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Abstract

Total petroleum hydrocarbons (TPH) clean-up standards, intervention and/or target values, are

designed to effectively manage introduction of toxic petroleum hydrocarbons into the

environment. This research assessed the impact of some crude oil remediation intervention values,

involving sub-lethal concentrations of crude oil, on yield and phytochemical contents of kale

(Brassica oleracea L.) and lettuce (Lactuca sativa L.). Crude oil contamination within the range

examined did not affect emergence; yield and phytochemical distributions were affected at some

levels of contamination, particularly 10,000 mg∙kg-1 TPH. There is the potential of TPH to

moderate effects of crude oil at 10,000 mg∙kg-1 to enhance contents of some phenolics and organic
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acids in green leafy vegetables, but it causes accelerated maturity and leaf senescence. Use of crude

oil remediation intervention values below 10,000 mg∙kg-1 TPH appears to be effective.

Keywords: crop yield, intervention value, organic acids, petroleum hydrocarbons, phenolics

Spillage of crude oil, as a result of exploration and production, occurs leading to

introduction of petroleum hydrocarbons (PH) into the environment, which have been identified as

one of the most common environmental contaminants (Adati, 2012; Mehboob et al., 2009; Wang

et al., 2012). Among deleterious effects, plant growth may be affected for some time after the

initial contamination (Plice, 1948; De Jong, 1980).

To reduce the impact of PH on the environment, various remediation approaches have been

adopted and remediation standards established (Soesilo and Wilson, 1997; Ebuehi et al., 2005).

Total petroleum hydrocarbons (TPH) clean-up standards, intervention and/or target values, are

described by several national regulations (Anonymous, 2011; Pinedo et al., 2014; Wayne and

James, 1999). Intervention values are those where PH concentrations in the environment presents

serious risk to the general ecosystem in which higher concentration beyond the intervention value

denotes serious contamination (Anonymous, 2011).

The effect of PH at crude oil remediation intervention values (CRIV) on agrifood

production is poorly understood. Cramer et al. (2011) noted that abiotic factors, like crude oil/PH

contamination (Nie et al., 2010), in the environment affects optimal plant growth and yield. These

abiotic challenges have been linked to reduction in agrifood production and influence nutritional

value/quality of vegetables (Kumar et al., 2014).
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Studies on effects of crude oil/PH on plants (Inckot et al., 2011; Adieze et al., 2012; Baruah

et al., 2014), have mostly considered the impact on plant growth/yield while Chupakhina and

Maslennikov (2004), Noori et al. (2012) and Baruah et al. (2014) considered the impact on a few

crop quality parameters. Most of these studies recorded reduced shoot biomass with increasing

concentration of crude oil. However, shoot heights and weights were improved in 2 species at 1%

w/w oil-in-soil (Adieze et al., 2012). Other reports indicated there were other responses due to

presence of oil in soil. Soil containing 5-10% crude oil enhanced accumulation of anthocyanins,

ascorbic acid and riboflavin in 25-day-old seedlings (Chupakhina and Maslennikov, 2004). Crude

oil contamination led to increase in total flavonoids and total phenolics in mycorrhizal plants

(Noori et al., 2012). Meanwhile, chlorophyll content decreased with increasing concentration of

crude oil (Baruah et al., 2014). The presence of crude oil and the level at which it causes damage

to plants needs clarification.

This study was undertaken to evaluate the impact of fresh crude oil contamination, and the

impact of PH, on crop yield and distribution of phytochemicals in two green leafy vegetables

(GLV).

Materials and methods

The experiment was conducted at Cranfield University research glasshouse with an

average temperature of 24oC and 58.2% relative humidity. The growing medium, John Innes No.

2 compost (Hurstridge, Surrey, UK), which contained sufficient nutrition to support the crops over

the term of the experiment, was used. Seeds of kale, Brassica oleracea (L.), cv. Starbor F1 Hybrid,

and Butterhead lettuce, Lactuca sativa (L.), cv. Analena, were from Thompson and Morgan

(Suffolk, UK). The crude oil used had 10 of the United States Environmental Protection Agency
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priority polycyclic aromatic hydrocarbons and higher concentration of lighter alkane fractions.

Other details on the chemical composition of the crude oil are as reported by Odukoya and Lambert

(2015).

Treatments of TPH: 0 (control), 1,500, 3,000, 5,000 or 10,000 mg∙kg-1 were imposed on

plants in 16 cm dia pots (Plastecnic Perego SPA, Perego, Italy) using a randomized complete block

design. After thorough mixing of the John Innes No. 2 compost and crude oil, pots were irrigated

to ensure all treatments had the same moisture content at the start of the experiment. Moisture was

sustained at 50% field capacity throughout the experiment by addition of appropriate volumes of

water as required by each pot based on the TPH treatments. Seed dormancy was broken before

planting by prior soaking in distilled water (Oyedeji et al., 2012). Ten seeds were randomly

selected and sown; 3 replicates of each treatment, with the appropriate concentration of crude oil

(except the control). To ensure changes in yield and phytochemical composition of plants were

solely because of PH, no fertilizer and pesticides were applied. Thinning to 1 plant per pot was

carried out 10 d after planting.

Before thinning, the procedure of Faluyi (1986) was followed for determination of

emergence percent (E %). At the end of the experiment, 60 days after sowing, above-ground plant

fresh weight and the fresh root weights were recorded. Harvested vegetables were immediately

processed and prepared for further analyses after thorough washing and freeze-drying. Samples

were ground into powder using a blender and kept at -40oC prior to chemical analyses.

As GLV are known to contain high concentrations of ascorbic acid with distinct color,

flavor, and medicinal activity (Gupta et al., 2005), effect of TPH treatments on phytochemical

contents of the GLV was investigated.
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The Howard Davies method was used to extract total phenolics in above-ground plant

parts. An ethanol:water mix (80:20 v:v, 3 mL) was added to powdered samples (150 mg) in a 7

mL vial. After mixing, samples in vials were placed in a shaking water bath at 70oC for 2 h and

removed every 30 min for 20 s vortexing. Samples were air cooled and passed through a Cronus

25 mm PTFE 0.2 μm syringe filter (SMI-LabHut Ltd., Gloucestershire, UK). Two hundred fifty 

mg∙mL-1 of sodium carbonate (Fisher Scientific, Leicestershire, UK) was prepared using 100%

deionized water with stirring and then gravity filtration through Whatman 1 qualitative filter paper.

The calibration standard of 5.0 mg∙mL-1 gallic acid (Sigma-Aldrich, St Louis, MO, USA) was

prepared using ethanol:water (10:90 v:v) from which calibration standards of: 0.05, 0.10, 0.15,

0.25 and 0.50 mg∙mL-1 were prepared.

For quantification of total phenolics, 20 μL of the gallic acid standard, or sample filtrate, 

was placed in a cuvette with addition of 3.2 mL of deionized water, 200 μL of Folin and Ciocalteu’s 

phenol reagent (Fisher Scientific, Loughborough, UK) and 600 μL of the previously prepared 

sodium carbonate solution. A 20 μL of the sample blank was similarly treated. All samples were 

mixed in the cuvette and left in the dark for 2 h at room temperature for color to develop.

Absorbance was measured at 765 nm with a Helios Gamma UV/Visible spectrophotometer

(Unicam Limited, Cambridge, UK). The concentration of total phenolics in samples was calibrated

against gallic acid.

The Howard Davies method was used to extract total flavonoids in powdered samples (150

mg). Forty mg∙mL-1 of sodium hydroxide (Fisher Scientific, Fair Lawn, NJ, USA) was prepared

using a solvent mix of ethanol:water (50:50 v:v) with mixing. The calibration standard of quercetin

(Sigma-Aldrich, Saint Louis, MO, USA) was prepared within the range of 1.0 and 0.005 mg∙mL-

1. For quantification of total flavonoids in samples, 100 μL of quercetin standard, or sample filtrate, 
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was measured in a cuvette after addition of 3 mL of sodium hydroxide solution. Samples were

mixed in the cuvette, left for 10 min at room temperature for color development and absorbance

measured at 420 nm using a spectrophotometer. The sample blank (100 µL), substituted for the

quercetin standard, or sample filtrate, was also used. Calibration against quercetin standards was

carried out to determine total flavonoid concentration in above-ground plant parts.

The modified method of Terry et al. (2007) was used in extraction and quantification of

organic acids in above-ground parts of leafy vegetables. Three-hundred mg of individual freeze-

dried powdered sample was weighed into a 7 mL vial and 3 mL of HPLC grade water added. The

slurry was allowed to stand at room temperature for 5 min followed by vortexing for 30 s. To

ensure ease of filtration, samples were centrifuged at 3,202 × g for 10 min at 4oC. Following this,

samples were passed through a Cronus 25 mm PTFE 0.2 μm syringe filter. The vegetable extract 

obtained (20 µL) was injected into an Alltima HP C18 AQ 5 μ (Grace Davison, Deerfield, IL) 250 

mm × 4.6 mm (Serial number: 614110890 and Part number: 87820) column with an OPTI-

GUARD® 1 mm guard column. Analytical grade 25 mM KH2PO4 (Fisher Scientific,

Loughborough, UK) in HPLC grade water was used as the mobile phase adjusted to pH 2.5 using

phosphoric acid (Acrōs Organics, Fair Lawn, NJ, USA). Separation was achieved with an HPLC 

system (1200 series, Agilent Technologies, Waldbronn, Germany) at isocratic conditions for 10

min at a flow rate of 1.5 mL∙min-1 and column temperature of 35oC. At a wavelength of 210 nm,

eluted organic acids were detected with a photodiode array detector (DAD Serial No.

DE60556253, Agilent Technologies, Waldbronn, Germany).

The desired non-volatile organic acids concentrations in sample extracts were quantified

against calibration standards of citric acid (Fisher Scientific, Fair Lawn, NJ, USA), L-ascorbic acid

(vitamin C) and L (-) malic acid (Sigma-Aldrich, Saint Louis, MO, USA) within the range of 0.025
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and 1.0 mg∙mL-1 by comparing peak areas using ChemStation (rev.B.04.01, Agilent Technologies)

software. The 0.025 mg∙mL-1 standard was used to determine Limit of Detection (LOD) and Limit

of Quantitation (LOQ) set at 3 and 10 times the signal/noise ratio, respectively (Liguori et al.,

2006; Odukoya and Lambert, 2015).

The modified Mackinney (1941), Arnon (1949), and Ghani (2011) methods were used to

quantify chlorophyll a, chlorophyll b and total carotenoid contents of GLV in semi-darkness. For

this determination, 200 mg of ground samples were extracted with 3 mL of acetone (Fisher

Scientific, Fair Lawn, NJ, USA):HPLC grade water (80:20 v:v) solvent mix with agitation for 2

min at room temperature. Thereafter, 4 mL of extraction solvent mix was added followed by

vortexing for 2 min before gravity filtration. Equations of Wellburn (1994) for spectrophotometers

with a resolution range of 1-4 nm were used for determination of chlorophyll a (Chla), chlorophyll

b (Chlb) and total carotenoids (Cx+c) contents of extracts using an 10 mm LP optical glass sample

cell (HACH company, Loveland, CO, USA) according to manufacture instructions.

Effects of TPH on yield and phytochemical compositions of GLV were evaluated. Two

way analysis of variance (SPSS, ver. 22.0, IBM Statistics for Windows, IBM Corp., Armonk, NY)

was used to assess interactions. If interactions were significant, they were used to explain results.

If interactions were not significant, means were separated with Tukey’s test.

Results and discussion

Except for citric acid distribution in vegetable samples, all traits and tested parameters were

affected by variety, crude oil treatment, and the interaction (Table 1). Crude oil contamination in

the range 1,500 to 10,000 mg∙kg-1 TPH had no effect on vegetable emergence, mean values of 86

and 88% for B. oleracea and L. sativa, respectively. This is associated with TPH concentration
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lower than phytotoxic level and kind of petroleum used (Inckot et al., 2011), and agrees with Tang

et al. (2011) where 1.5% TPH was the critical value for animal and phytotoxicity; this is higher

that the range of crude oil concentrations used in this study.

Contaminants in the environment can impact shoot growth (Oyedeji et al., 2013), and

responses of above-ground plant yield of the leafy vegetables utilized in this work indicated some

intervention values used in national regulations would affect plant yield. Compared with controls,

crude oil contamination at CRIV from 5,000 to 10,000 mg∙kg-1 TPH reduced above-ground plant

yield of B. oleracea (Figure 1). Above-ground plant yield of L. sativa was more sensitive to

increase in crude oil as reduced yield of samples from the 3,000 to 10,000 mg∙kg-1 TPH treatments

occurred. The 10,000 mg∙kg-1 TPH treatment produced the least above-ground plant yield. Poor

development of shoots can be employed by plant to reduce rate of water use and delay onset of a

more severe condition (Acosta-Gallegos and Shibata, 1989).

Root yields of B. oleracea and L. sativa, compared with the control, were affected by crude

oil contamination with the 10,000 mg∙kg-1 TPH causing the least root yield (Figure 2). Generally,

and in agreement with Jarrell and Beverly (1981), reduced yield (a function of dry matter

accumulation) of these plants at some specific CRIV indicates: (i) blockage of metabolic pathway

by toxic concentrations of crude oil components, (ii) decline in photosynthesis, (iii) poor

photosynthate translocation, (iv) water limiting-lowered turgor pressure, (v) hormonal imbalance,

and (vi) accelerated senescence.

The only effect of crude oil contamination on total phenolics and total flavonoid contents

of the leafy vegetables was at 10,000 mg∙kg-1 TPH which increased total phenolics and total

flavonoids contents of L. sativa samples (Figure 3, 4). The highest level of total phenolics and total

flavonoids in L. sativa indicated crude oil contamination at this CRIV, and its induced nutrient
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deficiency in the growing media, enhanced flavonoid (a type of stress-induced phenylpropanoids)

levels in the samples. These flavonoids are a form of phenylpropanoid compounds that biotic and

abiotic challenges induce in plants (Dixon and Paiva, 1995).

Increased total phenolics and total flavonoids in L. sativa, due to treatment with 10,000

mg∙kg-1 TPH, indicates it is a crude oil tolerant plant (Noori et al., 2012) as it was likely able to

alter its metabolic processes which affect production of phenolics and flavonoids as well as reduce

oxidative damage to its cells. Changes in this plant’s phytochemicals’ contents could be attributed

to modification in gene expression of enzymes like phenylalanine ammonia-lyase (PAL) and

chalcone synthase (CHS) indications of improved plant secondary metabolism to assist L. sativa

in resisting pollution at this level of petroleum (Noori et al., 2012). The outcome of phytochemicals

distribution in the L. sativa is consistent with Wang and Frei (2011) where it was determined that

phenolic content increases when crops are under challenging conditions owing to stimulation of

principal enzymes of the phenylpropanoid pathway.

Trace amounts of malic and citric acids are important organic acids in plants (Fennema et

al., 1996) and L-ascorbic acid (vitamin C) is the most essential vitamin in vegetables in human

diets (Lee and Kader, 2000). Crude oil levels from 3,000-10,000 mg∙kg-1 TPH enhanced malic acid

concentration in L. sativa (Figure 5). The CRIV at 3,000 or 5,000 mg∙kg-1 TPH reduced ascorbic

acid content of B. oleracea (Figure 6) compared to the 10,000 mg∙kg-1 TPH treatment. Ascorbic

acid content of the L. sativa due to treatment with 5,000 and 10,000 mg∙kg-1 TPH were reduced

compared to the control (Figure 6). Crude oil contamination increased citric acid content in B.

oleracea due to treatment with the 5,000 and 10,000 mg∙kg-1 TPH while the lowest citric acid

content for L. sativa was from the 10,000 mg∙kg-1 TPH treatment (Figure 7). Alterations in citric

acid and malic acid concentration of B. oleracea and L. sativa at specific CRIV indicate that plants
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respond differently to presence of PH. These changes suggest possible major interconversions

between citric acid and malic acid (Ergle and Eaton, 1949).

Effects of PH on organic acids distribution in plants have been associated with decrease in

ascorbic acid content due to PH level (Nwaogu and Ujowundu, 2010; Nwazue, 2011). Reduction

in ascorbic acid at some CRIV affirms the exposure of GLV to abiotic challenge (Gaur and

Sharma, 2014) arising from PH contamination and results from the antioxidant/free radical

scavenging ability of ascorbic acid in neutralizing reactive oxygen species and free radicals which

reduces its concentration.

CRIV from 1,500-10,000 mg∙kg-1 TPH did not affect malic acid/citric acid ratios in B.

oleracea. The CRIV of 5,000 or 10,000 mg∙kg-1 TPH increased malic acid/citric acid ratio in L.

sativa compared with the control (Figure 8). The higher malic acid/citric acid ratios at these CRIV

levels indicate increased maturity (Meredith et al., 1989) of harvested L. sativa which stimulates

the process of senescence involving natural aging of organs or termination of plant life (Chen and

Dong, 2016).

Responses to crude oil pollution and nutrient availability can affect chlorophyll content in

leaves (Baruah et al., 2014); the influence of crude oil contamination below the phytotoxic level

on chlorophyll content is yet to be clarified. Crude oil at CRIV of 10,000 mg∙kg-1 TPH resulted in

increased chlorophyll b content (Figure 10) as well as chlorophyll a and b (Figure 9, 10) contents

of B. oleracea and L. sativa samples, respectively.

Assessment of chlorophyll a and b contents of the GLV supports Gross (1991) who

reported that chlorophyll a is the major pigment in higher plants. However, the increase in

chlorophyll contents at crude oil contamination level of 10,000 mg∙kg-1 TPH contradicts others

(Achuba, 2006; Ibemesim, 2010; Al-Hawas et al., 2012; Baruah et al., 2014) in which
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environmental contamination was associated with reduced chlorophyll content. The B. oleracea

and L. sativa had increased chlorophyll despite the increased PH level indicating they are more

tolerant to PH than plants used in previous studies.

Total carotenoids contents in B. oleracea and L. sativa were reduced at 10,000 mg∙kg-1

TPH compared with the control (Figure 11). This agrees with Gross (1991), that environmental

factors, as was from crude oil contamination, affect carotenoid distribution in plants.

The only difference in the B. oleracea Chl a/b ratio was between the 10,000 mg∙kg-1 TPH

and the 1,500 to 5,000 mg∙kg-1 TPH treatments (Figure 12). Crude oil contamination at 10,000

mg∙kg-1 TPH reduced the Chl a/b ratio in L. sativa compared with other treatments. The difference

in growing conditions (Lefsrud et al., 2007) arising from crude oil contamination resulted in

alteration of pigment ratios of B. oleracea and L. sativa samples. The Chl a/b ratio in L. sativa

treated with 10,000 mg∙kg-1 TPH was lower than the control (Figure 12) indicating accelerated leaf

senescence (Gross, 1991) at this remediation intervention value.

Plant yield, which is specie-dependent, may be affected by some intervention values used

in national regulations while high level of PH may enhance concentrations of some phytochemicals

in GLV owing to the negative impact of crude oil on soil conditions (Chupakhina and

Maslennikov, 2004). It appears L. sativa, within the period of its life cycle, can tolerate PH when

grown in low crude oil contaminated sites at a concentration below the phytotoxic level. The plant

may, however, still experience reduced yield and accelerated leaf senescence. To ensure minimal

negative impact of crude oil contamination on crop yield and quality, use of CRIV at ≤5,000

mg∙kg-1 TPH is encouraged.
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Table 1: Analysis of variance of measured variable as affected by vegetable variety and crude oil treatment.

Source df
Shoot
weight

Root
weight TPC TFC

Malic
acid

Ascorbic
acid

Citric
acid

MA/CA
ratio Chl a Chl b TCC

Chl a/b
ratio

Crude oil treatment (T) 4 ** ** ** ** ** ** ** ** ** ** ** **

Vegetable species (V) 1 ** ** ** ** ** ** ns ** ** ** ** **

T × V 4 ** ** ** ** ** ** ** ** ** ** ** **

Coefficient of Variation

(CV)

0.84 0.78 0.10 0.13 1.09 0.84 0.17 1.18 0.13 0.51 0.19 0.33

ns, ** not significant or significant at p<0.05.

TPC = total phenolics content; TFC = total flavonoids content; MA/CA ratio = Malic acid/Citric acid ratio; Chl a = Chlorophyll a; Chl

b = Chlorophyll b; TCC = total carotenoids content; Chl a/b ratio = Chlorophyll a/b ratio
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Figure 1. The interaction of crude oil contamination and vegetable species on above-ground plant

fresh weight. In the interaction, values are means of 3 replicates with standard errors represented

with bars. TPH = total petroleum hydrocarbons.
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Figure 2. The interaction of crude oil contamination and vegetable species on root fresh weight.

In the interaction, values are means of 3 replicates with standard errors represented with bars. TPH

= total petroleum hydrocarbons.
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Figure 3. The interaction of crude oil contamination and vegetable species on total phenolics

content. In the interaction, values are means of 3 replicates with standard errors represented with

bars. TPH = total petroleum hydrocarbons.
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Figure 4. The interaction of crude oil contamination and vegetable species on total flavonoids

content. In the interaction, values are means of 3 replicates with standard errors represented with

bars. TPH = total petroleum hydrocarbons.
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Figure 5. The interaction of crude oil contamination and vegetable species on malic acid content.

In the interaction, values are means of 3 replicates with standard errors represented with bars. TPH

= total petroleum hydrocarbons. Error bars for the bottom line are included in the space taken by

the symbols.
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Figure 6. The interaction of crude oil contamination and vegetable species on ascorbic acid

content. In the interaction, values are means of 3 replicates with standard errors represented with

bars. TPH = total petroleum hydrocarbons.
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Figure 7. The interaction of crude oil contamination and vegetable species on citric acid content.

In the interaction, values are means of 3 replicates with standard errors represented with bars. TPH

= total petroleum hydrocarbons.
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Figure 8. The interaction of crude oil contamination and vegetable species on malic acid/citric acid

ratio. In the interaction, values are means of 3 replicates with standard errors represented with bars.

TPH = total petroleum hydrocarbons. Error bars for the bottom line are included in the space taken

by the symbols.
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Figure 9. The interaction of crude oil contamination and vegetable species on chlorophyll a. In the

interaction, values are means of 3 replicates with standard errors represented with bars. TPH = total

petroleum hydrocarbons.
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Figure 10. The interaction of crude oil contamination and vegetable species on chlorophyll b. In

the interaction, values are means of 3 replicates with standard errors represented with bars. TPH =

total petroleum hydrocarbons.
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Figure 11. The interaction of crude oil contamination and vegetable species on total carotenoids

content. In the interaction, values are means of 3 replicates with standard errors represented with

bars. TPH = total petroleum hydrocarbons.
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Figure 12. The interaction of crude oil contamination and vegetable species on chlorophyll a/b

ratio. In the interaction, values are means of 3 replicates with standard errors represented with

bars. TPH = total petroleum hydrocarbons.
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