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Abstract

Water droplets in vertical pipes have been investigated to assert the accuracy of a newly developed Lagrangian
model for dispersion and deposition implemented in the Open source CFD code OpenFOAM. The transient evolution
of the particles dispersion and concentration has been studied for the combined e�ects of Brownian motion and
turbulent dispersion. A parametric study of mesh density has been performed and the influence of the isotropic
representation of turbulence discussed. Simulated results have been compared to experimental data from the literature
and to results generated with a commercial flow solver. A new model has also been developed to predict the evolution
of the droplet concentration and deposition in pipes, based on a statistical description of the dispersion.
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1. Introduction

Numerical methods able to predict the motion of droplets in a turbulent viscous flow are of major interest for
numerous industrial applications, including hydrocarbon transportation in pipelines. Several simulation methods have
been developed, tested and published, each method focusing in some specific aspects of these complex flows. A
review of various techniques used to simulate such flows is provided by Loth (2000).

Dallali & Armenio (2015) performed a two-way coupling Euler-Euler Large Eddy Simulation (LES) of particulate
transport. They showed the e�ects of the near-wall structure and particle size on the concentration in a channel. They
also showed how the particles a�ect and are a�ected by turbulence. Vreman (2007) conducted a four-way coupling
when considering a two-phase flow in a vertical pipe and a Lagrangian approach. Further to turbulence e�ects, he
studied the influence of various mass loadings on the flow. He proposed corrections for the discrepancies between
simulation and experimental results. He also studied the turbulence attenuation in high mass loading flows, resulting
in the disappearance of the high near-wall concentration, usually caused by turbophoresis. His simulations were
based on a DNS (Direct Numerical Simulation) and included forces which are often omitted, such as the inter-particle
drag. The same author (Vreman, 2015) further studied the turbulence attenuation by particles and investigated the
impact of a rough wall on it, and gave a special attention to the feedback force (in particular in the determination
of the contribution of the non-uniform part of this force). Marchioli & Giusti (2003) performed a DNS study of a
Lagrangian-based pipe flow deposition. This study allowed to correlate the sweeps and ejections events with the flux
of particles going towards the wall or being driven away from it. They were able to predict accurately the deposition
velocity for particles of particle relaxation times greater than 3. They were thus able to show the acting forces in the
deposition by studying the particle residence time near the wall. Picano et al. (2015) discussed the influence of the
particle volume fraction on the mean flow quantities, based on a DNS perfromed with an immersed boundary method
in a channel. More recently, De Marchis et al. (2016) conducted a DNS of Lagrangian particles in a geometrically
rough domain to study particles reaction under the turbulence created by the geometry. They reported the PDF of the
stream-wise and wall-normal particle velocities in the bu�er layer; these are significantly di�erent depending on the
particle Stokes number. They allow to understand how each particle size moves into a di�erent pattern.
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DNS is the most accurate approach for studying the physics of the flow in pipes and other geometries. However, it
is a time consuming technique, as detailed by Milici et al. (2014), who conducted a flow study in a rough channel. For
most industrial applications, such detailed study is usually unnecessary. A compromise is often obtained with LES
but this approach is also more time consuming than Reynolds Average Navier-Stokes Simulations (RANS). This has
been demonstrated by Vijiapurapu & Cui (2010) for simulations in a rough pipe where the authors claimed that a LES
was three times longer than a Reynolds-stress based (RSM) simulation.

LES has not been used as the objective of the research presented here is to demonstrate that particle dispersion and
deposition can be obtained through averaged methods, i.e. using RANS. Bearing in mind that some of the information
related to turbulence is lost when using this approach, a simplified statistical model has been created to predict the
deposition (mass rates and localized deposition sites) and concentration of droplets in a section of pipe.

The transport of particle can be studied from either an Eulerian or a Lagrangian point of view. While Eulerian
approaches are widely used in multiphase flow applications due to their ability to deal with a large volume fraction of
the particulate phase, a Lagrangian framework is preferred for accurate predictions, the forces being applied directly
on each individual droplet (Gouesbet & Berlemont, 1998; Zhang & Chen, 2007; Doisneau et al., 2013). The access
to particle statistics using a Lagrangian representation of the dispersed phase is also easier. In addition, it o�ers
more control over the numerical implementation of the turbulence-induced particle dispersion and other localized
e�ects. The turbulent dispersion plays a major role in the evaluation of the droplets dispersion and deposition, and is
dependent on the particle relaxation time (Young & Leeming, 1997). For these reasons, the Lagrangian approach has
been preferred over the Eulerian approach.

The open source software OpenFOAM (Weller & Tabor, 1998) has been selected as it o�ers the possibility to
create, modify and implement models which might not be available in current commercial flow solvers. Droplet
deposition results have been compared to those obtained with the industry standard CFD code FLUENT (2014) and
with experimental data from the literature. In the following, a model is also proposed to predict the evolution of droplet
concentration field and deposition rates. The objective is to establish a simplified model to predict the concentration
pattern and deposition rates based on the statistical representation of the dispersion. This model has the advantage of
requiring a simple RANS simulation to predict the average flow quantities and average turbulent intensities.

Information on fluctuations having a major impact on the particle motion which are lost when running a RANS
simulation, can be modeled in the near-wall layer (y+ < 20) where the statistics of fluctuations are significantly
di�erent than those in the bulk flow (Herpin, 2009; Jin et al., 2015). However, an alternative method has been used in
the present work, based on the Lagrangian Integral Timescale; this is described in details in Section 3.2. Such approach
has been widely used and works reasonably well, see Lecrivain & Hampel (2012) for details. Thus, by tuning the near
wall lagrangian integral timescale, the e�ects resulting from a modification of the near-wall fluctuations PDF could
be modeled.

Note that the dispersed phase concentration field can be reconstituted from a Lagrangian field, for instance using
one of the methods reviewed by Marshall & Sala (2013). This approach is mainly developed for low dispersed phase
content as the flow conditions (in particular the turbulence) are modified by the particle fraction (Picano et al., 2015).
However, the method presented here could be adapted to a higher dispersed phase content.

2. Flow conditions

Experiments were carried out by Liu & Agarwal (1974) in a 1:016 m long vertical pipe with a 12:7 mm internal
diameter. However, it has been established that a 1:016 m long pipe was not long enough to perform a complete
and accurate study (Matida et al., 2000). The length of the pipe has therefore been increased to 5 m. This has been
found to be long enough to get accurate data for all droplet sizes. A mesh sensitivity analysis has been carried out
to ensure that the evaluation of the flow fields (e.g. velocity, kinetic turbulent energy, turbulent dissipation rate) were
not dependent on the grid density. Figure 1 shows the fully developed velocity profiles obtained for di�erent regular
meshes created with IcemCFD. Although the mesh comprising 464; 000 cells could have also been selected, the one
comprising 760; 500 cells has been chosen as it was expected that it would produce a better evaluation of the droplets
transport and deposition. This mesh is constituted of 100 cells of size 5 cm in the axial direction, 7; 605 cells in the
radial direction (5 cm long at the center, y+ ’ 471), and is refined next to the wall to ensure that the non-dimensional
cell height is y+ ’ 1.
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Figure 1: Mesh independence study

Simulations were performed with the flow conditions written in Table 1. Periodic boundary conditions were
applied at the inlet and outlet sections of the pipe to ensure that the flow was fully developed inside the whole domain.
The SIMPLE algorithm was run until convergence, with a convergence criterion of 10�6.

Table 1: Flow conditions for air in pipe

UG � f � f T Re
(m=s) (kg=m3) (m2=s) (oC) (�)
15:66 1:2 1:534 10�5 21 15; 000

Several turbulence models implemented in OpenFOAM were tested. The Launder-Sharma k-" (Launder &
Sharma, 1974) and the shear stress transport (SST) k-! (Menter, 1993) models were both able to predict a pressure
drop in agreement with the Blasius correlation for smooth walls:

�w = 0:3164 � Re�1=4 � � f U2
bulk=8 ; (1)

which predicts a wall shear stress around 1:08 Pa, leading to a pressure drop of 344 Pa/m.

Flow simulation results obtained with OpenFOAM have been compared to those from FLUENT, considering the
same mesh and the k-! SST turbulence model for both software. The SST formulation combines: i) the use of a
k-! formulation in the inner parts of the boundary layer which makes this model directly usable in the viscous sub-
layer and can therefore be used as a Low-Re turbulence model , and ii) a switch to a k-" model in the bulk flow and
therefore avoids sensitivity problems encountered by a k-! formulation due to inlet turbulence properties (FLUENT,
2014). Figure 2(a) shows the corresponding mesh and Figure 2(b) the velocity profiles obtained with the open source
and the commercial flow solvers. As can be seen, the velocity profiles are identical, this provides confidence in the
flow settings and calculation with OpenFOAM.
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(a) Mesh detail
(b) Velocity profile comparison between OpenFOAM and Fluent

Figure 2: Mesh and velocity profiles obtained with OpenFOAM and Fluent
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Figure 3: Non-dimensional axial velocities for various turbulence models in a 12.7 mm id pipe

Figure 3 compares the simulated velocity profile with the universal non-dimensional velocity profile. Several
correlations have emerged from the literature to represent the regions where y+ > 30 and several of the most usual
ones are plotted here. It can be seen from this figure, that the computed profile is fairly close to the expected values.
Note that the simulation data have been non-dimensionalized using the estimated friction velocity, which could explain
the presence of a slight o�-set. Figures 4 and 5 show the turbulent kinetic energy k and the specific rate of dissipation
! used in all simulations. As the k � ! SST model has been selected, ! is presented instead of the commonly shown
turbulent kinetic energy dispersion rate " = C�k!, where C� is the constant used in the k � " model (often equal to
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0:09). The turbulent kinetic energy dispersion rate can indeed often be seen as an asymptotic droplet di�usivity value
for droplets that closely follow the flow (Paras & Karabelas, 1991). Additional details are provided in Section 4.2.

Figure 4: k in J=kg along y+ Figure 5: ! in rad=s along y+
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Figure 6: Dimensionless turbulent kinetic energy for various turbulence models in a 12.7 mm id pipe

Figure 6 compares the computed non-dimensional turbulent kinetic energy with results from Kim et al. (1987).
The di�erences (in amplitude and peak abscissa) are expected as the k�! SST turbulence model has been reported to
show this behaviour (Hrenya et al., 1995; Kalitzin et al., 2005). Despite all these limitations, successful predictions
of droplet transport have been achieved with similar methods (Matida et al., 2000).

When the flow has converged, droplets are injected in the gas core for one second to ensure all of them have either
deposited or have left the domain. To match experiments from Liu & Agarwal (1974), the disperse phase considered
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here is olive oil (�p = 920 kg=m3) with droplets diameters ranging from 1 nm to 68:5 �m. The evolutions of three
specific drop sizes, representative of the whole range of behaviours, have been specially monitored. As low droplet
concentrations are present, it is assumed that droplets do not interact with the flow. A one-way coupling is therefore
applied.

3. Lagrangian conditions

3.1. Droplet motion equations
The transport of particle, given by Equation 2, is called the BBO, i.e. the Boussinesq, Basset and Oseen equation:

m
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whereV represents the particle volume, FLi the lift force and Fi any other force unaccounted for. The BBO equation
can be simplified based on the following assumptions:

- The droplet volume is su�ciently small so that the virtual mass term can be neglected,
- The density of the particles is much higher than the density of the carrier fluid: �p � � f .

A simple equation can usually be retained to describe the particle motion in the core flow:

dup

dt
=

u f � up

�p|   {z   }
Drag e f f ects

+ f|{z}
other f orces

; (3)

where �p is the particle response time defined by:

�p =
4
3

�pd2
eq

�G

1
CDRep

; (4)

with deq the aerodynamically equivalent particle diameter and CD the drag coe�cient. For liquid drops, an alternative
�p is used:

�p =
4
3

�pd2
eq

�G

Cc
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� f
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�
2� f
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1CCCCCCCCCCA : (5)

The particle response time �p expresses the ability for a particle to follow the flow. Equation 3 is valid when the flow
seen by the particle has a low Reynolds number. In this regime, Stokes flow approximations apply (CD = 24=Rep)
and the drag force is proportional to the relative velocity u f � up. Near-wall corrections from Ahmadi & McLaughlin
(2008) have been applied with the Faxen correction defined as:

CDRep = 24
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; (6)

where h is the distance from the particle center to the nearest wall. For particles of size comparable to the carrier
fluid mean free path (or smaller), the Brownian motion has to be taken into account along with the drag slip factor
of Cunningham, which depends mainly of the mean free path. The following forces have been used, modified or
implemented in OpenFOAM to compute the motion of the particles:
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- Drag force that accounts for sphere drag with the Cunningham factor auto-calculated with medium properties,
near wall corrections and valid for droplet-based Reynolds numbers less than 1 (Stokes regime),

- Gravity e�ects,
- Sa�man-Mei lift force for spheres (Pang & Wei, 2011) ,
- Virtual mass e�ects,
- Pressure gradient force,
- Brownian motion, providing the mean free path � or the medium molecule inter-spacing.

The e�ects of lift can be important (Gupta & Pagalthivarthi, 2006); the lift force should ideally include the e�ects
of lift due to particles rotation. However, for the sake of simplicity, no droplet rotation was assumed in the current
simulations.

The numerical integration commonly used to solve Equation 3 is detailed in Graham & James (1996). The instan-
taneous particle velocity up includes the particle fluctuation u0P, which arises from the turbulent dispersion influencing
the droplets, see Section 3.2.

The dimensionless particle relaxation time defined as:

�+
p =

�p (U�)2

� f
(7)

is used to characterize the droplet behaviour independently of the flow conditions. Since only particles diameters vary
in the current study, their behaviour can be directly associated with their size. For small droplets, where �+

p is less than
0:3, the Brownian motion, the Stokes-Cunningham drag, and the thermophoretic forces are important. For medium
size droplets (0:3 � �+

p � 20), Stokes drag, thermophoretic, lift, pressure gradient, centrifugal forces, conservation of
angular momentum along with the turbulent dispersion should be taken into account. For large drops, where �+

p > 20,
the Stokes drag, lift, pressure gradient, centrifugal, mass added forces, conservation of angular momentum and weight
should be included (Matida et al., 2000).

3.2. Turbulent dispersion - Eddy-particle interaction

In turbulent flows, the carrier fluid velocity influences highly the particles motion. Even if Lagrangian statistics
can be obtained (Govan et al., 1989), it is often easier to obtain the Eulerian description of the main fluid fluctuations
rather than the Lagrangian fluctuations of the disperse phase. Intuitively, as the particles are carried by the fluid, the
Lagrangian statistics should be related to the Eulerian ones. This implies that the Lagrangian auto-correlation should
converge to the Eulerian auto-correlation when a particle becomes a “fluid particle”. However, for large particles or
when the ratio of densities becomes important, the correlation with the Eulerian field should become more distant,
as particles are more likely to have uncorrelated velocities with the flow. Based on the particle velocity field (Crowe
et al., 1998), the auto-correlation function RP can be defined as:

RP(x; t) =
huP(x; t)uP(x + �x; t + �t)i


uP(x; t)2� ; (8)

where uP denotes the particle instantaneous velocity. Considering the stationary turbulent field imposed by the flow,
the particle auto-correlation function can be written:

RP(x; t) = RE(x) � RL(t) ; (9)

where RE and RL express the Eulerian spatial and Lagrangian temporal auto-correlations, respectively. The deter-
mination of RL can be obtained in di�erent ways. For instance, Govan et al. (1989) provide a measurement of this
correlation, with the following general form:

RL(t) = e�
t
� ; (10)

where � can be taken as �P, the particle relaxation time. Other formulations exist, such as the Berlemont et al. (1990)
one, which uses Frenkiel’s family of correlation function. The determination of RE is obtained from the two-point
auto-correlation function for homogeneous isotropic turbulence.
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Taylor (1922) developed the idea of linking the Eulerian turbulence statistics to the Lagrangian turbulent dispersion
for a homogeneous isotropic turbulent flow, see also Dosio et al. (2005) and Koeltzsch (1998). Taylor was thus able
to determine the variance of the particle displacement in any direction and for small Stokes number particles:

var (xr) (t) = 2
p

var (u0)
Z t

0

Z t0

0
Rr

L (�) d�dt0 =

8>>>><>>>>:
ū02t2 if t << TL (11a)
2ū02TLt if t >> TL (11b)
dependent on the correlation otherwise (11c)

where var expresses the variance (using a spatial average) and u0 denotes the fluctuating velocity. The superscript r
shows that only the radial direction is considered here. This spreading result can be recovered using the Langevin
equation:

du
dt

= �
u

TL
+

r
2:var(u)

TL
n(t) ; (12)

where n(t) is a Wiener process (Szabados, 2010) and TL is the Lagrangian integral time scale:

TL =

Z 1

0
RL (�) d� : (13)

Once determined, the auto-correlation function can be used to alter the particle velocity (obtained from Equa-
tion 3), by adding a fluctuating part u0P:

un+1
P = un

P � RP + u0P ; (14)

with u0P defined as:

u0P = ue

q
1 � R2

P� : (15)

� is a random number following the standard normal distribution and ue =
p

2k=3, which is representative of an eddy
velocity.

Other approaches to evaluate RL are possible. One of the most common ones is to consider the flow as a set of
eddies interacting with any particle in its vicinity. This interaction generates a constant fluctuation velocity on the
particle until it leaves the eddy or until the eddy dies. When this happens, another random velocity is applied to the
particle. A popular scheme for this eddy interaction model is discussed in Gosman & Ioannides (1983), where the
constant eddy-lifetime is based on a linear approximation of RL. Using the “constant Eddy lifetime model” is similar
as having the following linear correlation (Graham & James, 1996):

RL(�T ) = 1 �
�T
2TL

: (16)

The time of interaction, i.e. the laps of time during which a particle keeps the same fluctuation, can be written as:

Tinteraction = min (�c; �e) ; (17)

where �c is the crossing time and �e the eddy-lifetime:

�e = 2TL ; (18)

with TL the Lagrangian integral time scale:

TL = CL
k
"
: (19)

Di�erent values of time scale constant CL can be used, depending on the type of turbulence model selected. In
most cases, a value around 0.32, as proposed by Hinze (1975), is suitable. Note however that the FLUENT (2014)
manual specifies a default value CL = 0:15 and advises to apply CL = 0:30 when using the Reynolds stress turbulence
model.

OpenFOAM assumes that the Lagrangian integral time scale TL is zero at the walls. However, it has been proven
that this assumption is not valid (Bocksell & Loth, 2006). Thus, for y+ < 5, a constant adjustable value T +

L is usually
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taken around 2.5. For y+ > 100 the description from Equation 19 applies. For 100 < y+ < 5 , a quadratic correlation
such as the one suggested by Kallio & Reeks (1989) and applied in this work, can be used:

TL =

8>>>>>>>>>>>>><>>>>>>>>>>>>>:

2:3
0BBBB@r� f

�

1CCCCA
wall

if y+ � 5 (20a)

�
7:122 + 0:5731 � y+ � 0:00129 � y+2

� 0BBBB@r� f

�

1CCCCA
wall

if 5 < y+ < 100 (20b)

CL
k
"

otherwise (20c)

Note that there is a discontinuity for y+ = 5 in the model presented here. However, this discontinuity does not a�ect
much the results. TL could have been made continuous, for instance, with a quadratic interpolation, as proposed by
Lecrivain & Hampel (2012).

As stated previously, a particle will follow the same velocity fluctuation until the eddy dies (interaction time
greater than eddy lifetime) or until the drop leaves the eddy. When the particle leaves the eddy before the end of the
eddy lifetime, which is expected to be more frequent for “large” particles, it will follow a new velocity fluctuation.
The “crossing time” �c is the time for a particle moving at the eddy relative velocity, to travel at the characteristic
length of the eddy Le:

�c = ��p ln

0BBBBB@1 � Le

�p

���u f � up

���
1CCCCCA ; (21)

with

Le = C�
k3=2

"
: (22)

Using Equations 18 and 21, the local particle turbulent interaction time can be evaluated from Equation 17.

The models described above are all based on the turbulent kinetic energy. This approach can show limitations
for cases where the turbulence is anisotropic (Kallio & Reeks, 1989). Although not applied for this work, enhanced
models use the Reynolds tensor components. For a numerical approach, this requires the use of a Reynolds Stress
model or the use of the Boussinesq approximation. For pipe flow studies, it is a common practice to use the radial
component and to define a radial Lagrangian integral time scale such as in Tian & Ahmadi (2007):

TLr = C2
v0v0

"
; (23)

where C2 is, according to Matida et al. (2000), close to 1.

3.3. Di�use dispersion - Brownian motion

The Brownian motion is the main actor in the di�use dispersion of droplets. Any molecule having a temperature,
experiences a small random motion or oscillations. For particles small enough to see the carrier fluid as a discontinuous
phase of agitated particles, the Brownian force may exist. This force results from the collisions of such fluctuating
particles. A common formulation can be written, considering the vector Fb of components Fbi :

Fbi = �i

r
�S 0

�t
; (24)

where �i are zero-mean, unit-variance-independent Gaussian random numbers and S 0, the spectral density, defined as:

S 0 =
216�kBT

��Fdp
5
�
�P
�F

�2
Cc

; (25)
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with the Cunningham slip correction factor:

Cc = 1 +
2�
dp

�
1:257 + 0:4e�1:1dp=2�

�
: (26)

When a particle no longer sees the carrier fluid as a continuous medium, the “no-slip” condition stops being valid
and the Cunningham slip factor is used to correct this.

The di�usion process has been characterized by Einstein (1905) as well as the square root of the geometric mean
of the squares of the displacements in a direction, as it follows:q

x2 =
p

2Dt ; (27)

where D is the di�usion coe�cient. To test the Brownian motion model implemented in OpenFOAM, a droplet size
distribution has been chosen to include sub-micron-particles, with droplets ranging from 1 � 10�9 m to 68 � 10�6 m.

4. Lagrangian simulation results

4.1. Dispersed flow results

Ten thousands mono-dispersed droplets have been released from the center of the inlet section of the vertical pipe
with the flow going downwards. This injection has been repeated for each particle size considered. This number of
particles injected reduce the computational cost of the Lagrangian simulation, without impacting much the averaged
deposition velocity (Lai & Cheng, 2007). For the sake of clarity and to limit extensive post-processing, only results
from three representative drop sizes are discussed in the following section. The particle-wall interaction is set to stick:
once the distance between the particle center and the wall is equal to the particle radius, the particle velocity is set
permanently to zero. Furthermore, there is no re-injection of parcels once a particle deposits. Due to the low number
of parcels and because particles do not bounce on the walls, the number of parcels decreases with the distance to the
injection point. Injecting such a low number of particles (10 000) in the domain has been motivated by three major
points. First, this allows a direct comparison with the work of Matida et al. (2000), who used the same number of
particles. Secondly, it appeared interesting to establish the minimum number of parcels to inject from the center of
the inlet section (farthest distance to the walls) to obtain reliable results (or when the deposition velocity becomes
independent of the number of parcels injected). Finally, based on the number of parcels injected and their initial
location, the resulting concentration field could be analysed.

4.1.1. Cross-section droplet statistics
The dispersion is a measure of the droplet cloud spreading in the pipe, but could also be seen as the evolution

of the droplet cloud position moments in time and space. Being able to describe the droplet dispersion renders the
prediction of the droplet concentration field possible and therefore the droplet deposition. Mechanisms primarily
important in the droplet isothermal dispersion are the Brownian motion, the turbulent dispersion and the convective
transport. There are several ways to describe dispersion, either spatial, temporal or based on a spectral analysis. The
spatial and temporal evolutions of the dispersion are discussed here.

The positions of the droplets of size 0:5 �m and 7:8 �m and their associated radial distribution have been evaluated
at various axial sections of the pipe. The objective was to establish a general way of describing the shape of the
transient and steady state dispersion patterns for a large range of droplet sizes. It is important to find a universal radial
distribution shape, which would be valid to describe the whole evolution of the dispersion. The evolution of the first
three statistical moments are reported in the next section. Note that if the general expression of the radial distribution is
known and is combined with the reported moment variations, the droplet concentration field (and resulting deposition)
can be determined at every point in space and time.

The probability for a droplet to be in a radial interval is a random variable. It can be deduced by counting drops in
bins, distributed along the pipe radius.
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(a) early dispersion x = 0:14 m (b) medium dispersion x = 1:008 m (c) late dispersion x = 2:54 m

Figure 7: Spatial evolution of the radial dispersion - 0:5 �m droplets

(a) early dispersion x = 0:14 m (b) medium dispersion x = 1:008 m (c) late dispersion x = 2:54 m

Figure 8: Spatial evolution of the radial dispersion - 7:8 �m droplets

(a) early dispersion x = 0:14 m (b) medium dispersion x = 1:008 m (c) late dispersion x = 2:54 m

Figure 9: Spatial evolution of the radial dispersion - 68:5 �m droplets

Histograms displayed in Figures 7 to 9 were produced by generating a 0:0255 m wide clip of the droplet pathlines
and filtering them to keep one point only per droplet. All early dispersion profiles in these figures are similar, even
though they do not necessarily develop at the same speed. After some time in the dispersion process, the radial
distribution begins to be dependent on the droplet size.

Three zones are visible when the equilibrium state is reached: i.) a common dispersion shape, up to 0:005 m, ii.)
a drop size dependent shape between 0:005 m and 0:006 m and iii.) a wall droplet build-up, common to all droplet
sizes, but with various amplitudes. These regions seem consistent with the 3 layers described by Equation 20.

No satisfactory universal distribution has been found yet to represent at once all those states. A more detailed
study should be devoted to that purpose only. A linear combination of several distributions will allow a finer and
complete description of the previously described evolutions. However, such approach has not been investigated here.
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The polar representation of the droplets positions illustrates how a radial distribution is represented in a disk area.
Since 10,000 drops only are injected in the domain and since they stick to the wall when they reach it, too few of the
68:5 �m drops are present near the outlet section of the pipe (most of them deposit between 1 and 2 m), rendering the
analysis very di�cult for droplets of this size. However, the analysis has been performed for the medium and small
drop sizes considered here. Figure 10 shows the resulting polar representation from a profile similar to Figure 7(c)
for the 0:5 �m droplets. The associated droplet surface concentration is represented by an histogram on Figure 11.
Similar plots are obtained for the 7:8 �m droplets, see Figures 12 and 13.

Figure 10: 0.5 microns droplets positions at the pipe outlet
section

Figure 11: Radial surface concentration: 0.5 microns

Figure 12: 7.8 microns droplets positions at the pipe outlet
section

Figure 13: Radial surface concentration: 7.8 microns

The histograms on Figures 11 and 13 represent 100 pipe angular sectors of identical width (annuli areas). Sectors
close to the center of the pipe therefore have a smaller cross-sectional area than sectors next to the walls. Each
vertical bar represents the number of droplets collected in each annuli sector divided by the annuli surface. The polar
representation is achieved through clipping the droplets pathlines data one centimetre far from the outlet section and
projecting the mean position of each droplet pathline onto a 2D surface.

In all cases, droplets are mainly concentrated around the center axis of the pipe, the concentration decreasing as
the annuli area increases from the pipe center to the wall.

4.1.2. Droplet dispersion
The previous section has described the general aspect of the cloud dispersion, particularly in its equilibrium state.

Measuring the spatial and temporal evolutions of the radial dispersion moments leads to an estimate of the cloud
dispersion.
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The time evolution of the moments (mean radial position of the drops for a given time), the variance (axial) and
the skewness are provided in Figures 14, 15 and 18. The continuous lines displayed on these figures represent the
exponential fit curves for the data obtained numerically. A similar general behaviour can be seen in all plots: a starting
transient phase followed by a relatively flat profile. The spatial evolutions shown in Figures 16, 17 and 19 display
a straight pattern, less noisy than the time profiles. It can be seen that the droplet dispersion needs some time and
some distance to reach an equilibrium state characterized here by the moments being constant. For the drop sizes
investigated, a time of 0.2s and a distance of about 3m are necessary to get a fully established droplet dispersion.
As expected, the dispersion of the largest droplets require more time to reach an equilibrium state. Near the end of
each time profile, the data oscillate highly. Such variation is not clearly visible in the spatial distributions. This final
de-coherence can be explained by the lack of particles near the end of the simulation, making any statistical analysis
unreliable at the end of each simulation.
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Figure 14: Time evolution of the mean radial position of
droplets
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Figure 15: Time evolution of the variance of the radial position
of droplets

Figure 16: Spacial evolution of the mean of the radial posi-
tions
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Figure 17: Spacial evolution of the variance of the radial po-
sitions
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Figure 18: Time evolution of the skewness of the radial posi-
tions
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Figure 19: Spacial evolution of the skewness of the radial po-
sitions

To match the data plotted from Figure 14 to 19 and create a statistical model, exponential-based functions can
be used; they are represented by plain lines on the figures. It is supposed that the variance and the mean variation
follow an exponentially growing function A (1 � exp(�t=�A)) while the skewness is assumed to follow a decreasing
exponential B exp(�t=�B) + C. Such exponential functions can be established, based on the overall shape of the
evolution of the moments (variance, mean variation and skewness) which follow an exponential pattern. Furthermore,
intuitively, an exponential law can generally be used in phenomena where an equilibrium value is asymptotically
reached. The corresponding fitted values of A, B, �A, �B and C are written in Table 2.

Table 2: Fitting function parameters A, B, �A, �B and C

Drop diameter [�m]
Moments 0.5 7.8 68.5

spatial mean A �A A �A A �A

0:0036 0:22 0:0036 0:257 0:0039 0:53

spatial variance A �A A �A A �A

2:66 � 10�6 0:23 2:57 � 10�6 0:265 2:9 � 10�6 0:57

spatial skewness B �B C B �B C B �B C
1:65 0:29 �0:049 1:67 0:35 �0:15 1:73 0:54 �0:2

temporal mean A �A A �A A �A

0:0032 0:012 0:0036 0:017 0:0036 0:034

temporal variance A �A A �A A �A

2:36 � 10�6 0:015 2:8 � 10�6 0:018 2:45 � 10�6 0:03:1

temporal skewness B �B C B �B C B �B C
1:33 0:015 0:21 1:46 0:022 �0:16 1:43 0:073 �0:34

Figure 20 shows the di�erent existing states of dispersion and deposition for the injection. In Sector 0, the droplet
cloud spreads quickly but does not reach the walls. Sector 1 depicts the region where the spreading has reached the
walls, but is still not fully established. Droplets start depositing, but the rate of deposition has not yet reached its
equilibrium state. Sector 2 represents the region where the dispersion is established and where a stable deposition
velocity can be evaluated. Sector 3 may exist, depending on the flow settings. This region is present for the current
simulations as all droplets are injected simultaneously and the flow conditions and droplet sizes allow such deposition.
In this region, the droplet concentration decreases since most droplets have already deposited. Finally, no deposition
is present in Sector 4, which corresponds to a dry wall region. This can occur as either all droplets have already
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deposited in previous regions (no drops present either in the core flow), or the dispersion pattern is such that the near-
wall concentration is low and/or the overall concentration is too low to be accounted for (only a few droplets deposit).

Figure 20: Evolution of the dispersion/deposition scheme

Picano et al. (2009) provided a relationship to evaluate the distance where the fully developed concentration profile
in a pipe is reached:

L1
R
’ 75�+

p
0:21

: (28)

When this formula is applied to the current cases, the fully developed droplet concentration is estimated to be reached
at 0:2616m, 0:7723m and 1:92m for the droplets of sizes 0:5�m, 7:8�m and 68:5�m, respectively. These values do
not seem to agree with curves shown previously on Figures 16, 17 and 19. A similar equilibrium-state concentration
formula has however been determined, assuming that an equilibrium state pattern in the dispersion has been reached
at the 3�B position which corresponds to 95% of the asymptotic value reached:

L1
R
’ 157:388�+

p
0:06453

: (29)

This correlation is di�erent from Picano’s one represented graphically on Figure 21. However, Equation 28 has been
established using a continuous drop injection, which di�ers from the drop injection in this work, and for a Reynolds
number of 3; 000, which is also di�erent from the one used in this work (Re ’ 15; 000). Equation 29 provides fully
developed concentrations obtained after 0:83m, 1:16m, and 1:54m, for droplets of sizes 0:5�m, 7:8�m and 68:5�m,
respectively.
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Figure 21: Correlation comparison
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4.1.3. Deposition results and analysis
To analyse the droplets deposition, their position and the time required for them to deposit, the impact velocities

have been investigated.
The cumulative density function (CDF) and probability density function (PDF) of deposition time (which can be

compared to the first-passage time density function) allow to determine how rare the initial and “dry-out” deposition
in the pipe can be (along with the deposition in the other sectors). Figure 22 shows the cumulated density function
obtained for each drop size separately, in the 5m long pipe. This figure shows the four di�erent sectors described
previously through Figure 20. No deposition is present at the start of the simulation (Sector 0). After a laps of
time, the deposition grows “exponentially” (Sector 1) to reach a region where the deposition rate is almost constant,
i.e. where the slope of the curves is almost constant (Sector 2). The decrease of the number of drops decreases the
deposition rate (curved region, Sector 3). Past this region, a plateau is present (more or less visible depending on the
droplet size), which is due to the particles which have spent some time in the turbulent eddies or have been trapped
in the boundary layer. The longer the plateau, the more sensitive a particle size to turbulence. Finally, the last region
shows no deposition (Sector 4). The colored lines present above Figure 22 represents the time limits of all sectors
represented in Figure 20, where each color corresponds to a particle size (color displayed in the legend).
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Figure 22: CDF of time of deposition - deposited fraction
along the time (0.5 ,7.8 and 68.5 microns)

Figure 23: CDF of axial position of deposition (current simu-
lation)

Figure 23 shows the ratio of deposited to the number of injected droplets against the axial position down the pipe.
The curves follow a similar pattern as the time evolution of the same drop sizes in Figure 22. This result was expected
since most drops are merely transported away by the flow. It can also be seen that for a given deposition fraction level,
the deposition occurs over a certain spatial length.

The larger the drops, the faster the deposition. As shown on Figure 22, the time required for 90% of the drops to
deposit is shorter for the large drops than for the small ones. Figure 23 shows that most large drops deposit between
1 and 2 meters.
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Figure 24: Correlation between the impact position and the impact time

A similar study has been performed for the spatial evolution. A strong correlation can be established between
the time and the spatial evolutions of the variables, as shown in Figure 24. This correlation decreases with time and
distance. The correlation, clearly visible for large drops which have a ballistic trajectory, is however less pronounced
for small di�usive particles which are more likely to be a�ected by turbulence and Brownian motion e�ects. For each
impact position, there is a time interval represented by a lower and an upper bound during which all the deposition
occurs. This interval varies with the droplet size and the time. Far away from the inlet of the pipe, the smallest droplets
will take more time to deposit while the largest droplets will deposit quickly next to the inlet section of the pipe. This
remark is also valid when looking at the space interval for each droplet size: the maximum distance between two
deposited droplets is larger for small droplets than for large ones.
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Figure 25: PDF of deposition time and their respective Kernel Density Estimators

Previous comments are further demonstrated through Figure 25 which shows the PDFs of deposition time and
their respective Kernel Density Estimators. The larger the particle, the narrower the “time-bandwidth” (90% of the
deposition occurs within a small period of time). The PDFs of the large and medium size drops seems to follow an
inverse Gaussian shape. For the smallest drops, the PDF seems to be more evenly spread and over a larger time range.

Most of the large (68�m) drops deposit around 0.1s, i.e. the statistical mode is about 0.1s. The mode of the
7:8�m drops is less pronounced, but also seems to be around 0.1s. There is however no significant mode visible for
the smallest drops, which seem to deposit with the same probability between 0.1s and 0.25s. It is well known (Kou
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& Wang, 2003; Atiya & M., 2005), that the “first passage time PDF” (i.e. the estimate of the probability density
of time needed for a random process to cross a given level) for a jump-di�usion process with exponential jumps, is
a generalized inverse Gaussian distribution. The Brownian motion with occasional turbulent jumps belongs to this
family of processes; this is consistent with the PDF shown in Figure 25.

Figure 26: Radial component of the impact droplet velocity versus the axial position

Figure 26 shows the axial variation of the radial component of the particles velocity during their impact on the
wall surface. The large drops have a higher value as they act like inertial particles while the 7:8 �m drops have a lower
radial velocity. However, for the sub-micron particles, the radial velocity component can be as high as for the 68:5 �m
droplets and as small as for the 7:8 �m ones. This means that the Brownian motion plays a major role here. It can
also noticed that several values are outside the “main” lines: this is probably caused by drops influenced by turbulence
(from higher fluid layers) which have kept their burst velocity until they reach the walls.

Figure 27: Axial component of the impact droplet velocity versus the axial position

Each droplet size has a distinct and restricted possible range of impact axial velocity components, see Figure 27.
This velocity does not significantly change with the axial position. Note that the number of impacts decreases as drops
reach the outlet section of the pipe. As stated previously, fewer droplets deposit in this region. The larger the droplets,
the higher their axial impact velocity. This could again be explained by the fact that large drops acquire speed from
the highest fluid layers and keep their velocity longer. On the contrary, smaller droplets adjust more easily their speed
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to the surrounding fluid velocity. The magnitude of the axial impact velocity is quite low for the sub-micron droplets
and of the same order of magnitude as the radial impact velocity.

Figure 28: Radial impact velocity versus axial impact velocity Figure 29: Detail view of Figure 28

Figures 28 and 29 provide additional information on the impact velocity. Both axial and radial velocity compo-
nents are small and of the same order for the sub-micron droplets. However, it appears that such droplets are more
likely to reach the wall with a velocity almost perpendicular to the wall (visible in Figure 29, where most of the points
are located on the upper part of the line radial velocity = axial velocity). This would suggest that for sub-micron
droplets, the main contribution to deposition is not only due to the cloud advance, but also to forces acting in the radial
direction (Brownian motion and turbophoresis).

For the 7:8 �m droplets, the magnitude of the impact velocity is higher than for sub micron droplets. The impact
velocities are almost all aligned along a line of equation y = 0:0878x � 0:015, where x is the axial impact velocity
(up to 4) and y represents the radial impact velocity. This equation is valid for all droplets except for those depositing
because of a turbulent event. In this case, the radial component becomes higher than the axial component (o� line
points on Figure 28). Droplets a�ected by turbulence should impact the walls with a higher velocity. Such droplets
should remain una�ected by the boundary layer, they are therefore not aligned. Slower drops which have spent some
time in the near-wall boundary layer are more likely to be aligned (Picano et al., 2009).

For the 68:5 �m droplets, the impact velocities seem to follow an exponential profile. Several droplets are a�ected
by turbulence, and consequently do not follow the exponential curve. However, in contrast to the 7:8 �m droplets,
turbulent impacts cannot make the radial component higher than the axial component.

Overall, it appears here that the near wall concentration is more highly dependent on the cloud axial advance rather
than its radial dispersion, thus resulting in impact angles on the wall lower than 45

�

. In addition, the time scale of the
radial dispersion is much slower (up to 100 times) than the axial convection. This means that once a set of particles
has reached a given axial position, some time is required for particles at that axial position to reach the walls and reach
their equilibrium state.

4.1.4. Droplet deposition validation
Figure 30 summarizes the equilibrium state deposition results obtained with OpenFOAM. They are compared to

numerical results from Li & Ahmadi (1993), He & Ahmadi (1999), Matida et al. (2000), Marchioli & Giusti (2003),
to experimental data from Liu & Agarwal (1974) and to those reported by Papavergos & Hedley (1984). Additional
numerical simulations have been performed with FLUENT (2014) for further comparison. The non-dimensional
particle relaxation time �+

p = �p(u�2=�) where u� is the friction velocity and � the kinematic viscosity, is plotted in
function of the non-dimensional deposition velocity kp=u�. The formula from Matida et al. (2000) has been used to
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calculate the deposition velocity:

kp =
u f dt

4 (x2 � x1)
ln

 
F1

F2

!
; (30)

where F1 and F2 are the deposited fraction at two positions, dt is the pipe diameter, x2 � x1 is the interval between the
two axial positions.
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Figure 30: Deposition velocity vs. relaxation time – Simulations and literature

Two zones can be di�erentiated in Figure 30, when the non-dimensional particle relaxation time �+
p is higher or

lower than unity.
For the first region, when �+

p � 1, results are slightly under-predicted with OpenFOAM when compared to ex-
periments although they are consistent with a DNS study from Marchioli & Giusti (2003). Those obtained with the
commercial code FLUENT and those from Matida et al. (2000) are closer to the experimental data. However, in the
contrary of OpenFOAM where the time scale constant remains constant for all droplet sizes (CL = 0:32), this time
scale constant has been determined specifically for each droplet size in FLUENT. According to the FLUENT manual,
“CL is to be determined and is not well known”. However, guidelines are provided: CL = 0:15 when applying the
k-epsilon turbulence model and CL = 0:30 for the Reynolds-stress turbulence model. Tian & Ahmadi (2007) specified
that no universal value of CL has been found yet, but typically, a value in the range 0:2 to 0:96 has been reported in
the literature for producing satisfactory results for comparison with experimental data.

For the second region, when �+
p < 1, the influence of the Brownian motion is important. Results generated with

OpenFOAM are closer to experiments than those obtained with FLUENT with low CL values. FLUENT assumes that
the turbulent integral time scale TL is defined everywhere as TL = CL

k
"
, and in particular next to the walls. Applying

a small CL value means that the near wall eddy-lifetime will be shortened, which complies with Equation 20.
Simulated results are higher than experimental and numerical evaluations reported in the literature, see Tian & Ahmadi
(2007); Papavergos & Hedley (1984); Li & Ahmadi (1993); He & Ahmadi (1999) for instance. However, experimental
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measurements reported by Papavergos & Hedley (1984) and numerical solutions from the other authors were obtained
in a vertical duct, while simulated results from OpenFOAM and FLUENT are obtained in a vertical pipe.

4.2. Particle concentration and deposition velocity

Although previous results of dispersion and deposition have been described separately, they are related. The par-
ticle concentration should be seen as an Eulerian field which is a�ected by the dispersion. Knowing the concentration
field, its evolution and the turbulent field, the deposition can be predicted. This can be achieved with most Eulerian
formulations by means of a di�usion-convection equation. An Eulerian drift-flux model such as the one reported by
Lai & Cheng (2007) can be used to solve the evolution of concentration:

@C
@t

+ div [(u + Vs) C] = div
h�

D + "p

�
grad (C)

i
+ S ources ; (31)

where C is the number of droplets per cubic meter, u the carrier fluid velocity, Vs the droplet settling velocity, D
the coe�cient of molecular dispersion, "p the particle turbulent dispersion coe�cient. The deposition mass rate is a
function of the particle concentration in the pipe, based on the following boundary condition:

Jw = ṁ = �pw VrB + pt�pT VrT �

"
(DB + Dturb)

@�p

@r

#
w
; (32)

with �p the mass concentration of droplets, V the droplet velocity. Subscripts r and w denote radial and wall, respec-
tively. Note that the new pt�pT VrT term accounts for the flux of drops coming from the nearest turbulent region to the
wall. Drops can get high turbulent velocity from that region (around y+ = 20 or 30, here) and impact the walls without
loosing their speed significantly. The pt parameter is present to account for the probability of such an event to occur
since one part only of the drops present in that region, which have a positive radial velocity, are going to deposit. This
term renders the expression slightly di�erent from the wall flux derivation from Young & Leeming (1997). Finally,
the �Dturbw

�
@�p

@r

�
w

term accounts for the flux of drops depositing due to turbophoresis e�ects.
A possible novel statistical model is proposed, based on the following approach:

– Consider the initial droplet injection as a set of point particle sources.

– Evolve the dispersion of each point-source using the assumed distribution and the moments (provided in Table
2). Adapt the given evolution for points outside the inlet center.

– Reconstruct the concentration field using the superposition of each radial distribution at a given time and posi-
tion.

– Represent the wall concentration by the area of the probability density function exceeding the pipe radius
P(r > R).

– Evaluate the mass flux with Equation 32.

From the results generated in this study, such a procedure could be applied. However, this would require additional
development, which is beyond the prime objective of this research work.

5. Conclusion

Lagrangian simulations in a vertical pipe have been performed with a modified OpenFOAM version. Simulated
results agreed fairly well with experimental data and with other numerical results. A temporal and spatial study of
the transient evolution of dispersion has been carried out for a wide range of droplet sizes. The final average radial
position of medium size droplets converged to sub-microns droplets average radial position when looking at the space
evolution. However, the final average radial position of medium size droplets converged to the large size droplets
average radial position when looking at the time evolution.
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The related deposition has also been reported along with the impact velocity and a probability density function
estimate of the deposition time. Such information is useful to determine how droplets disperse in the vicinity of the
walls.

Turbulence is important in the deposition process. Boundary conditions of standard Eulerian models should not
only be based on the wall concentration, but should also take into account the contribution of droplets issued from the
turbulent layer. This has not been investigated further in this work, but has been reported elsewhere in the literature.

New insights on the droplet size dependence of both dispersion and deposition have been provided. A new
statistical approach has been suggested, based on the evolution of a pre-described radial distribution and moments.

The ability to predict quickly both droplets concentration and deposition could allow a fast assessment of particles
collisions, film formation or erosion related phenomena, which are important factors in safety and flow assurance
evaluations.
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