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Abstract
The global transition to a circular economy calls for research and development on technologies facilitating sustainable 
resource recovery from wastes and by-products. Metal-bearing materials, including electronic wastes, tailings, and metal-
lurgical by-products, are increasingly viewed as valuable resources, with some possessing comparable or superior quality to 
natural ores. Bioleaching, an eco-friendly and cost-effective alternative to conventional hydrometallurgical and pyrometal-
lurgical methods, uses microorganisms and their metabolites to extract metals from unwanted metal-bearing materials. The 
performance of bioleaching is influenced by pH, solid concentration, energy source, agitation rate, irrigation rate, aeration 
rate, and inoculum concentration. Optimizing these parameters improves yields and encourages the wider application of 
bioleaching. Here, we review the microbial diversity and specific mechanisms of bioleaching for metal recovery. We describe 
the current operations and approaches of bioleaching at various scales and summarise the influence of a broad range of 
operational parameters. Finally, we address the primary challenges in scaling up bioleaching applications and propose an 
optimisation strategy for future bioleaching research.

Keywords Bioleaching · Biohydrometallurgy · Biomining · Metal bearing material · Electronic waste · Multivariate 
optimisation

Introduction

Metals, metalloids, and rare earth elements, collectively 
termed ‘metals’, are in high demand as they are essential 
to develop modern cities and technology products (Lee 
et al. 2022a). Catering the ever-increasing metal demand 
is become arduous due to the decrease in ore quality (IEA 
2021). Rare earth elements and lithium (Li), cobalt (Co), 
antimony (Sb), copper (Cu) and indium (In) are labelled 
as critical metals due to their supply risk and economic 
importance (Gutiérrez-Gutiérrez et al. 2015; Muddanna and 
Baral 2021). Although metals are recyclable, the end-of-
life recovery rate is low, < 50% for most of critical and base 
metals and < 1% for Li and rare earth elements (Muddanna 

and Baral 2021; IEA 2021). This is because metals are often 
trapped in the complex metal-bearing materials, e.g., metal-
lurgical by-products, catalysts, Li-ion batteries, and electric-
electronic equipment (Binnemans et al. 2020; Işıldar et al. 
2019; Moazzam et al. 2021). Last decade, the end-of-life 
metal-bearing materials, can be also called as metal bearing 
wastes, has been widely accepted as secondary resource of 
critical raw materials due to metal content of metal-bear-
ing wastes is comparable with natural ores (Işıldar et al. 
2016; Lee et al. 2022a; Sarker et al. 2022). For example, 
electronic wastes contain up to 26 times higher Cu and 50 
times higher Au content compared to ores/concentrates 
(Akcil et al. 2015). Another example is that some tailings 
can have higher Co content (0.02–1.38%) than a natural ore 
(0.05–0.3%) (Gutiérrez-Gutiérrez et al. 2015; Sarker et al. 
2022). Similarly, the quality of some basic oxygen furnace 
dust, a metallurgical by-product, is close or better than virgin 
iron ores (Ma 2016).

Metal-bearing wastes, such as electronic waste, tailings, 
slag, and dusts, are typically stockpiled or landfilled due to 
the lack of efficient and sustainable recovery routes for the 
metals they contain (Binnemans et al. 2020). For instance, 

 * F. Coulon 
 f.coulon@cranfield.ac.uk

1 School of Water, Energy and Environment, Cranfield 
University, Cranfield MK430AL, UK

2 Institute of Environmental Biotechnology, 
University of Natural Resources and Life Science, 
3430 Tulln an der Donau, Vienna, Austria

http://crossmark.crossref.org/dialog/?doi=10.1007/s10311-023-01611-4&domain=pdf
http://orcid.org/0000-0002-4384-3222


3330 Environmental Chemistry Letters (2023) 21:3329–3350

1 3

the UK alone has over 190 million tonnes of iron and steel 
waste stockpiled in current and former metallurgy sites 
(Riley et al. 2020). This underutilisation of metal-bearing 
material resources leads to economic losses and creates 
environmental challenges. To address this issue, enhanced 
landfill mining and urban mining have been proposed to 
recover secondary resources from stockpiled metal bearing 
wastes and integrate them into the circular economy (Arya 
and Kumar 2020a; Jones et al. 2013; Lee et al. 2022b). 
Enhanced landfill mining and urban mining align with the 
goal of the bioeconomy to create more sustainable value 
chains and improve productivity and quality of products in 
economic sectors. Moreover, recovering metals from metal-
bearing wastes not only provides economic benefits and 
waste reduction but also allows for land reuse and treatment 
of heavy metal contamination. (BIT II 2019; Gao et al. 2021; 
Potysz et al. 2018; Sur et al. 2018). However, metal-bearing 
wastes recovery remains a challenge due to the complex and 
refractory structure of the materials. Therefore, there is a 
need for the development of efficient, sustainable, and low-
cost recovery routes for metals from metal-bearing wastes 
(Binnemans et al. 2020; Potysz et al. 2021Yaashika et al. 
2022).

The two main methods, pyrometallurgy and hydromet-
allurgy, are used to extract metals from primary (ore) and 
secondary sources e.g., tailings, e-waste, fly ash (Keshavarz 
et al. 2021; Potysz et al. 2018; Shahbaz 2022). Hydrometal-
lurgy is the process used to extract metals from solid matri-
ces, which is achieved by recovering and dissolving the 
metals as salt in successive aqueous solutions-based steps, 
including leaching, purification, and recovery of the targeted 
metal by selective precipitation or electrowinning (Dutta 
et al. 2023). Hydrometallurgy also involves using water for 
the extraction of metals, but the extraction and purification 
are heat-based processes (from ambient to around 300 °C). 
Extraction above 100 °C is carried out under pressure to 
prevent boiling (Whitworth et al. 2022). In pyrometallurgy, 
there are typically three steps including: roasting, smelting 
in high temperatures (250–1000 °C) and refining processes 
involving different kinds of furnaces and electrolytic pro-
cesses (Arya and Kumar 2020a; Mishra et al. 2022). The 
disadvantages of pyrometallurgy are the loss of metals dur-
ing the process for example the loss of lithium form Li-
ion batteries, and the production of hazardous gases (Roy 
et al. 2021a, 2021b). With pyrometallurgy, a vast amount of 
energy and high capital cost is required, compared to hydro-
metallurgy processes (Arya and Kumar 2020a).

Bioleaching, which is also known as biomining, emerges 
as a promising eco-friendly and cost-effective biohydro-
metallurgical to traditional mining and metal recovery 
methods (Asghari et al. 2013; Gavrilescu 2022; Moazzam 
et al. 2021). Bioleaching is mediated by wide range of 
microorganisms and their metabolites (Fig. 1 and Table 1) 

(Gavrilescu 2022). The efficiency of bioleaching relies 
on operational parameters such as solid–liquid ratio, pH, 
energy source and concentration, and aeration rate, which 
are crucial for the recovery of metals from various solid 
matrices (see Supplementary Material Tables S1–S7). The 
process can be performed on different scales depending on 
the particle size of the metal-bearing material, with small 
to intermediate scale operations conducted in shake flasks, 
column reactors, and stirred bioreactors (Amiri et al. 2011a; 
Gomes et al. 2018; see Supplementary Material Tables 
S8–S11). Commercial scale operations are typically con-
ducted ex-situ using vat, agitated tank reactors, heap, and 
dump methods (Natarajan 2018; Zanbak 2012). Although 
bioleaching has been industrialised for low-grade copper 
and refractory gold ores using acidophiles, it has not been 
widely adopted for other metal-bearing materials (Srichan-
dan et al. 2019).

This review provides a concise overview on the micro-
bial diversity and associated bioleaching mechanisms used 
for solubilising metals. It then provides insights into their 
use through different bioleaching application strategies for 
various metal-bearing-materials from lab-scale to pilot scale 
applications and summarises the key parameters influencing 
bioleaching process. The review further sheds light on the 
remaining challenges for scale up alternatives and proposes 
an optimisation framework for future bioleaching research.

Microbial diversity and biological 
mechanisms

Based on their energy source preferences, microorganisms 
used for bioleaching are classified as chemolithotrophs, 
which oxidise inorganic compounds such as iron and sul-
phur to grow, and chemoorganotrophs, which oxidise 
reduced organic compounds (Srichandan et al. 2019, 2020). 
Chemolithotrophs are also commonly called acidophiles as 
they thrive under low pH values. Depending on their opti-
mal growth temperatures, they can be further categorised as 
mesophiles, moderate thermophiles, and thermophiles (Nat-
arajan 2018). Chemolithotrophs can be classified as chemo-
lithotrophic autotrophs, which utilises inorganic matter, and 
chemolithotrophic heterotrophs, which utilise organic carbon 
as an energy source. Acidophiles have been the most used 
group of microorganisms for bioleaching application, fol-
lowed by fungi and cyanogenic microorganisms (see Sup-
plementary Material for details).

Acidophilic bioleaching

Acidophilic microorganisms, mainly bacteria, are often 
used to extract metals from sulphidic ores e.g., pyrite. 
Most common bacteria are Acidithiobacillus ferrooxidans 
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and Acidithiobacillus thiooxidans (Table 1) (Mikoda et al. 
2019; Yi et al. 2021). These microorganisms oxidize fer-
rous iron  (Fe+2) and/or sulphur compounds to produce ferric 
iron  (Fe+3) and sulphuric acid  (H2SO4) which are effective 
oxidizing agents for metal solubilisation. For instance, A. 
ferrooxidans oxidizes ferrous iron and sulphur compounds, 
A. thiooxidans only oxidizes elemental sulphur and Lepto-
spirillum ferrooxidans and Leptospirillum ferriphilum only 
use ferrous iron as energy source.

Acidophiles typically use two pathways to solubilise 
metals from sulphidic ores: the thiosulphate and the pol-
ysulphide pathways. Ores such as pyrite, tungstenite, and 
molybdenite follow the thiosulphate pathway (Mishra et al. 
2005; Srichandan et al. 2020). These ores do not soluble 
in acid; however, they are solubilised by  Fe+3. Thiosulfate 
pathway for pyrite ore oxidation with A. ferrooxidans can be 
expressed by the following Eqs. (1–3)

(1)2Fe
2+ + 0.5O

2
+ 2H

+
→ 2Fe

3+ + H
2
O

(2)FeS
2
+ 6Fe

3+ + 3H
2
O → S

2
O

2−

3
+ 7Fe

2+ + 6H
+

On the other hand, ores such as chalcopyrite, arsenopy-
rite, sphalerite and galena are solubilised by collaboration of 
 Fe+3 and  H2SO4 or by  H2SO4 only (Srichandan et al. 2020). 
Polysulfide oxidation pathway with A. ferrooxidans can be 
expressed by the following Eqs. (4–6):

Besides sulphidic form, metals are found as oxide and 
organically bound forms also present as hydroxides, car-
bonates, and silicates. Almost all acidophiles can manage 
to solubilise metals from these metallic forms at suitable 
conditions (Srichandan et al. 2020). Spent catalyst, fly ash 
and metallurgical slags can be given as examples of oxide 
form while sewage sludge is an organically bound metal 
form (Srichandan et al. 2020; Kremser et al. 2021). Thus, 

(3)S
2
O

2−

3
+ 8Fe

3+ + 5H
2
O → 2SO

2−

4
+ 8Fe

2+ + 10H
+

(4)MS + Fe
3+ + H

+
→ M

2+ + 0.5H
2
S
n
+ 2Fe

2+(n ≥ 2)

(5)0.5H
2
S
n
+ Fe

3+
→ 0.125S

8
+ Fe

2+ + H
+

(6)0.125S
8
+ 1.5O

2
+ H

2
O → SO

2−

4
+ 2H

+

Fig. 1  The  bioleaching process. At the top, the  figure shows inputs 
for bioleaching process which are energy sources depending on 
microorganisms' type and microorganisms with their specific leaching 
mechanism. Microorganisms produce biogenic leaching agents which 

can be ferric iron, sulphuric acid, organic acids, and hydrogen cya-
nide. Then, biogenic leaching agents react with metal-bearing materi-
als to dissolve metals.  M0 represents a metal in elemental state,  Mn+ 
represents a metal in ionic form is metal in elemental state
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bioleaching has been one of the promising biotechnology 
applications used for recovering metal from wastes from 
these metal-bearing wastes (Ilyas and Lee 2014; Villares 
et al. 2016).

A. ferrooxidans has the unique ability to oxidize ferrous 
iron and elemental sulphur to ferric iron and sulphuric acid, 
respectively (Asghari et al. 2013; Wang et al. 2016). Benzal 
et al. (2020) investigated copper bioleaching from printed 
circuit boards from waste mobile phones by using A. fer-
rooxidans. 95–100% copper recovery was obtained in only 
48 h using two-step bioleaching process. Chen et al., (2015) 
examined the feasibility of copper recovery from waste 
printed circuit boards by using A. ferrooxidans. 95% cop-
per recovery was achieved after 28 days. Both Benzal et al., 
(2020) and Chen et al., (2015) stated that copper bioleaching 
mechanism can be expressed by the following Eqs. (7–9):

Gholami et al. (2011) investigated aluminium (Al), Co, 
molybdenum (Mo), and nickel (Ni) recovery from a spent 
processing catalyst by using A. ferrooxidans. 63% Al, 96% 
Co, 84% Mo and 99% Ni dissolution were achieved after 
30 days. Wang et al. (2009a) studied Copper, Lead and Zinc 
mobilization from printed wire boards by using A. ferroox-
idans. 99% Cu recovery was achieved after 9 days, and more 
than 88.9% Zn and Pb become soluble after 5 days of leach-
ing time. They indicated Zn and Pb solubilisation mecha-
nisms by  Fe+3 as following Eqs. (10–11):

Fungal bioleaching

Aspergillus niger and Penicillium simplicissimum are the 
most common types of fungi found in bioleaching processes 
(Table 1). They produce various organic acids by using 
organic carbons such as glucose and sucrose as an energy 
source. The production of organic acids allows to dissolve 
metals from its ore or waste material. Among the organic 
acids produced, gluconic, citric, and oxalic acids have been 
shown as the most potent acids for bioleaching (Asghari 
et al. 2013; Srichandan et al. 2019). Fungi convert glucose or 
sucrose to organic acids through several enzymatic reactions 
in cytosol and mitochondrion which are membrane-bound 
cellular compartments. By passing through cytoplasmic 

(7)Cu
0 + 2Fe

3+
→ Cu

2+ + 2Fe
2+

(8)4Fe
2+ + O

2
+ 4H

+
A.f.

→ 4Fe
3+ + H

2
O

(9)2Cu
0 + 4H

+ + O
2
→ 2Cu

2+ + 2H
2
O

(10)2Fe
3+ + Zn

0
→ 2Fe

2+ + Zn
2+

(11)2Fe
3+ + Pb

0
→ 2Fe

2+ + Pb
2+

membrane to cytosol, glucose is converted into pyruvate via 
the glycolysis pathway. One of the produced two pyruvate 
molecules is decarboxylated to acetyl-CoA by mitochon-
drion via malate (Trivedi et al. 2022). The other pyruvate 
carboxylates to oxaloacetic acid in the cytosol. Oxaloacetic 
acid is transferred into the mitochondrion and produce citric 
acid by condensed with acetyl-CoA. In cytosol, oxaloacetic 
acid is converted into oxalic acid and acetic acid by oxaloac-
etase (Srichandan et al. 2019; Trivedi et al. 2022).

Dissolution of metals by using fungi generated organic 
acids follows acidolysis, complexolysis, redoxolysis and bio-
accumulation pathways (Asghari et al. 2013). In the acid-
olysis process, fungi-generated organic acids provide pro-
tons, and these protons react with metal on the ore or waste 
surface. Metal ions generated from acidolysis step become 
stabilize in the complexolysis process. Complexation occurs 
between metal ion(s) and organic acid(s). Generalised acid-
olysis and complexolysis reactions for dissolution of Ni 
ion can be expressed with Eqs. 12 and 13 and as follows 
(Asghari et al. 2013):

In redoxolysis step, microorganisms dissolve metals 
through oxidation–reduction processes. Asgrahi et al. (2013) 
stated that redox processes have a minor role in fungal leach-
ing; however, oxidation–reduction processes have a signifi-
cant role in bioleaching employed chemolithoautotrophic 
microorganisms. Redoxolysis reaction for dissolution of 
Mn ion can be expressed as following equation (Asghari 
et al. 2013):

Bioaccumulation mechanisms can be explained as 
actively transported metals through cell membrane accu-
mulated into the cells and metal solubilisation continu-
ously occur by disturbing equilibrium (Asghari et al. 2013; 
Srichandan et al. 2019).

Cyanogenic bioleaching

Cyanogenic microorganisms use organic carbon as energy 
source and mostly belong to Proteobacteria while there 
are few fungal species (Table 1). Their ability to produce 
cyanide, which is a good leaching agent, from glycine 
( NH

2
CH

2
COOH ) through several metabolic activities makes 

them promising microorganisms for precious metal recovery 
from ore and wastes (Arab et al. 2020; Brandl et al. 2008; 
Faramarzi et al. 2020; Liu et al. 2016).

(12)NiO + 2H
+
→ Ni

2+ + H
2
O

(13)Ni
2+ + C

6
H

8
O

7
→ Ni(C

6
H

8
O

7
)
−
+ 3H

+

(14)MnO
2
+ 2e

− + 4H
+
→ Mn

2+ + 2H
2
O
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Studies on Chromobacterium violaceum, Pseudomonas 
putida and Pseudomonas fluorescens showed that bioleach-
ing mechanism is based on the neutral process in which pro-
duced cyanide (lixivant) derived from bio-generated hydro-
gen cyanide dissolves metals by forming a metal complex 
(Asghari et al. 2013; Faramarzi et al. 2020). Production of 
hydrogen cyanide from glycine is carried out by HCN syn-
thase enzyme which is encoded by hcnABC operon. Hydro-
gen cyanide synthesis reaction equation can be expressed by 
following equation (Srichandan et al. 2019):

According to Liu et al., (2016), bioleaching of gold by 
cyanogenic microorganisms typically involves an indirect 
process where biologically generated HCN forms solu-
ble metallic complexes, such as [Cu(CN2)]−, [Ag(CN2)]−, 
[Au(CN2)]− (Pourhossein et al. 2021). The equations pro-
posed in this process are represented by Eqs. (16–18) as 
follows:

Bioleaching mechanisms, approaches, 
and processes parameters

Bioleaching mechanisms

There are two microbial leaching mechanisms that can be 
used to dissolve metals from ore or waste materials, which 
are classified based on their contact status: direct (Eqs. 19 
and 20) and indirect (Eqs. 21–23) mechanisms. In the direct 
mechanism, microorganisms attach onto the ore/waste mate-
rial surface via extracellular polymeric substances (Op de 
Beeck et al. 2021; Costa et al. 2018; Moazzam et al. 2021) 
and simultaneously dissolve metals with several reactions 
occurring in the region of the extracellular polymeric sub-
stances (He et al. 2014; Wang et al. 2018). In the indirect 
mechanism, the planktonic microorganism’s mediate dis-
solution process by producing leaching agents such as  Fe+3, 
 H2SO4, organic acids, HCN (Table 1) (Natarajan 2018). 
These biogenic leaching agents dissolve metals in the ore 
or waste material without requiring a microbial attachment. 
As an example, dissolution of pyrite by A. ferrooxidans is 
shown in the Eqs. (19–23) (Chen and Lin 2010; Sand et al. 
2001):

Direct mechanism

(15)NH
2
CH

2
COOH + O

2
→ HCN + CO

2
+ 2H

2
O

(16)4Au + 8CN
−
→ 4Au(CN)

−

2
+ 4e

−

(17)O
2
+ 2H

2
O + 4e

−
→ 4OH

−

(18)4Au + 8CN
− + O

2
+ 2H

2
O → 4Au(CN)

−

2
+ 4OH

−

Indirect mechanism

Direct and indirect mechanisms are also called as con-
tact and non-contact leaching, respectively. A third term, 
“cooperative leaching” is used to describe the combination 
of both contact and noncontact mechanism (Natarajan 2018). 
In cooperative leaching, the microorganisms attach to the 
surface of metal-bearing-material (Eqs. 19–20) and the free 
cells in the solution simultaneously mediate dissolution 
(Eqs. 21–23). The indirect/direct mechanism phenomena 
have led to development of different bioleaching engineer-
ing approaches in practice which are one-step, two-step, and 
spent-medium step bioleaching.

Bioleaching operations and approaches

Scale of bioleaching applications

Methods in bioleaching are mainly classified as agitation 
leaching for fine particles and percolation leaching process 
for coarse particles (Fig. 2; Natarajan 2018). At laboratory 
scale, most of the studies have been done in shake flask to 
reduce process complications and to obtain valuable infor-
mation about the bioleaching process (Srichandan et al. 
2020; Table S8). Process parameters such as pH, energy 
source concentration, inoculum and solid concentration 
and agitation speed can be optimised in shake flask (Amiri 
et al. 2011a; Bayat et al. 2008). However, it is not sufficient 
to understand leaching kinetics to design commercial scale 
reactors.

Industrial scale applications using percolation methods 
are mostly on-site ex-situ methods which are heap, dump, 
vat reactor and the in-situ leaching method (Fig. 2). Stirring 
method is used in commercial scale agitated tank reactor 
(ex-situ) (Maluckov, 2017; Zanbak, 2012; Table 2). Heap 
and dump have a similar construction, however; the differ-
ence is that to build heap metal-bearing-materials are sub-
jected to size reduction, < 25 mm, and placed on leach pads 
(Natarajan 2018; Table 3). Microorganisms are maintained 
in a separate reservoir and irrigated on the top of the metal-
bearing-materials. In-situ bioleaching is performed under-
ground using natural porosity of rocks or creating porosity 
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Fig. 2  Bioleaching operations at different scales. Operations are sorted into three categories including small scale, intermediate scale and large scale
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by blasting (Abhilash and Pandey, 2013; Vargas et al. 2020). 
Vat bioleaching is used as cost effective method to bioleach 
fine materials, 1–10 mm, in submerged condition, yet it is 
not prominent in commercial bioleaching operations (Nata-
rajan 2018; Watling 2014). On commercial scale agitated 
tank reactors, the microorganisms and the metal-bearing-
materials are maintained in the same place. Also, the com-
plex process parameters are better controlled and observed 
in stirred condition for instance microbial growth kinetics, 
gas–liquid-solid mass transfer and temperature (Gericke 
et al. 2009; Natarajan 2018). However, compared to heap, 
it has drawback because it is only efficient up to 20% solid 
concentration (Natarajan 2018).

From shake flask scale to production at industrial scale, 
column reactors and stirred bioreactors are used to perform 
intermediary scale operation. Lab scale stirred bioreactor is 
used to simulate commercial scale agitated tank bioleach-
ing (often > 1000  m3) (Natarajan 2018). Column bioleach-
ing provides flexibility to optimise heap and dump specific 
parameters for example irrigation rate of the leachate. 
Microorganisms are mainly maintained in a separate reser-
voir. Column reactor can be operated in batch or recycling 
mode based on which one is desired to select to operate 

heap bioleaching (Srichandan et al. 2020). It can be oper-
ated both in fluidized bed, submerged, or drain mode, free 
flow, according to particle size (Natarajan 2018; Pathak et al. 
2019). Although aerated column is a good design to simu-
late a heap construction, there are studies have been tested 
column without aeration. (Yang et al. 2013; Abhilash et al. 
2010).

Bioleaching approaches

There are three approaches to operate microorganisms for 
bioleaching including: one-step (Fig.  3a, b c), two-step 
(Fig. 3d, e f) and spent-medium step (Fig. 3g, h, i) bioleach-
ing approaches (Moazzam et al. 2021). Each approach can 
yield different leaching efficiency mainly because of the 
metal toxicity and the difference of the associated bioleach-
ing mechanism which are direct, indirect, or cooperative 
leaching mechanisms (Amiri et al. 2011b). In shake flask or 
stirred bioreactor, one-step bioleaching approach is applied 
by adding cells and the metal-bearing-material into a fresh 
growth medium at the same time (Fig. 3b). Thus, micro-
bial growth and metal dissolution begin simultaneously. In 
this approach, microorganisms are however often adversely 

Table 2  Commercial scale stirred-tank reactor bioleaching operations for refractory gold concentrates using acidophiles

Owner/operator Mine/plant/operation Location Concentrate 
treatment capac-
ity t/d

Gold 
production, 
ounces

Year initiated Reference

Anglo Gold Ashanti Obuasi-BIOX® Obuasi, Ghana 250 200,000 1994 Roberto and Schippers, 
(2022)Kirkland Lake Gold Fosterville-BIOX® Victoria, Australia 211 150,000 2005

Navoi Mining and Met-
allurgical Combinat

Kokpatas-BIOX® Uzbekistan 2138 432,000 2009

Polyus Gold Olimpiada-
BIONORD®

Krasnoyars, Russia 1500 965,000 2001

Sino Gold Mining 
Limited & Guizhou

Jinfeng China 790 – 2006 Gericke et al. (2009)

Golden Star Resources Bogoso Ghana 820 – 2006
Centroserve Suzdal Kazakhstan 196 – 2005 Abhilash et al. (2015)

Table 3  Commercial scale heap bioleaching operations for secondary copper ores and/or mixed oxide/sulphide ores using acidophiles

Owner/operator Mine/plant/operation Location Cathode cop-
per production, 
t/y

Year initiated References

Iranian Babak Copper Company Iranian Babak Copper Company Iran 50,000 2020 Roberto and Schippers, (2022)
Zambia Consolidated Copper 

Mines
Chambishi Zambia 10,000 2011

BHP Billiton – Chile 115,000 1993 Gericke et al. (2009)
Freeport-McMoran – Arizona 380,000 2001 Abhilash et al. (2015)
Zijin Mining Group Ltd Jinchuan Copper China 10,000 2006
Straits Resources Whim Creek and Mons Cupri Australia 17,000 2006
Barrick Gold Corporation Zaldivar Chile 150,000 1998
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affected by metal toxicity as well as alkaline nature of metal-
bearing wastes before they have time to produce sufficient 
leaching agents resulting in insufficient metal dissolution 
(Srichandan et al. 2020; Kremser et al. 2022). In the two-step 
bioleaching (Fig. 3e), first, microorganisms are added into a 
fresh growth medium. Then, cell cultures are incubated for 
2–7 days or even more, depending on the microbes used, 
in the absence of metal-bearing-material to allow micro-
organism to grow and produce leaching agents. Incubation 
time is 2 days or more for iron-oxidizing bacteria until the 
oxidation–reduction potential is ≥ 600 mV or until reduc-
tion is observed in pH in case of sulfur-oxidizing bacteria. 
Then the metal-bearing-material is added into the culture 
which still contains cells. In the spent-medium step (Fig. 3h) 
bioleaching approach, can be also called cell-free bioleach-
ing, cells are initially cultured until reaching the stationary 
phase of metabolites production. This follows removing cells 

to create cell-free, supernatant, medium. Then, metal-bear-
ing-material is added in this cell-free medium (Moazzam 
et al. 2021). Both two-step and spent-medium bioleaching 
approaches usually provide better dissolution yield than 
one-step bioleaching (Amiri et al. 2011b). Spent-medium 
bioleaching can provide more flexible industrial application 
due to metal-bearing-material being not contaminated by 
microorganisms (Moazzam et al. 2021).

In bioleaching using the percolation method, the cells are 
typically kept separate from the metal-bearing material and 
maintained in a reservoir or external bioreactor (Fig. 3c, f, 
i). The success of this approach depends on the location of 
inoculation, either in the column or reservoir. In laboratory-
scale column operations, inoculating cells at the top of the 
column creates a one-step bioleaching process (Fig. 3c), but 
this may result in lower yield (< 20%) or longer operation 
time (> 100 days) due to metal toxicity (Ilyas et al. 2010b). 

Fig. 3  Bioleaching approaches used for metal solubilisation a mecha-
nism of the one-step bioleaching approach; in this approach, both 
microorganisms and metal-bearing material are added to the medium 
at the same time, and the bioleaching process is carried out during the 
microorganisms culturing b one-step approach in shake flask, c one-
step approach in column, d mechanism of the two-step bioleaching 
approach; in this approach, first, the microorganisms are cultivated in 
the absence of solid waste, then after microorganisms are reached the 
log phase, metal-bearing material is added into the culture to start the 
bioleaching, e two-step approach in shake flask, f two-step approach 

in column, g mechanism of the spent-medium step bioleaching 
approach; in this approach, the microorganisms are cultivated until 
stationary phase to produce maximum biogenic leaching agent. Then 
after microorganism are removed from lixiviant metal-bearing mate-
rial is added into the cell free medium to start bioleaching, h spent-
medium step approach in shake flask, i spent-medium step approach 
in column (Moazzam et al. 2021). EPS is the abbreviation of extracel-
lular polymeric substances, HCN is hydrogen cyanide,  M0 represents 
a metal in elemental state,  Mn+ represents a metal in ionic form
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Alternatively, a two-step approach involves first inoculat-
ing cells into a reservoir and allowing them to reach the 
log phase before feeding them into the column (Fig. 3f; 
Mousavi et al. 2006). Another option is the spent-medium 
step (Fig. 3i), where cells are first cultivated until the sta-
tionary phase of metabolite production and then removed to 
create cell-free medium that is fed into the column.

Conditions and parameters controlling 
the bioleaching efficiency

Bioleaching efficiency is influenced by a wide range of 
parameters and conditions including pH, particle size, pre-
treatment, solid concentration, inoculum concentration, 
energy source and concentration, agitation/irrigation rate, 
aeration rate, temperature, and catalysts.

Particle size

Particle size is a significant parameter for bioleaching in 
terms of both affecting leaching performance and guiding 
industrial application method (Natarajan 2018). When the 
particle size decreases the available surface area increases. 
The rise in the available surface area provides high bioleach-
ing yield and increase microorganism interaction with ore/
waste (Wang et al. 2018). Particles in bioleaching can be 
classified as either fine or coarse, with fine particles being 
less than 1 mm in size, and coarse particles ranging from 
1 mm to over 25 mm depending on the type of leaching 
method used as follows: 1–10 mm (vat leaching); 10–25 mm 
(heap leaching); 25 mm < (dump leaching) (Natarajan 2018). 
Fine particles have a higher potential for clogging, but this 
can be prevented by using acid agglomeration techniques 
(Srichandan et al. 2020). Additionally, fine particles can 
have a stronger buffering effect, while larger particle sizes 
can reduce buffering but can also lead to lower dissolution 
rates and longer operation periods due to limited mass trans-
fer (Srichandan et al. 2020).

Pre‑treatment

As a pre-treatment, acid washing, sterilisation, water wash-
ing and thermal treatment, are applied to increase the 
bioleaching performance in some cases (Chu et al. 2022; 
Wang et al. 2009b). When acidophiles are employed, acid 
washing is often performed for material which is alkaline in 
nature. To favour the microorganism pH stabilisation, ≤ pH 
2, is carried out to by using dilute sulphuric acid (Chen 
et al. 2015; Ilyas et al. 2010b). Sterilisation by autoclaving, 
for 15–30 min at 121–135 °C, is often applied in lab scale 
bioleaching to remove indigenous microorganisms from 
metal-bearing-material to interpret the employed microor-
ganisms’ actual performance (Tezyapar Kara et al. 2022; 

Gomes et al. 2018; Wang et al. 2016). Water-washing are 
applied for removing water soluble inorganic salts from 
metal-bearing-materials. It has been found increased mark-
edly the dissolution of Cd, Mn, and Zn from 76%, 45%, 53% 
to 96%, 91%, 68%, respectively, from municipal solid waste 
incinerator fly ash by A. Niger (Wang et al. 2009b).

Thermal pre-treatment is applied in some cases to remove 
organic matter from metal-bearing-material due to iron and 
sulphur-oxidising acidophiles are known to be sensitive to 
organic compounds (Torma and Itzkovitch 1976). For exam-
ple, Cu dissolution markedly increased from 47 to 100% 
after calcination of waste printed circuit boards in muffled 
furnace at 600 °C for 60 min (Chu et al. 2022). Similarly, 
Mo and Co recovery from spent refinery catalysts increased 
from 18 to 100% and 79% to 94%, respectively, after thermal 
treatment at 400 °C for 1–2 h, in acidophilic bioleaching 
(Qian et al. 2020). On the other hand, more than 60% of Co, 
Ni, Cu, Zn, Fe release from polymetallic ore and 80–90% of 
U, Cu, Ni, Mn, Mo, Y and Zn dissolution from polymetallic 
black shale, with up to 10% organic matter content, have 
been reported by acidophiles (Bhatti 2015; Watling et al. 
2014). So, bioleaching can be performed for material con-
tains up to 10% of organic content efficiently (> 60% metal 
dissolution). In addition, Chu et al. (2022) stated that while 
thermal pre-treatment increased Cu dissolution from 47 to 
100%, it decreased Ni dissolution from 100 to 35% due to 
the formation of acid insoluble NiO. Therefore, thermal pre-
treatment can be considered for selective metal extraction.

pH and oxidation–reduction potential

Oxidation–reduction potential and pH directly affect micro-
bial activity, metal solubility, and generation of precipitation 
layers such as jarosite (Chen et al. 2015; Halinen et al. 2009; 
Zare Tavakoli et al. 2017c; Zhao et al. 2019). Ores and solid 
wastes contain acid consuming minerals such as sodium 
(Na), potassium (K), calcium (Ca) and magnesium (Mg). 
When acidophilic microorganisms are employed, these high 
reactive minerals increase the pH and inhibit the acidophilic 
microorganisms. Thus, optimisation of pH is recommended 
(Ilyas et al. 2010a). Optimal pH range is guided by the types 
of microorganism used for bioleaching (Table 1), and can 
be defined by conducting an optimisation study (Table 4). 
To avoid low dissolution yield, maintaining pH at opti-
mum level by adding sulphuric acid is recommended (Chen 
et al. 2015; Roy et al. 2021a, 2021b). For the bioleaching 
employing fungi and cyanogenic bacteria pH of the culture 
medium can be adjusted my using HCl and NaOH (Naseri 
and Mousavi 2022). During bioleaching an automatic con-
trol unit via connected pH sensor can be utilised to maintain 
optimum pH at the constant level (Kremser et al. 2022).

Oxidat ion–reduct ion potent ia l  indicates  the 
activities of the species and the f low of ions from 
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metal-bearing-material to leaching media (Muddanna 
and Baral 2021; Roy et  al. 2021a, 2021b). Muddanna 
and Baral, (2021) stated that oxidation–reduction poten-
tial ≥ 600 is good indicator for high  Fe+3 for A. ferroox-
idans. During acidophilic bioleaching oxidation–reduction 
potential above 400 mV indicates there is a high concen-
tration of  Fe+3 and high bacterial growth (Rawlings and 
Johnson 2007; Roy et al. 2021a, 2021b). Zare Tavakoli 
et al. (2017c) achieved 100% uranium dissolution from low 

grade uranium ore when oxidation–reduction potential was 
550 mV by using A. ferrooxidans.

Solid concentration

Solid concentration is expresses as the term pulp density 
(% w/v) for shake flask and stirred tank. Low solid concen-
tration (< 1%) provides efficient dissolution for both acido-
philic and fungal bioleaching; however, this increases the 

Table 4  Bioleaching yield, in %, for different metals by pH optimisation

Material Microorganisms Element pH Bioleach-
ing yield 
(%)

Operational condi-
tions

Class Reference

Dewatered electro-
plating sludge

Mixed acidophilic 
strains including 
Acidithiobacillus 
ferrooxidans and 
Acidithiobacillus 
thiooxidans

Cu 1.5 97 Temperature: 30 °C
Period: 24 h
Particle size: ≤ 75 μm
Inoculum rate: 10% 

(v/v)
Agitation speed: 

500 rpm
Pulp density: 5% 

(w/v)
Aeration rate: 20 L/h
Bioleaching approach: 

Two-step

Bacteria Zhang et al. (2020)
2 100
2.2 98
2.5 94

Ni 1.5 98
2 100
2.2 98
2.5 81

Zn 1.5 100
2 100
2.2 100
2.5 52

Cr 1.5 99
2 100
2.2 94
2.5 65

Contaminated soil Aspergillus flavus Pb 5 8 Temperature: 30 °C
Period: 15 days
Particle size: 2 mm
Inoculum rate: 2% 

(v/v)
Agitation speed: 

130 rpm
Pulp density: 5% 

(w/v)
Bioleaching approach: 

–

Fungi Qayyum et al. (2019)
5.7 16
7 18
9 4

Cd 5 25
5.7 30
7 40
9 16

Zn 5 27
5.7 53
7 53
9 34

Waste printed circuit 
boards

Pseudomonas 
balearica

Au 7 46 Temperature: 30 °C
Period: 7 days
Particle size: 

150 ≤ μm
Inoculum rate: 5% 

(v/v)
Agitation speed: 

150 rpm
Pulp density: 1% 

(w/v)
Bioleaching approach: 

two-step

Cyanogenic bacteria Kumar et al. (2018)
8 55
9 68

Ag 7 16
8 25
9 34
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cost of operation in large scale application (Srichandan et al. 
2020). High solid concentration causes high buffering effect 
in acidophilic bioleaching, so acid addition into culture is 
needed to keep pH at favourable level during bioleaching 
(Chen and Lin 2010). In some optimisation studies, solid 
concentration was observed as the most important parameter 
(Gu et al. 2017; Nkulu et al. 2013). Like the other param-
eters, different pulp density can provide variations on leach-
ing efficiency of different metals. For instance, Muddanna 
and Baral, (2021) achieved the highest La dissolution (83%) 
when 1% pulp density of spent fluid catalytic cracking cata-
lyst was used, while the highest Ce dissolution (23%) was 
achieved when 5% and 7% pulp density was used. Amiri 
et al. (2011b) investigated the effect of one-step, two-step 
and spent medium step approaches using 1–5% (w/v) pulp 
density of spent hydrocracking catalyst by P. simplicissi-
mum. Highest recovery of W, Al and Mo was achieved in 
two-step approach when 3% pulp density was used. Dissolu-
tion of W and Al were decreased from 67 to 37% and from 
17 to 12% in the one-step approach when pulp density was 
increased from 1 to 5%.

When the spent medium step approach was used, the dis-
solution of all investigated metals was decreased as the pulp 
density increased. In different approach, Fe and Ni dissolu-
tion remained unchanged or decreased when pulp density 
increased. Overall results suggested that different metals 
were affected at different rate from selected bioleaching 
approach and pulp densities, but the two-step approach can 
provide high metal dissolution (> 90% W, Fe, Mo dissolu-
tion) at high pulp density (> 1%). Pulp density can be opti-
mised up to 20% (w/v) for agitated tank reactors (Natarajan 
2018) (Fig. 2). Higher solid liquid ratio (> 20% w/v) can be 
used for column, heap, and dump bioleaching. For instance, 
Mousavi et al. (2006) achieved 72% zinc dissolution by 
using 22 L of culture for 410 kg of low-grade sphalerite 
ore in column bioleaching after 120 days. BIOPRO™ used 
117,200  m3 capacity solution pond to bioleach 810,000 tons 
of refractory sulfidic ore in commercial heap process (Rawl-
ings and Johnson 2007).

Energy source choice and concentration

The type of energy source is dependent on the selected 
microorganisms (Table 5). The choice of energy source is 
also important for the material that should be treated. Some 
oxidic materials such as waste incineration ashes and slags 
require the action of both  Fe3+ and  H2SO2 (Kremser et al. 
2021). Wang et al. (2015) discussed that during bioleaching 
of Pb/Zn smelting slag Indium (In) dissolution was both acid 
dissolution by biogenic  H2SO4 and oxidation/reduction by 
 Fe2+/Fe3+, whereas Zn, Cd and Pb followed acid dissolu-
tion mechanism. Others for instance spent Li-Ion batteries 
or waste printed circuit boards require  Fe2+,  Fe3+ or  H2SO4 

only (Chen et al. 2015; Ghassa et al. 2020; Roy et al. 2021a, 
2021b).

Optimisation of energy source concentration ranging 
between 0.1 and 20% (w/v) can be recommended to achieve 
a high bioleaching yield and to make the process economical 
(Gu et al. 2017; Mousavi et al. 2006; Xu and Ting 2004). 
Pathak et al. (2009) investigated the effects of ferric ion con-
centration on bioleaching of sewage sludge using two differ-
ent energy sources, ammonium ferrous sulphate and ferrous 
sulphate, for iron-oxidising microorganisms. Using ferrous 
sulphate provided better metal bioleaching yield, 64% Cu, 
58% Ni, 76% Zn, 52% Cr, than ammonium ferrous sulphate, 
56% Cu, 48% Ni, 68% Zn, 42% Cr.

Microbial acclimatisation and inoculum concentration

Before starting the bioleaching process, it is recommended 
to acclimatise the selected microorganism(s) with the metal-
bearing-material to enhance their metal toxicity tolerance 
(Amiri et al. 2011b). This is typically performed by cultur-
ing the microbes in liquid medium until the log phase is 
reached. Then small amounts (0.2% w/v) of solid material 
are added into the culture (Chen et al. 2015). Once the cells 
reach again the log phase, sub-culturing is performed fir 
increased material concentration. This step can be repeated 
as necessary to reach the desired solid:liquid ratio (Mud-
danna and Baral 2021). Acclimatisation can also be per-
formed on petri dish using a growth medium containing 
metal ions for fungi (Amiri et al. 2011b). Several bioleach-
ing studies confirmed that acclimatised microorganisms pro-
vided higher metal dissolution than non-acclimatised micro-
organisms. For example, Abhilash et al. (2013) acclimatised 
A. ferrooxidans and L. ferrooxidans up to 5% (w/v) sample 
concentration. Once both species were acclimatised, they 
were able to solubilise 57% and 66%, respectively of ura-
nium from low-grade apatite rich uraninite ore. Muddanna 
and Baral, (2021) adapted A. ferrooxidans up to 20% (w/v) 
spent fluid catalytic cracking catalyst. They stated that accli-
matized microorganisms ensured higher bioleaching yield 
than non-acclimatised culture. Chen et al. (2015) adapted A. 
ferrooxidans to waste printed circuit boards from 0.2% (w/v) 
to 3.5% (w/v) and achieved 94.8% Cu recovery after 28 days. 
Ilyas et al. (2010b) operated for 2 years a column bioleach-
ing process by using adapted mixed culture of Sulfobacilllus 
thermosulfidooxidans and Thermoplasma acidophilum. They 
were able to recover 80% Zn, 64% Al, 86% Cu and 74% Ni 
from 10 kilos of electronic scrap.

Inoculum concentration is also an important parameter 
affecting leaching time and dissolution yield (Zare Tavakoli 
et al. 2017b). Several researchers tried to optimise inoculum 
concentration from 0.1% up to 30% (v/v) for different metal 
bearing material (Ilyas et al. 2012; Mo et al. 2019; Zare 
Tavakoli et al. 2017b; Table S8; Table S10). When the effect 
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of inoculum concentration was evaluated with the one-fac-
tor-at-a-time methodology, it appeared that an increase in the 
inoculum concentration had positive effect on the bioleach-
ing performance (Hosseinzadeh et al. 2021; Jagannath et al. 
2017). When multivariable optimisation method was used 
(e.g., Plackett − Burman factorial design, central composite 
design), inoculum concentration was usually found to be the 
second, third or fourth important factor. So that, it mostly 
come after pH, solid concentration, and energy source con-
centration by the order of importance (Arshadi et al. 2019; 
Zare Tavakoli et al. 2017b; Xu and Ting 2004). Overall, sev-
eral studies revealed that increase in inoculation percent had 
positive effect on bioleaching yield; however, higher concen-
tration than optimum value caused the precipitation of some 
metal ions in reactor during bioleaching of low-grade ore or 
e-waste (Jagannath et al. 2017; Zare Tavakoli et al. 2017b). 
Therefore, inoculum concentration is suggested as an opti-
misation parameter for future works due to it may have a 
positive effect on bioleaching yield and the cost of operation. 
Since to reach a high inoculation percent high energy source 
needs to be used, it will also increase the operational cost.

Aeration rate and temperature

Aeration provides an efficient transfer of  O2 and  CO2 for 
microorganism in both agitated and percolated systems 
(Srichandan et  al. 2020). 1.5–4 mg/L dissolved oxygen 
concentration is recommended to be managed inside the 
reactor (Rawlings and Johnson 2007). Ilyas and Lee, (2014) 
optimised aeration rate between 0.07–1 L/min for a stirred 
bioleaching tank inoculated with Sulfobacillus thermosulfi-
dooxidans. They found that increasing aeration rate from 
0.07 to 0.5 L/min accelerated the leaching rate for Al, Cu, 
Zn, Ni and reduced the lag time of the bacterial culture 
approximately 50%. However, increasing the aeration rate 
more than 0.5 L/min adversely affected the bacterial growth 
and resulted in decreased metal dissolution. Zare Tavakoli 
et al. (2017a) tested different air flows ranging between 50 
and 250 L/h for 7.5 cm diameter column for U bioleach-
ing. They reported that the optimum value was 100 L/h 
(1667 ml/min) to achieve 100% of U bioleaching. Higher 
air flow than 100 L/h caused decrease in bioleaching yield 
due to bacterial growth adversely affected by increasing 

Table 5  Optimal energy source concentration for various microorganisms. Conc stands for concentration

Material Microorganisms Energy source Optimisation 
values % (w/v)

Optimal conc. or 
selected conc. % 
(w/v)

Bioleaching 
yield (%)

Type Reference

Sewage sludge Indigenous sul-
phur oxidising 
bacteria (Aci-
dithiobacillus 
ferrooxidans, A. 
thiooxidans and 
Thiobacillus 
thioparus)

Elemental sul-
phur

0.1, 0.2, 0.3, 
0.55, 1.0

0.1–0.3%  > 60% Cu, Zn, 
Pb, Ni

Bacteria Chen and Lin 
(2010)

Indigenous iron 
oxidizing 
bacteria

Ammonium fer-
rous sulphate 
(source of 
 Fe2+)

– 2 56% Cu, 48% 
Ni, 68% Zn, 
42% Cr

Bacteria Pathak et al. 
(2009)

Ferrous sulphate 
(source of 
 Fe2+)

– 2 64% Cu, 58% 
Ni, 76% Zn, 
52% Cr

Bacteria

Low grade ura-
nium ore

A. ferrooxidans Ferrous sulphate 
(source of 
 Fe2+)

0.5, 1, 1.5, 2 1.45 90% Bacteria Zare Tavakoli 
et al. (2017b)

Low grade ura-
nium ore

A. ferrooxidans Ferrous sulphate 
(source of 
 Fe2+)

1, 2, 4 2 100% Bacteria Zare Tavakoli 
et al. (2017c)

Spent refinery 
catalyst

Aspergillus niger Sucrose (source 
of organic C)

9, 11, 13, 15, 17 9.40 100% Mo, 46% 
Ni, and 14% Al

Fungi Amiri et al. (2012)

Power plant 
residual ash

A. niger sucrose (Source 
of organic C)

5, 7.5, 10, 12.5 10.20 83% V Fungi Rasoulnia and 
Mousavi (2016)

Soil from landfill 
of e-waste

Indigenous 
cyanogenic 
bacteria

Glycine 0.005, 0.2, 0.5, 1 0.20 96.7% Cu Bacteria Arab et al. (2020)

Printed circuit 
boards

Pseudomonas 
aeruginosa

Glycine 0.06, 0.1, 0.2, 
0.3, 0.34

0.10 90% Ag Bacteria Merli et al. (2022)
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excessive turbulence, shear stress and cellular attrition in 
column. Chen et al. (2015) used a 20 L/min of aeration rate 
for a column which has an internal diameter of 6 cm. They 
recovered 95% Cu form waste printed circuit boards. Nata-
rajan (2018) reported the typical aeration rates for a heap 
operation are 0.1–0.5  m3/m2h.

Maintaining temperature at desired level based on 
employed microorganisms is important to achieve efficient 
metal dissolution (Table 1) (Mousavi et al. 2006; Srichan-
dan et al. 2020). Irrigation and aeration rate influence the 
temperature in percolation systems (Mousavi et al. 2006). 
Due to bioleaching is an exothermic process and ores have 
diverse indigenous organisms, the dominant microbial com-
munity can change with time in heap bioleaching (Natarajan 
2018). Stirred tanks are designed to maintain the reactor 
temperatures at desired levels to cope with exothermic heat 
generation, thus they provide more controlled environment 
than heap (Natarajan 2018). To avoid significant temperature 
changes in column bioleaching, using water bath for reser-
voir and water jacket around the column can be preferred 
(Ilyas et al. 2010b).

Agitation speed and irrigation rate

While agitation rate is a specific parameter for shake flask 
and stirred bioreactor, irrigation rate is a specific parameter 
of the percolated systems e.g., column, heap, dump (Nata-
rajan 2018). Good mixing condition is needed to ensure 
gas–liquid-solid transfer and heat distribution (Natarajan 
2018). Optimum agitation speed will be depended on the 
type and design of the reactor (Amiri et al. 2011b; Eisapour 
et al. 2013) and the target metal in the metal-bearing-mate-
rial (Nkulu et al. 2013). High metal dissolution (> 90%) 
can be achieved when agitation speed is set up between 
120–240 rpm for shake flask (Amiri et al. 2011b; Işıldar 
et al. 2016), and 150–600 rpm for stirred tank bioleaching 
(Eisapour et al. 2013; Kremser et al. 2020; Pathak et al. 
2015). For example, Nkulu et al. (2013) optimised agitation 
speed between 200 and 400 rpm along with temperature, 
pH, leaching duration and pulp density for bioleaching of 
a polymetallic flotation concentrate by using acidophiles. 
As a result, agitation speed appeared as the second most 
important parameter for the Co leaching and optimum value 
was 250 rpm. On the other hand, for Ni and Cu, it was the 
least important factor, and the optimum values were 300 
and 350 rpm, respectively. Ilyas et al. (2010a) investigated 
the best operational conditions for bioleaching of metal ions 
from low grade sulphide ore by optimising agitation speed 
along with four other parameters. The agitation speed was 
the third significant parameter for S. thermosulfidooxidans, 
and the optimum value was 180 rpm to achieve 72 Zn%, 68% 
Co, 78% Cu, 81% Ni and 70% Fe dissolution.

In terms of irrigation rate, Mousavi et  al. (2006) 
reported that liquid irrigation rate is an important opera-
tional parameter to increase the bioleaching kinetic, and it 
must be optimised. Like agitation speed there is no clear 
trend for irrigation rate as it will be depended on the type 
and design of the reactor and the metal-bearing-material 
(Chen et al. 2015; Zare Tavakoli et al. 2017a, b). Typical 
irrigation rates are 5–20 L/m2h for heap and 5–40 L/m2h 
for column (Natarajan 2018). Mousavi et al. (2006) tested 
three irrigation rates (5, 10, 20 L/m2h), for A. ferroox-
idans and Sulfobacillus. The lowest irrigation rate pro-
vided higher Zn dissolution, > 70%, from the low-grade 
sphalerite ore while the highest irrigation rate provided 
only < 50% Zn dissolution for both microorganisms. In 
another study, Chen et al.,(2015) used an irrigation rate 
of 40 ml/min by recirculating the leaching solution. They 
suggested that increasing the cycling velocity (> 40 ml/
min) of the leached solution can accelerate the kinetics of 
bioleaching yield in the 6 cm diameter column reactor. In 
contrast, Zare Tavakoli et al. (2017a, b, c) evaluated two 
irrigation rates (0.25 and 2.25 ml/min) along with seven 
independent parameters, aeration rate, the concentration 
of initial ferrous, pH, temperature, inoculation percent and 
particle size, in column (no circulation) bioleaching for 
uranium recovery. They found that that irrigation rate was 
not a statistically important parameter.

Catalyst

Bioleaching performance can be enhanced by the addition 
of catalysts into the bioleaching medium, such as silver 
ions  (Ag+), graphene, biochar. For example, Zeng et al. 
(2013) investigated the effect of silver ions  (Ag+) on the 
solubilisation of cobalt (Co) from spent lithium batteries 
by using A. ferrooxidans. 98% Co recovery was achieved 
after 7 days of bioleaching, whereas Co solubilisation 
was only 43% in the absence of  Ag+. Wang et al. (2016) 
showed that the addition of biochar to e-waste contribute 
to the complete solubilisation of copper (Cu) in 2 days, 
while only 80% was achieved without it. Gu et al. (2017) 
explored the catalytic effect of graphene on the dissolu-
tion of copper from waste printed circuit board by using 
A. ferrooxidans. Copper dissolution was enhanced by 10% 
compared to the control. Based on the conducted stud-
ies it can be assumed that utilisation of catalyst can pro-
vide higher bioleaching yields. However, understanding 
the additional materials effect on bioleaching kinetic can 
be difficult. Thus, it can be suggested that once the main 
operational parameters, which are pH, solid concentra-
tion, energy source concentration, irrigation rate/agitation 
speed, are optimized, the catalyst addition can be evalu-
ated to increase further the bioleaching yield.
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Industrial application needs 
and perspectives

Bioleaching is already performed on industrial scale for 
various types of ores to extract copper and gold by using 
acidophiles (Demergasso et al. 2010; Galleguillos et al. 
2008; Gericke et al. 2009; Halinen et al. 2009; Soto et al. 
2013). Heap and dump as well as agitated tank are the 
most preferred operation types for industrial scale applica-
tions. However, in large scale changes in pH and microbial 
community structure due to poor management of opera-
tional parameters e.g., air flow and  CO2 availability lead 
to a decreased leaching rate (Gao et al. 2021; Marín et al. 
2021). Recent advances in biomining such as gene librar-
ies, Polymerase Chain Reaction (PCR)-based techniques 
are promising for a better understanding of the microbial 
dynamics (Marín et al. 2021; Natarajan 2018). Besides, 
optimisation of new influencing parameters such as micro-
cracks (Chen et al. 2020) and characterisation of novel 
microorganisms (Natarajan 2018) may help to overcome 
industrial scale limitations. In-situ bioleaching is success-
fully applied for Cu currently. Yin et al. (2018) reported 
some underground in-situ bioleaching operations for cop-
per in China, achieving over 95% recovery in Tongguan-
shan Copper Mine in 1980 and > 500 t/a in Zhongtiaoshan 
Copper Mine in 2000. In terms of uranium, a few in-situ 
bioleaching studies have been reported with 50–70% effi-
ciency (Abhilash et al. 2015). Lots of research are promis-
ing to be in-situ bioleaching widely applicable in future 
(Götze et al. 2022; Huang et al. 2018; Laurent et al. 2019) 
and to reduce its possible environmental impacts (Baller-
stedt et al. 2017).

To the best of the authors knowledge there is no com-
mercial bioleaching applications for other metal-bearing-
wastes than ores (Gao et al. 2021; Kaksonen et al. 2020; 
Natarajan 2018). Several promising intermediate scale, 
which are column and stirred tank, bioleaching studies 
have been published for various types of metal-bearing-
material (Tables 2, 3, and 4), yet they are not commercial-
ised (Gao et al. 2021; Srichandan et al. 2019). Although 
lab bioleaching experiments revealed high bioleaching 
yields for some metals (> 80% Al, Cu, V, Zn, Ni) at low 
pulp densities (≤ 5% w/v), research needs to be intensi-
fied to understand and accelerate the bioleaching kinetics 
towards industrial scale (Chen et al. 2015; Nkulu et al. 
2013; Pathak et al. 2019). One limitation about acidophiles 
that during bioleaching leached metal ions in the solution 
can precipitate due to jarosite formation (Baniasadi et al. 
2019). This adversely affects the recovery and inhibits the 
bioleaching. To maintain jarosite formation optimisation 
of temperature, pH and ferrous iron concentration as well 
as continuous pH adjustment is recommended (Opara et al. 

2022). In many bioleaching studies one-factor-at-a-time 
methodology was used to identify the optimum value for 
these parameters. However, rather than using one-factor-
at-a-time methodology, multiparameter optimisation is 
recommended to understand the interactions between 
parameters and to identify optimal conditions in the pro-
cess (Niu et al. 2016). According to this, optimisation can 
be performed as two-phases process. First, analysing of 
process parameters using a screening method, such as 
Plackett–Burman, this will allow researcher to understand 
the most influencing factors as a first insight (Amiri et al. 
2011a; Zare Tavakoli et al. 2017b). Then, further optimi-
sation can be performed with response surface methods, 
such as a central composite design or Box–Behnken, or 
Taguchi orthogonal array design to find optimum values 
for the identified most influencing parameters (Amiri 
et al. 2011a; Jalali et al. 2019; Mo et al. 2019; Nkulu et al. 
2013). Here, we propose a two-phase optimisation route 
to achieve a high metal recovery yield from small to large 
scale bioleaching operation (Fig. 4) (see Supplementary 
Material Document 2 for the detailed flow chart). Our pro-
cedure modified from Potysz et al. (2018) the “flowsheet 
to develop optimized bioleaching protocol for slags” and 
improved and generalized for all types of metal-bearing-
materials. Besides, analysing metals leaching kinetics 
provide broader understanding of the leaching behaviours 
of different metals during bioleaching (Amiri et al. 2012; 
Chen et al. 2015; Pathak et al. 2019). Therefore, selective 
metal solubilisation can be possible (Nkulu et al. 2013). 
In addition, there are limited studies about selective recov-
ery of target metals from the biolixiviant after bioleaching 
(Kremser et al. 2022). In conclusion, more collaborative 
research with chemist, biologist and metallurgist is needed 
to make bioleaching of metal-bearing-wastes commer-
cially feasible (Holmes 2008; Roy et al. 2021a, 2021b).

To recover metals from some metal-bearing-materials, 
such as e-waste, biohydrometallurgy requires low instal-
lation and operation costs and provides more environmen-
tally friendly process when compared to pyrometallurgy 
and hydrometallurgy (Arya and Kumar 2020b; Baniasadi 
et al. 2019). Applying life cycle assessment and techno eco-
nomic analysis are recommended by several researchers as 
it would be very helpful to quantifying the environmental 
impact of the process (Baniasadi et al. 2021; Sadhukhan, 
Ng and Hernandez 2014; Villares et al. 2016). Some small-
scale life cycle assessment provided valuable insights about 
the impacts of the bioleaching process as well as guide to 
researchers to identify potential hotspots to reduce the pro-
cess overall impact. For instance, Sun et al. (2016) found 
that during bioleaching of Zn-Mn batteries, cutting and 
crushing the batteries have the highest environmental impact 
on the human toxicity and marine ecotoxicity. In another 
techno-economic analysis life cycle assessment showed that 
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during bioleaching of fluidized catalytic cracking catalysts 
44% of the cost was due to the using of raw energy source 
for microorganism, and raw energy source and electricity 
requirement was responsible for the largest proportion of the 
environmental impact (Thompson et al. 2018). Researchers 
suggested that utilisation of alternative energy sources, for 
example agricultural waste or real organic wastewater for 
heterotrophs, and optimisation of energy source can reduce 
the environmental impact of the process (Baniasadi et al. 
2021; Gavrilescu 2022; Jin et al. 2019). Moreover, an ex-
ante life cycle assessment study, based on small scale labora-
tory and pilot bioleaching study results, can help to predict 
the environmental impact of a commercial scale bioleaching 
application on the early development stage (Villares et al. 
2016).

Conclusion

Bioleaching has emerged as a promising cost-effective and 
environmentally friendly alternative for recovering metals 
from complex metal-bearing materials. Acidophilic bacteria 
and fungi are key microorganisms that play an important 
role in metal dissolution through specific mechanisms, and 
recent advances in gene libraries and PCR-based techniques 
offer effective on-site monitoring and better understanding 
of microbe-mineral/waste interactions. Although bioleach-
ing has been successfully applied at a commercial scale for 
various types of low-grade ores and tailings, slow dissolu-
tion kinetics remain a challenge. To address this, multivari-
able optimization methods such as orthogonal array design, 
Plackett–Burman, and response surface analysis should be 
used to achieve higher bioleaching yields. Solid concen-
tration, pH, energy source concentration, and particle size 
are the most influential parameters, and analysing reaction 
kinetics is essential to enable selective metal extraction. 
Furthermore, we recommend that more pilot studies and 
collaborative research involving chemists, biologists, and 
metallurgists working together should be conducted to scale 
up bioleaching for industrial use, especially for other metal-
bearing materials such as e-waste, metallurgical sludge, 
and dust, spent catalysts, and fly ash. Finally, applying life 
cycle assessment and techno-economic assessment can help 
evaluate and reduce the environmental impact and cost of the 
bioleaching process. Our proposed optimisation flow chart 

can help achieve high bioleaching yield from general metal-
bearing materials from laboratory to pilot/large scale opera-
tions. Implementing these recommendations can lead to the 
continued advancement of the field, providing a sustainable 
solution for metal recovery that minimises environmental 
impact.
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