 

be affecting the volume by about 1.47 cubic micrometres (a 12 µm depth multiplied by 

0.35 µm pixel length multiplied by 0.35 µm pixel width).  

All these problems became apparent while trying to collect data from the indents. 

Below is a graph of results (figure A4) collected via this method as part of the project. 

 

 

Figure A4: Data calculated from the indents for tool S83776 
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The above graph clearly shows the scale of the issue with this methodology. No 

conclusions could be made from this graph. Particularly odd is the data point at 5.6Km, 

which indicates that the tool has experienced a modest growth of the diamond tool since 

the start of the trial. Despite repeated efforts to make the data work (in particular 

experimenting with different methods of finding the thresholding calibration was tried 

extensively), no believable data was ever gathered.  

 

Though the CCI based method of measuring wear-volume proved to be unworkable, the 

method the model uses to calculate volume is similar and certainly originated within the 

work done with the CCI.  

 

To conclude this appendix it is clear that the developed methodology did not work 

satisfactorily. The three reasons have been outlined but it is clear that together they can 

lead to errors in the final calculated volume of several hundred cubic micrometres. The 

uncertainty therefore exceeds any sensibly calculated value. The failure of this 

methodology should raise questions concerning any other researchers measurements of 

wear-volume using CCI instruments or other optical methods.  

 

When calculating the extremely small volumes that are removed from a diamond tool 

during diamond turning great care must be taken with any source of errors.  
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Appendix B- Program for examining thickness of removed 

material from a given tool edge 

 

During the work done for this thesis a program was developed to calculate the thickness 

of removed material from a test curve. This helped initial work towards exploring the 

geometry failure mode and later helped to design the FIB modified tool-edge trial.  

 

Though it was at one stage though that this code would be included into the tool-wear 

model, the difficulties with predicting chipping damage (particularly where on a tool-

edge chipping damage would occur and what scale the damage would be) and the 

difficulties in calculating the length of a crack generated from a given defect on the tool 

edge. A further difficulty lies with predicting if a crack once initiated could be further 

expanded in later passes of the tool. With such clear problems this code was considered 

unsuitable for fitting into the wear model. It remains as a useful method for visually 

seeing how a given tool will remove material and can be used to examine hypothetical 

tool designs.  

 

When the crack-initiation length is known for a given material (for example it is 

approximately 57nm for silicon) and the minimum crack length is also known 

(approximately 0.4 µm for silicon) some predictions can be made. Any defect on the 

tool that is removing more than the crack-initiation thickness and is less than the 

minimum crack length above the generated worksurface plane the result will be a 

damaged worksurface. The fracture mechanics in this case dictates that cracks will be 

initiated and some will reach the generated surface.   

 

This code basically performs the same analysis as the technique used by Blake and 

Scattergood in their analysis on ductile machining. However while they used the 

geometry of an unworn tool their approach struggles with more complex geometries and 

therefore a simple MATLAB program is needed. It should be noted that they measured 

thickness of chip in the radial direction and not the vertical direction that this code has 

used. The developed technique therefore assumes that the differences in the chip 

thickness when measured in the vertical and radial directions are small. This is an 
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approximation that applies differently at different points along the tool engagement; it is 

a very good approximation towards the front of the tool and fits less well further around 

the tool edge. A brief analysis on the significance of this problem was performed using 

a calculated chip from an ideal tool profile and then compared against the Blake and 

Scattergood results. The profile was of a tool with a 500 µm radius and a 10 µm depth 

of cut. The results agreed to within 3% at the very edge of the profile (the error is more 

extreme towards the edges). We can therefore conclude that where the tool radius is 

large and the depth of cut is small then this is an approximation that fits well. However, 

should the chosen tool have a very small radius or the depth of cut become large the 

validity of that approximation breaks down. Furthermore, B.P O’Connor took the 

vertical direction as the critical chip-thickness when performing silicon experiments to 

determine the effect crystallographic orientation has upon critical chip-thicknesses: 

raising the valid question of whether Blake and Scattergood were correct to use the 

radial direction.  

 

 

Calculation of removed material code: 

ToolRadius=500; 

DoC=10;  

Dmax=0.057; 

% DoC equals Depth of Cut. 

% Dmax=critical chip thickness.  

 

RminusDoC= ToolRadius -DoC; 

CosTheta= RminusDoC/ ToolRadius; 

Theta=acosd(CosTheta); 

% Theta is the ANGLE between lowest point and edge of cut shoulder.  

% (not the angle  across the entire width). 

AngleARRAY=linspace(0,Theta,10001); 

% Makes it into an array of angles.  

AngleRadians=(-0.5*pi)+2*pi*(AngleARRAY./360); 

% Converts from Degrees to Radians, which is Very important! 

[X,Y]=pol2cart(AngleRadians,ToolRadius); 

% Converts to cartesian co-ordinates 

 

TestCurve(:,2)=[X]; 
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TestCurve(:,1)=[Y]; 

% Sets up the TestCurve matrix.  

% This is the damage free case for the tool 

 

TestCurve2(:,2)=[X]; 

TestCurve2(:,1)=[Y]; 

TestCurve2(6358:7003,1)= TestCurve2(7003,1); 

% TestCurve2 is the curve with the damage added.  

 

B(1:10302,1:4)=[0]; 

% Sets up the right size of array for checking over 4 curves.  

B(1:10001,1)=TestCurve(:,1); 

B(101:10101,2)= TestCurve(:,1); 

B(201:10201,3)= TestCurve(:,1); 

B(301:10301,4)= TestCurve(:,1); 

B=B+500; 

% Which places the correct data on the right columns.  

% This allows graphing of “B” 

% which should prove interesting viewing for how the tool progresses  

% and how much material is removed per pass. 

 

B2(1:10302,1:4)=[0]; 

% Sets up the right size of array for checking 4 curves.  

% B2 is the chip-damaged tool  

B2(1:10001,1)=TestCurve2(:,1); 

B2(101:10101,2)= TestCurve2(:,1); 

B2(201:10201,3)= TestCurve2(:,1); 

B2(301:10301,4)= TestCurve2(:,1); 

B2=B2+500; 

% Which places the correct data on the right columns.  

% Graph of B2 which should prove interesting viewing for % how the 

tool progresses and how much material is  

% removed per pass. 

 

% The plan is to use N as the way to find the chip removed by the last 

pass of the tool  

% in B. This is achieved by looking at the lowest point  

% of the last three passes of the tool.  

N=B(1:10151,1:3); 
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for i=1:1:length(N) 

MIN(i)=min(N(i,:)); 

end 

MIN=MIN'; 

% Excellent! Min is the lowest point on all three of the first three 

curves. 

Chip=MIN-B(1:10151,4); 

MIN=MIN'; 

Chip(10102:10151,1)=0; 

Chip(1:50,1)=0; 

LOGIC=Chip>0; 

CHIP2=LOGIC.*Chip; 

 

N2=B2(1:10151,1:3); 

for i2=1:1:length(N2) 

MIN2(i2)=min(N2(i2,:)); 

end 

MIN2=MIN2'; 

% Min is the lowest point on all three of the first three curves. 

Chip2=MIN2-B2(1:10151,4); 

MIN2=MIN2'; 

Chip2(10102:10151,1)=0; 

Chip2(1:50,1)=0; 

LOGIC4=Chip2>0; 

CHIP4=LOGIC4.*Chip2; 

 

LOGIC2=CHIP2>Dmax; 

BRITTLE=LOGIC2.*CHIP2; 

%Brittle is used to show the parts of the tool curve that are causing 

brittle fracture 

% Displays the troublesome bits of the curve 

LOGIC4=CHIP4>Dmax; 

BRITTLE2=LOGIC4.*CHIP4; 

%Brittle2 is used to show the parts of the tool curve that are causing 

brittle fracture 

% Displays the troublesome bits of the curve 

 

problem=LOGIC2(1:10001,1).*B(301:10301,4); 

% Problem is the variable that graphs the sections of the curve that  
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% are causing brittle fracture.  

% NOTE; crack lengths from these trouble sections are not indicated 

problem2=LOGIC4(1:10001,1).*B2(301:10301,4); 

% Problem is the variable that graphs the sections of the curve that  

% are causing brittle fracture. 

 

subplot(2,2,1), plot(TestCurve(:,2), B(1:10001,3), 'b', 

TestCurve(:,2), B(1:10001,4), 'b') 

axis([0 100 0 10]) 

xlabel('Tool engagement length (microns)', 'FontSize',14) 

ylabel('Depth of Cut (microns)', 'FontSize',14) 

title('Test Curve', 'FontSize',14) 

subplot(2,2,2), area(TestCurve(1:10001,2), CHIP2(1:10001,:)) 

axis([0 100 -0 1.5]) 

xlabel('Tool engagement length (microns)', 'FontSize',14) 

ylabel('Thickness of removed chip (microns)', 'FontSize',14) 

title('Removed Chip from Test Curve', 'FontSize',14) 

subplot(2,2,3), plot(TestCurve(1:10001,2), B2(1:10001,3), 'b', 

TestCurve(1:10001,2), B2(1:10001,4), 'b') 

axis([0 100 0 10]) 

xlabel('Tool engagement length (microns)', 'FontSize',14) 

ylabel('Depth of Cut (microns)', 'FontSize',14) 

title('Damaged Tool Edge Profile', 'FontSize',14) 

subplot(2,2,4), area(TestCurve(1:10001,2), CHIP4(1:10001,:)) 

axis([0 100 0 1.5]) 

xlabel('Tool engagement length (microns)', 'FontSize',14) 

ylabel('Thickness of removed chip (microns)', 'FontSize',14) 

title('Removed Chip from Damaged Tool Edge', 'FontSize',14) 

% substituting “problem” for “CHIP2” and “problem2” for “CHIP4” in the 

% subplot lines looks at areas of the curve causing brittle fracture.  
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Appendix C- Diamond tool wear model 

Included for completeness is the full wear model, results from this version of the model 

are presented in Chapter 8. Within the models code are the Prestons coefficients and 

force-constants used within the thesis. 

 

Wear model code: 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%                    Initial information 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

f = input('Enter feed-rate in microns-');  ; 

% f is the tool feed-rate in microns. 

 DoC=10; 

% Depth of Cut.   

 ToolRadius=  input('Enter Tool radius (in microns)-')  ; 

% Tool radius in microns. This work assumes circular profile tools. 

  rMM = input('Enter radius of workpiece (in mm)-') ; 

  r=rMM/1000 ; 

% r=radius of workpiece, in *metres*. 

 NUMBER_OF_CUTS = input('Enter number of cuts-');  

% NUMBER_OF_CUTS=number of times that each modelled cut is repeated. 

 ClearanceAngle = input('Enter clearance Angle of the tool (degrees)-

') ; 

% Tool clearance angle.  

 top_rake = input('Enter top-rake angle of the tool (degrees). i.e -25 

for silicon, or 0 for aluminium work-') ; 

% Tool top rake angle. 

 

 

 Kp=  2.69175836E-21       ; 

% HPHT vs silicon 

% Kp=  1.38494411E-21       ; 

% Natural vs silicon 

% Kp=  4.04111470E-21       ; 

% MCC vs silicon 

  

% Kp=1.291689629E-20       ; 

% Natural (100/110) against aluminium 

% Kp= 1.664861505E-20   ; 

% MCC (100/110) against aluminium 

% Kp is the Preston coefficient. Traditionally measured in cm^2/dyne. 

% A dyne is 1E-5 of a Newton.  

% This model works using SI units. 

  

  k=    1.19751853E10    ; 

% HPHT vs silicon 

% k=    1.37499114E10    ; 

% Natural vs silicon 

%  k=    1.45842828E10    ; 

% MCC vs silicon 
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% k= 3.307154906E9     ;  

% Natural (100/110) against aluminium 

% k= 2.586430755E9   ; 

% MCC (100/110) against aluminium 

% k is the constant of proportionality linking cutting force with wear 

area 

  

%%%%%%%%%%% 

% Using modified k-values: from work on wear-area issues.  

  

% k=    3.823494E9    ; 

% HPHT vs silicon 

  

%  k=9.424793E8   ; 

 % Natural against Aluminium 

  

% k=8.360975E8     ; 

 % MCC against Aluminium 

%%%%%%%%% 

  

 X_spacing= 0.1 ;  

% X_spacing is the horizontal resolution of the model (in microns) 

% Currently, =100nm array spacing. 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  

   

  

feed_rate=f*1E-6;   

% feed_rate is measured in *metres* per revolution 

   

  

 Load(1:NUMBER_OF_CUTS+1,1)=(0); 

 % Preallocating Load array.  

%Load(1,1)= 0.01  ; 

Load(1,1)= 0.073632879 ; 

% Use 0.073632879 N for silicon. 0.01N against aluminium ; 

% Here load is the force required to distort and cut the workpiece 

material infront of the tool rake-face.  

% Later, this load value is added to a componentfrom the contact area 

   

Area(1:NUMBER_OF_CUTS+1,1)=(0); 

 % Preallocating area array.  

Area(1,1)= 2e-11; 

  

 sliding_distance=(pi*r^2)/feed_rate; 

% Sliding Velocity was the original value, but we are not interested 

in the time dependent for of height. 

  

Total_Distance= NUMBER_OF_CUTS*sliding_distance ; 

% Total_Distance= distance cut over all simulated cut. 

  

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% END OF INITIAL INFORMATION 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%   Tool profile 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
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 % For the first time this is done a little differently  

% than when calculated later in the model. 

 X_spacing= 0.1 ; 

 ToolRadiusPrime= ToolRadius* cosd(ClearanceAngle) ; 

 Model_dimensions=(100+ToolRadius/2); 

% "Model_dimenions" is how far along the tool radius we will model  

% (measured in microns).  

 

X2=linspace(0,(Model_dimensions),((Model_dimensions*(1/X_spacing))+1))

'; 

 

Y2=sqrt((ToolRadiusPrime^2)-((ToolRadiusPrime^2)*((X2.^2)/ 

ToolRadius^2))); 

 Y2=-1.*Y2; 

 TestCurve2(length(X2),2) = 0; 

TestCurve2(:,1)=X2; 

TestCurve2(:,2)=Y2 - Y2(1); 

  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

  

  

  

  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% Calculating toolprofile of lead off edge 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

TestCurve_lead_off(length(X2),NUMBER_OF_CUTS)= 0; 

TestCurve_lead_off(:,1)= X2; 

TestCurve_lead_off(:,2)= TestCurve2(:,2); 

% “TestCurve_lead_off” is the array that models the “lead-off”  

% (trailing edge) half of the tool  

  

  

  

  

  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% Pre-allocating important matrices 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

 Ty(1:length(X2'),1)=0; 

% Gives us the size of the Ty matrix before we start  

  

 WEAR_TOTAL=0; 

% The WEAR_TOTAL will be calculated cumulatively, but needs an initial 

% value.  

  

Pressure(NUMBER_OF_CUTS+1,1)=0; 

   

WEAR(1:NUMBER_OF_CUTS,1)=0; 

  

WEAR_metres(1:NUMBER_OF_CUTS,1)=0; 

  

Wear_volume(1:NUMBER_OF_CUTS,1)=0;  

  

worn_curve_unadjusted(1:length(X2),1:NUMBER_OF_CUTS)=0; 

Depth_adjusted_Curve(1:length(X2),NUMBER_OF_CUTS)=0 ; 

Depth_adjusted_Curve(1:length(X2),1)=TestCurve2(:,2) ;  
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% Pre-allocating important matrices- END OF 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

   

  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%  Loop – Doing the advancing cut distance work 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

for CUTS=1:NUMBER_OF_CUTS; 

  

% First “for” loop here. Using “CUTS” as the array name. 

% This is rather than a typical M, M2, M3 looping method.  

  

% Loop jobs are- Kp-eqns, wear calculation, profile array saving, area 

calculations, force calculations  

  

 Distance(1:CUTS)= CUTS* r/ feed_rate ; 

 % Calculates distance with each cut. Assumes face cutting geometry of 

the part  

   

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%           ****    PRESTONS CALCULATIONS  **** 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% Traditionally measured in cm^2/dyne. A dyne is 1E-5 of a Newton.  

% This model works using SI units. 

  

  

Pressure(CUTS,1)= Load(CUTS,1)/Area(CUTS,1); 

% Pressure= Load/Area.  

  

WEAR_metres(CUTS,1)=Kp*Pressure(CUTS,1)*sliding_distance; 

% Assuming uniform wear in Y direction.  

  

WEAR(CUTS,1)=WEAR_metres(CUTS,1)*1E6; 

% Converts from metres to microns. Important to keep the graphs 

accurate 

  

 TEL_LOGIC(1,1:length(X2)) = 

Depth_adjusted_Curve(1:length(X2),CUTS)<DoC    ; 

  

% “TEL_LOGIC” is finding parts of the curve lower than DoC. The sum of 

these data points are proportional to the total Tool Engagement 

Length, “TEL”. 

 TEL_LOGIC_RECORD(CUTS,1:length(X2))= TEL_LOGIC(1,1:length(X2)); 

  

WEAR_ARRAY=WEAR(CUTS,1).* TEL_LOGIC_RECORD(CUTS,:) ; 

  

TestCurve2(:,[CUTS+2])=TestCurve2(:,[CUTS+1])+WEAR_ARRAY'; 

% Applies damage to old curve to find the new curve.  

    

Ylow=min(TestCurve2(:,CUTS+2)); 

  

Depth_adjusted_Curve(:,CUTS+1)=TestCurve2(:,CUTS+2)-Ylow; 

  

% "Ylow" is the numerical value for the lowest point on the tool edge 

% here we're using (TestCurve2) array as the tool edge. For an unworn 

tool 
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% it should be 0 (ZERO). Wear increases it, therefore tool profiles 

need adjusting 

% down to the correct Depth of Cut. 

  

WEAR_TOTAL=WEAR_TOTAL+WEAR(CUTS,1); 

% WEAR_TOTAL is designed to give the sum total wear experienced by the 

% tool.   

  

WEAR_TOTAL2=sum(WEAR(1:CUTS))  ; 

% WEAR_TOTAL2 is the alternative method for calculating WEAR_TOTAL 

% Sums the amount of wear over the various cuts. 

    

 worn_curve_unadjusted(:,CUTS)= TestCurve2(:,CUTS+2)  ; 

% A profile curve, that is unadjusted for depth of cut.  

% This will give a truer indication of the change in the tool 

appearance.  

     

Ylow=0; 

% Re-sets Ylow back to zero. Shouldn't be strictly needed, but will 

lower 

% the chances of any minor errors creeping into the model. 

  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% END OF WEAR CALCULATION & DAMAGE APPLICATION 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

   

   

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% DAMAGE APPLICATION- Trailing edge tool half 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  

Lead_off_logic = TestCurve_lead_off(1:length(X2),CUTS) < WEAR_TOTAL; 

  

Transition = sum(Lead_off_logic'); 

  

TestCurve_lead_off(:,CUTS+2)=TestCurve_lead_off(:,2); 

TestCurve_lead_off(1:Transition,CUTS)=WEAR_TOTAL ; 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% AREA CALCULATIONS 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% CALCULATING WEAR AREA AND VOLUME    

% Using triangles to calculate the contact area, wear volume and plot 

wear 

% in the recession direction. 

   

Ty= worn_curve_unadjusted(:,CUTS)- TestCurve2(:,2)  ; 

% Recession depth = worn curve – original curve 

Ty=Ty.*1E-6; 

% And converted to microns. 

  

Tz= Ty*(1/tand(ClearanceAngle)) - Ty*tand(top_rake+ClearanceAngle); 

% Tz is the direction of the triangle in the contact plane.   

   

contact_AREA_element(CUTS,:)=Tz(:,:)*X_spacing*1E-6; 

% Area calculations first. (working in m^2 not microns squared) 
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Area1(CUTS+1,1)=sum(contact_AREA_element(CUTS,:)); 

   

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% END OF AREA CALCULATIONS 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% AREA CALCULATIONS- trailing edge part of tool section 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% CALCULATING WEAR AREA AND VOLUME 

% Using triangles to calculate the contact area and wear-volume  

Ty2= worn_curve_unadjusted(:,CUTS)- TestCurve_lead_off(:,2)  ; 

% Ty established. Ty= Recession depth.  

% Recession depth = worn curve – original curve 

Ty2=Ty2.*1E-6; 

% And converted to microns. 

Tz2= Ty2*(1/tand(ClearanceAngle)) - Ty2*tand(top_rake+ClearanceAngle); 

% Tz is the direction of the triangle in the contact plane.   

contact_AREA_element2(CUTS,:)=Tz2(:,:)*X_spacing*1E-6; 

% Area calculations first. (working in m^2 not microns squared) 

Area2(CUTS+1,1)=sum(contact_AREA_element2(CUTS,:)); 

Triangle_AREA2(CUTS,:)=1/2*Ty2.*Tz2; 

% Area of each of the small volume elements.  

  

VOLUME_of_TRIANGLE2(CUTS,:)=X_spacing*1E-6*Triangle_AREA2(CUTS,:); 

% Volume calculations. Done by arrays. 

 

 TOTAL_VOLUME2(CUTS,:) =sum(VOLUME_of_TRIANGLE2(:,CUTS)); 

% The above lines work out contact area *if* top-rake/workpiece 

contact 

% can be ignored. Contact_AREA is more correctly, wear-area. 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% END OF AREA CALCULATIONS 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% Total AREA 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

Area(CUTS+1,1)= Area1(CUTS+1,1)+ Area2(CUTS+1,1) ;  

% Total of lead-on and lead-off halves of the tool. 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% Wear Volume calculation (both tool halves) 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

 Triangle_AREA(CUTS,:)=1/2*Ty.*Tz; 

% Area of each of the small volume elements.  

VOLUME_of_TRIANGLE(CUTS,:)=X_spacing*1E-6*Triangle_AREA(CUTS,:); 

% Volume calculations. Done by arrays. 

TOTAL_VOLUME1(CUTS,:) =sum(VOLUME_of_TRIANGLE(:,CUTS)); 

TOTAL_VOLUME(CUTS,:)= TOTAL_VOLUME1(CUTS,:) + TOTAL_VOLUME2(CUTS,:); 

Wear_volume(CUTS,1)=sum(TOTAL_VOLUME(1:CUTS)); 

% Gives the volume worn in metres cubed.  

Wear_volume_microns(CUTS,1)=Wear_volume(CUTS,1)/1E-18; 

% Wear_volume_microns is the wear volume in cubic microns. 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% END OF VOLUME CALCULATIONS 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% FORCE CALCULATIONS 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

Force_Normal_direction(CUTS,1)= k.*Area(CUTS,1); 

%  force in the normal direction is proportional to wear area. 

  

Load(CUTS+1,1)= Load(1,1)+ Force_Normal_direction(CUTS,1); 

  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% End of FORCE CALCULATIONS 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

   

 end 

% The end of the loop (advancing cutting distance loop). 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

   

 Total_Distance 

%Outputs the distance cut. (In metres) 

WEAR_TOTAL 

% Should out-put WEAR_TOTAL (Measured in vertical recession).  

Wear_Volume_cubic_microns=Wear_volume_microns(NUMBER_OF_CUTS,1); 

% Outputs the wear volume in microns 

Wear_Volume_cubic_microns 

  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
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Appendix D- Wear-area calculation method comparison code 

 

While analysing the model it became clear that there was a need to check the 

assumption that the rough area calculation method was accurate. The rough area 

calculation method used SEM images of wear-scars, with area found by multiplying the 

wear-scar length, by the maximum wear-scar width and then multiplying by a half. Area 

was therefore assumed to be roughly the same as that of an irregular four-sided polygon. 

However this is a 2D method which is being applied to a 3D problem.  

 

The area calculation code worked by calculating the wear-area using the approximation 

method and compared it with the wear-models calculated value of wear-area. The wear-

model uses a very accurate method of calculating area; breaking the wear-scar into a 

series of 100nm wide strips and determining how long those strips are. By summing all 

the area components area can be accurately calculated. When this code was used the 

approximate methodology was comprehensively shown to be inaccurate.  

 

This code was designed to be run immediately after the model (indeed the model code 

was briefly automatically running this program after either completing a single cut or 

after all cuts had been calculated). In section 8.5 a fixed amount of wear-recession was 

applied to the tool instead of calculated amounts of wear with the aim of providing 

information at different wear-scar widths, this worked well and was able to find that 

area error changed with increasing wear-recession and that there was a difference in 

error progression with different tool geometry. 
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Wear-area error calculation code: 

% Code for finding the error in area calculation 

  

% Part 1: Finding the tool-workpiece contact length 

L1=Transition*X_spacing; 

  

  

L2(CUTS,1)=sum(TEL_LOGIC(1,1:length(X2)))'  ; 

L2(CUTS,1)=X_spacing.*L2(CUTS,1)   ; 

  

Ltot = L1 + L2(CUTS,1) ; 

  

  

% Part 2: Finding the approx length visible on SEM images 

  

z=DoC- WEAR_TOTAL ; 

  

d= sqrt ( Ltot^2  +  z^2 )    ; 

  

% Part 3: Maximum wear-scar calculations 

  

  

Wear_scar_max = WEAR_TOTAL*( tand(90-(clearance_angle)) - 

tand(top_rake)  ) ; 

  

 

% Part 4: Area calculation 

  

Area_approx= 0.5 * d * Wear_scar_max   ; 

  

 

% Part 5: Comparisons 

  

Wear_scar_max       ; 

Area_approx              ; 

Area_microns= Area(CUTS+1)/1E-12   ; 

  

Area_error= (Area_approx./Area_microns)*100  

  

% END 

 

 

 


