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ABSTRACT

Submerged arc weld deposits were produced using a 40 mm thick
low Sulphur, low Fhos sphorous, Carbon Manganese microalloyed steel
to B.S. 4360 : 50D, The welding consumebles used were a 4 nm diameter
C. 13% ¥n Wire (SD3) in conjunction with the 0P 41 TT. 'fully ‘basic' flux.

Two series of three welds were made at three different calculatad
heat inputs of 5.8 KJ/mm, 3.9 EJ/mm and 2.9 KJ/mn. For the first series
.the welding current was kept constant at 650 amp and the welding speasd
was varied from 200 mm/min to 400 mm/min. For the second series the
-welding speed was kept constant at 3500 mr/mln, but the welding cu;rent
varled from 850 amp to 480 amp..

For both the sub-surface and root regions of each weld the
relationship between weld metal post solidification cooling cycie,
transformation temperature, weld metal microstructure and toughness
vas examined and it was shown primarily that there is not a simple
relationship between heat input as conventionally measured and the
weld metal cooling cycle. .

The weld metal cooling cycle was found to be dependent upon
various factors such as :

1. The actual heat 1Pput measured in terms of weld metal
bead. volume.

2, Weld bead shape measurasd in terms of width to devnth ratio,
I , p

3., Flux consumption measured in weight of the slng remo*ed
per unit volume of weld bead.

L, The reletlonshlp between the size of the weld bead and ths
- geometry of the immediately surrounding p7at

5. The post solidification thermal effects imposed by the:
subsequent weld runs.

From the thermal analysis measurements made whilst welding was
in progress, two transformation reactions were }dentlfled A high
temperature transformaticn cccurirng at approximately 850°C identified
by subseguent meitallographic examinations as the pro-eutecteoid ferrite
transformation, and a low temperature transformation cccuring at
approximately 65800 identified as the -acicular ferrite phase trans—
formation. ’ ' ’

The thermal analysis results also showed that ‘the weld metal _
cooling rate had an effect on the weld metal transformation temperatures.
For each transformation an increase in the weld coollng rate lead to a
depression of the transformation temperature.

The present results indicate that the most desirable'welding
~condition from a toughness point of view, should wlve a2 weld metal
cooling cycle which was "slow" fer the 14 :00°C - 900 C uemperabure



.range, but "fast" below the temperature of 900°C.  This would lead
to a microstructure formed of larze colummar grains,. but with a
high acicular ferrite volume fraction. v

All welds showed a through thickness toughness variation. These
differences in the through thickness properties were mainly attributed
~to the large differences in the thermal history between the sub-surface
and the root beads which in turn lead to different m1cros+ructures,
the sub-surface beads xere formed by a larger colummar grain and =
higher volume fraction of acicular ferrite than the root beads. The
- root beads Charpyv V specimens also contained some refined equiaxed
ferrite grains while the sub-surface Charpy V specimens -contained
solely as deposited weld metal. These differences in the microstructure
features beiween the sub-surface and the root beads in turn appear to
be, for the present welds, the main cause for the differences in the
through thickness properties. _ :

The overall conclusion from the present work is therefore that
the weld metal deposits made at the same calculated heat input do
not necessarily show the same toughness properties. This results from
the fact that the cooling cycle, transformation temperature and amount
of weld metal reheated by -the subsequent runs are determlned by the
precise welding conditions. ,
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INTRODUCTION

The submerged arc welding process was independently developed
in the U.S.A. and U.S.S.R. in 1935 (1). 1In this welding process the
arc is formed between a continuously fed bare wire electrode and
the work piece. The welding arc is completely submerged uunder a
granulated flux which provides arc shielding and a protective slag.
For most applications the welding current used varies betwsen -

250 amp. and 1000 a=mp. D.C. But welding currents of up to 2,000 anmp.
can be used however in this case A.C. is used to prevent arc dlow {(1).

The main attraction of this welding process is its high
deposition rate, but since this is a fully antomatic process it
can only be used in the down-hand position or if the work piece
is rotated so as to get the joint in the down-hand position.

" In order to use submerged arc welding for the most eritical
structural applications it is necessary to ensure that this process
can deposit weld metal capable of meeting the requirements stipulated
by the relevant codes of practice, e.g.: BS 5500.

The necessity of meeting this requiremeat lead to an extensive
development of welding consumables and. operating procedures.
Although the correlation between operating procedure and weld metal
properties is now generally well established there are still some
aspects of this relationship which require further investigation.

In order to clarify some of these aspects in micro alloy
carbon mangenese steels, the following work was carried out using =
carbon manganese welding consumable in conjunction with a basic flux.
The aims of this particular work are :- E

1. The effect of weld metdl heat imput on weld metal
fracture tsughness. . ~

2. The difference in fracture toughness of the weld metals
produced at the same calculated heat imput but a*
different wnldlnv condition.

3. The wvariation in toughness through the thickness of
‘weld metals in thick sections.



LITERATURE SURVEY

Introduction

The fracture resistance of weld metals is determined by a
large number of factors which are closely releted and interdependant
but for convenience these factors will be examined 1qdependnnt1y
in the following order :-

Weld Metal Microstructure

Weld Metal Chemical Composition
Weld Metal Inclusions

Weld Metal Stress Field

Welding Procedure

Welding Flux composition
Welding Electrode Composition.

Weld Metal Microstructure

As the weld pool cools down the solidification structure in
carboh manganese microalloyed steels is formed by a series of &
ferrite colummar grains. This phase subsequently transforms into
an autensite phase which in turn will again transform into a number
of other metallurglcal phases according with the weld metal chemical
comp051t10n and cooling rate. :

Solidification Structure

In carbon manganese weld metal this structure consists of a
series of § ferrite columar grains stretching inwards from the
fusion boundary. These colummar grains generally develop with a ,
common crystallographic direction along their axis and are separated
by high-angle boundaries. In some cases the colummar grains meet
at the weld centre line, but in other cases independently
nucleated grains form at the weld centre (2). 'This structure is
therefore the starting point and consequently may play a significant
role in the subsequenti transformation structures. For this reason
the solidification mechanism will be examined. But since very
little work has been done in the solidification structure of sub-
nerged arc welds, the solidification pattern will have to be
deduced largely from other processes and materials.

Calvo @t al {3) reported that the growth made in solidificating-
weld metals varied according to the degree of superccoling. The
initial thermal gradient at the fusion boundary led to a cellular
solidification mode., The decrease in thermal gradient towards
the centre of the weld pool led to a transition frem cellular
to dendritic growth. In the centre of the weld pool dendrites
can nucleate ahead of the ~clidification front, :

‘Savage et al (%) found using H~Y 80 and gas tungsten arc
welds as well as spot welds in Monel and auto body (mlld steel plaﬁe)
and Hostelloy 'N' that during solidification the nucleation event.
was insignificent and that epitaxial growth occured from the wnmeltad
base metal. The growth mode being determined by the resulting fusion



zone giructure.

In a subsequent work Savage et al (5) has shown that the
orientation of the individual grains at the edge of the fusion
zone in an arc weld are epitaxially related to that of the
adjacent incompletely melted grains at the edge of the heat-affected
zone, and that the process of competitive growth causes a tendency
for preferred crystallographic orientation c¢f the grains in the
fusion zone. These authors noted that the shape of the weld puddle can
profoundly influence the type of preferred orientation produced
during solidification since competitive growth favours those grain
with an easy growth direction aligned in the direction of maximum
temperature gradient.

' The solidification structure can thersfore be controlled through
the welding parameters as these will affect the thermal corndition
during solidification. One of the important aspects of controlling
the solidification process would be to influence the subseguently
transformed microstructures. This would be possible if as suggested
by Garland (7) the austenite colummar grains revealed by a continuous
band of ferrite related closely to the 8 ferrite grain which have
formed during solidification. However recent investigation (8)
has shown that this is not necessarily so. : '

‘Widgery (8) noted that only a proportion of the continusus
ferrite bands which are pro-eutectoid in origin in devosits which
solidify as & ferrite correspond to the original colummar

solidification boundaries. The same author sugzgested that two
processes oparate in the transformation of the & ferrite to
austenite. (2) - :

Firstly the austenite grains already present in the parent
material grow epitaxially into the weld metal as it cools. This
growth will tend to produce austenite colusmar grains because of
the steep thermal gradient from edge to centre of the weld, @nd
it is also possible for the austenite grains to grow across
ferrite boundaries. Secondly, nucleation and growth of austenite
can occur ahead of the grains growing from the weld edge and in
this situation the nuclei form or the high angle & ferrite
boundaries. If a nucleus grows into only one adjacent grain the
<& ferrite boundary is preserved as an austenite boundary bub if
the nucleus grows into both grains the & ferrite boundary is inst.

Similar results to Wedgery (8) were aiso found by Bermard et
al (9) using a carbon manganese steel and a submerged arc welding
process. These authors noted that the & ferrite columpar grains
had a . distinctly different corientation to that of the austenite
grain structure and therefore concluded that the austenite grain
orientation occured independently of the & ferrite orientation,
the austenite grain boundaries crossing the & ferrite grain boundaries
without avparent difficulty.‘ ‘ :

These authors suggested that the austenite grain structure is
not dependent on the & ferrite structure but on the thermal
gradient vhich existed during the formatiom of this structure.
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Therefore as shown by Widgery (8) and Bernard et al (9) it
seems unlikely to be possible to control the subsequent austenite
microstructure by means of the & ferrite struecture as these two
structures do not necessarily have-a close relationship. With
the possible exzcepiion that the initial ccoling rate which affects
the ¢ ferrite solidification structure may also affect the
microsegregation of alloying elements such as carbon, which in
turn may lead to regions of retained austenite and martensitic
phases as noted by Biss et al (27) in hot rolled bainitic steels.

Micro Segrepation during Solidification

Micro segregation of the solute elements is caused by‘solubility
differences in the solid and molten phases of one component in
another in a given alloy system (10).

This segregation of impurity elements cgﬁ lead to the formation
of solid impurity films which may crack under the contracting siress
due to solidification. (11) - '

-Borland (12) found that the tendency for solidification cracking
in welds depended on the quantity and distribution of liquid around .
grain boundaries during freezing though a eritical solidification
range. In this temperature range the crystal network is extensive
and therefore the liquid mobility restricted to such en extent that
if crack occurs, they can no longer "heal™. ‘This author suggasted
that if almost continuous films of liquid were present high stresses
- would build up and the narrow bridges between dendrites and micro-
- crack were likely to occur but with less continuous films higher
stresses are required to cause cracking. This author also correlated
the liquid distribution during cooling with of the interphase
(solid‘» liquid) and grain boundary energies and noted that -

3SS 2 cos %*-

= IS 1

YIS - 1liguid solid interfacial energy
JSS - grain boundary energy

©
Low values of T {slightly above 0.5) are éxtremel& harmfui

while high ratios (0.57) are beneficial since the liquid is restricted
te train edge and cormers. : '

dehedral angle.

These results were also confirmed by Rogerson et al (6) using
_Al-Su, and Al Cd and Al-In alloys. These authors noted that alloys
which gave the lowest dehedral angles aiso showed the greatest
severity to cracking in both welds and castings. Alleying additions
which lead to an increase in the dehedral angle also lead to a
reduction in cracking. These authors concluded that the shape of
‘the intergramular liquid regiomns present during solidification of
welds and castings is one of the metallurgical factors determining
the tendency to hot cracking.






































































































































































































































































































































































































































































































































































































