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To investigate the key enabling technologies for hybrid-electric regional aircraft, several
assumptions about the maturity and required level of technology are necessary. Within the EU-
funded project FutPrint50, a decision-making framework based on Set-Based Design principles
is being developed to address these uncertainties arising from operational requirements and
technological feasibility levels. The methodology has been applied to study the e�ects of the
energy storage durability and technology level on the energy management strategies of a regional
hybrid-electric aircraft. Results highlight the key role of battery energy density on the durability
of the battery pack and the viability of the hybrid-electric aircraft concept. Additionally,
the trade-o� between zero-day environmental compatibility and battery lifetime is identi�ed
alongside its causing mechanism. Optimal energy management strategies are suggested in light
of this new information. Finally, statistical data of cell energy density is used to estimate the
most probable year of feasibility of hybrid-electric propulsion for regional aircraft.

I. Nomenclature

�C = Battery Cell equivalent Capacitance [Farad]
�$� = Degree of Hybridization
�$� = Battery Depth of Discharge
�24;; = Energy capacity of the cell [Ah]
410CC4A H = Energy density of the battery pack [Wh/kg]
�<8BB8>= = Total charge required to �y the mission [Ah]
� 5 ;>F = Gas Turbine Fuel Flow [kg/s]
� = Degree of Hybridization (as de�ned in the EMS)
�24;; = Current in the cell [A]
")$ = Take-O� Mass [kg]
" 5 = Fuel Mass [kg]
"1 = Battery Pack Mass [kg]
#B4A84B = Number of cells in series per bar
#<>3D;4B = Number of modules in parallel in the pack
%� = Power required by the battery pack
%�) = Power required by the gas turbine
%B0C = Minimum probability to satisfy a constraint
’0 = Cell Internal Resistance [Ohm]
’C = RC Transient Resistance [Ohm]
*24;; = Cell Voltage [V]
+2 = Cell Capacitance Voltage [V]
+$� = Cell Open-circuit Voltage [V]
+BHB = System Nominal Voltage [V]
��$� = Slope of the linear Degree of Hybridization function
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[� = E�ciency of the electrical powertrain (Propeller-to-Battery)
[�) = E�ciency of the thermal powertrain (Propeller-to-Gas Turbine)
‘�$� = Average Degree of Hybridization of a linear function

II. Introduction

Since the beginning of the 21st century, aeronautical research has been focused on reducing its global footprint on the
environment by reducing emissions. Recent advancements in the development of battery technology and electri�ed

ground vehicles spurred the investigation and research into the electri�cation of aircraft propulsion. One domain of
research consists in introducing electric power in synergy with the internal combustion engines (ICE), in a hybrid
propulsion system. The general idea is to maintain the ICEs in the ideal operating condition when �ying in high power
conditions [1]. Finding the correct amount of electric power to achieve this ideal condition is the aim of the Energy
Management System (EMS).

Both system parameters and the �ightpath concur to the identi�cation of the optimal EMS. Many authors in
the literature have explored the interaction between the �ightpath and EMS, both in a local optimization and global
optimization fashion with a �xed Hybrid Electric Propulsion System (HEPS) con�guration [2�4]. On the other hand,
there has been little published work regarding the interaction between the hybrid propulsion system and the optimal
EMS for a design mission, such as the role of the EMS in battery aging. Currently, few studies have been published
targeting this speci�c problem but limited to the Urban Air Mobility (UAM) sector [5, 6]. This gap falls within the
scope of the FutPrint50 project [7], which aims to identify and assess the role of the key technologies required for
the successful implementation of hybrid-electric propulsion for regional turboprop airplanes [8�10]. Alongside this
technical goal, the project aims to develop a design space exploration and optimization framework that takes into
consideration the uncertainty of a new design and provides multiple alternatives in deciding which concept to pursue for
a given set of top level requirements. This objective is aligned with the general research suggestions proposed by NASA
in their Vision 2040 program for multidisciplinary optimization, Uncertainty Quanti�cation (UQ), and decision-making
frameworks [11]. In particular, recent frameworks applied on hybrid-electric aircraft designs focus more on the
simulation and optimization of the design, without evaluating the impact of technological uncertainty [12�14]. The
reason is due to the di�culty of predicting the interval of values as no hybrid-electric aircraft has reached production yet.
Di Bianchi [15] and Guenov [16] presented methods, respectively based on reliability-based optimization and margin
value method, for managing technological uncertainty in future concepts.

This framework is being implemented by introducing Set-Based Design elements in Multi-disciplinary Optimization
and Uncertainty-based Optimization. In previous work [17], the methodology has been demonstrated through the study
of the trade-o� between environmental compatibility, as NOx emissions, and aircraft desirability, in the form of fuel
consumption. A simple constant e�ciency battery model was used to capture the e�ect of the EMS over the mass of the
energy sources (batteries and fuel) required to �y the speci�ed mission.

We extend the study by integrating a more detailed battery pack model, which captures the e�ciency of the cell as it
discharges, as well as its degradation after several cycles. The scope is to investigate the e�ects of the durability of the
energy storage system to the EMS, as well as control the critical properties of the behavior of this system. The presented
test case aims to �nd those EMS which achieve a balance between reduction of fuel consumption, aircraft emissions,
CO2 and NOx, and battery degradation after one year of usage. Finally, this analysis is carried out with di�erent values
of battery energy density 410CC4A H , to assess the di�erent technological scenarios, including a probabilistic estimation of
the earliest year of availability.

III. Methodology

A. Design Space Exploration Methodology
The design space exploration methodology used, called Probabilistic Design and Optimization (P-DOPT), has been

developed by combining Set-Based Design principles with Multi-objective Optimization [18]. In Set-Based Design,
it is straightforward to generate con�gurations for systems that can be described by discrete design parameters, such
as subsystems or components. The initial step is to tabulate the identi�ed design system parameters along with their
possible options. These parameters are recombined for each new alternative con�guration and evaluated according to a
prede�ned set of performance metrics. The con�gurations that do not satisfy the design requirements are discarded and
the remaining ones are stored for future use, and the process continues until a desirable con�guration emerges [19].
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The conventional engineering design method is iterative and traditionally follows the classical V-model [20]. In
Set-Based Design, the conventional design approach may be referred collectively as �point-based methods�, where few
con�gurations and alternatives are evaluated in the conceptual design phase. Then, the subsystems are developed in
the preliminary design. The design is frozen and detail design work continues. Often this design process leads to the
paradoxical situation of needing to establish requirements early.

The adoption of Set-Based Design concepts in an engineering design project can change the way engineers interact,
and how novel aircraft products are designed. The early analysis of multiple con�gurations and their subsequent
pruning allows the designers to build a knowledge base of how the model responds and maintain a range of alternative
con�gurations in case the requirements change. However, the �exibility brought by set-based design adds uncertainty
and organization pressure in the process since the consideration of multiple options may yield a delay in the design
pipeline unless the narrowing is done aggressively [21].

The design space exploration methodology was developed to evaluate multiple con�gurations of the design problem
and estimate how many of these satisfy the requirements speci�ed by the user. This process is carried out by constructing
a probabilistic surrogate model whose response can calculate the probability of a design subspace of satisfying the
requirements. This has been shown to reduce signi�cantly the areas of design space to be later searched by the
optimization algorithm, cutting computing time up to 80% [22]. Figure 1 presents a breakdown of the process. The
proposed framework can be used in combination with parallel studies to support activities of technology and product
forecasting. In the particular case of feasibility scenarios concerning hybrid-electric propulsion, the battery pack energy
density is a �gure of merit of utmost importance. Section V.F presents an example of a such study.

By estimating the probability of achieving the expected technological requirements, the designer can use this
information in the proposed approach to investigate the design space exploration of future technology scenarios. More
details on the methodology can be found in [17].

Design Parameters
discretized into levels

Sampled
Response Data

Probabilistic
Requirements

Step 1: Exploration
1) Generate subspaces (hypercube

of levels)
2) Evaluate sets with the proba-

bilistic surrogate model
3) Discard unsatisfactory sub-

spaces

User Inspection
The user can reselect
any discarded subspace

Step 2: Search
1) Run MOO (Deterministic or

Uncertainty-based) in surviving
subspaces

2) Discard more subspaces from
MOO results

Visualization
and Post Processing

Fig. 1 Methodology Flowchart.
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It is important to highlight that the multi-objective optimization (MOO) performed can be either deterministic or
uncertainty-based. An uncertainty-based MOO is grounded on the fact that uncertainty is all-pervasive in engineering
design and analysis, in the measurements taken and, also in the assumptions that engineering and mathematical models
rely on. As an example of how the inclusion of uncertainties is desirable, one may consider the problem of investigating
the overall system uncertainty regarding the energy density of the cells and the e�ciencies of the electrical components
projected for the year 2035 [23]. This uncertainty may result from the manufacturing processes and the aging of any
system, which introduces deviations from the speci�cations and the operating conditions always vary from the nominal
ones. In such cases, one can model nominal parameters with probability distributions that are capable of taking into
account both aleatory and epistemic uncertainties [24]. Under this perspective, these parameters are called Interesting
Quantities (IQ) and are used to quantify the response to uncertainty parameters and design variables.

As a general rule, problems that deem robustness and reliability more signi�cant than nominal results employ
optimization under uncertainties methods. They can �nd an optimum by constructing an uncertainty-based counterpart
of the original objective function. Thus, the use of uncertainty-based methods makes it possible to address the
performance, feasibility, and reliability during the early design space exploration, which e�ectively leads to a robust and
reliable understanding of the system under design and its impact on a downstream system such as the hybrid electric
propulsion one. This approach inevitably leads to results that consist of multidimensional data. The visualization of
multidimensional data produced is carried out with the aid of parallel coordinates diagrams. Combined with scatter plots,
this type of visualization can help the designer to understand the relationships between input parameters, responses, and
constraints [25].

B. Aircraft and Propulsion Model
The selected aircraft is a 50-seater turboprop obtained from retro�tting an ATR-72, where part of the payload mass

has been replaced by the battery pack mass. Mass and aerodynamics data have been extracted from information available
on the ATR 72-600 [26, 27]. These are presented in Table 1. The operating empty mass (OEM) �gure is kept constant
as it is assumed the mass of the electrical equipment that is not the battery pack has a marginal contribution to the total
take-o� mass increment. Therefore, it has been ignored since this high level study does not consider the sizing of these
components. Furthermore, a major assumption is the OEM does not change with the battery pack mass, and structural
resizing is neglected, therefore the maximum take-o� weight of the reference ATR-72 is imposed as a constraint.

Maximum Take-O� Mass 23,000 kg Payload Mass 5000 kg
Operating Empty Mass 11,550 kg Gearbox E�ciency 0.99
L/D Climbout 10.5 Propeller E�ciency (Take-O�) 0.64
L/D Climb/Descent 16 Propeller E�ciency (Climb) 0.73
L/D Cruise 14.5 Propeller E�ciency (Cruise) 0.86
L/D Final 7.5 Propeller E�ciency (Other) 0.8

Table 1 Aircraft Properties.

The propulsion system is a mechanically integrated parallel hybrid propulsion unit, whose power is provided by a
gas turbine and an electric motor, as shown in Figure 2.

The gas turbine is a thermodynamically equivalent model of the Pratt & Whitney Canada PW127 engine, whose
performance data has been generated using the in-house code TURBOMATCH[28, 29]. It is assumed that the electric
propulsion component is introduced as a retro�t to the aircraft, hence the baseline gas turbine is not resized for
hybridization. Constant propeller e�ciency has been assumed for di�erent mission phases. The NOx emissions model
is based on the Boeing FuelFlow2 method [30], which is a simpli�ed P3T3 method useful when manufacturer data
is not available. The data required to model the turboprop emission indice ��#$G was collected from Filippone and
Bojdo [31].

Electric motors, power electronics, and cabling are modeled with a single constant e�ciency parameter, whose
values have been adopted from [23]. The battery pack is modeled with a Thevenin equivalent circuit, as explained in
III.C. The TMS is assumed to keep the battery temperature at 25◦�. A TMS will be designed and modeled and its
dynamic o�-design performance impact on the battery temperature and its operation will be investigated in the �nal
paper.
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Fig. 2 Propulsion System Architecture.

Electric Motor E�ciency 0.98
Power Electronics E�ciency 0.985
Cable Distribution E�ciency (Circuit Breakers) 0.996
Packaging Factor (Pack-to-Cell Mass Ratio) 1.5
Cell Total Capacity [Ah] 7
Cell Nominal Voltage [V] 3.7
Cell Mass [kg] 0.0518

Table 2 Electric propulsion system parameters.

C. Battery Model
To capture in detail the e�ciency of the battery pack and its behavior when subjected to di�erent energy management

strategies, a Thevenin equivalent circuit model was developed. Equations 1 describe the behavior of the single battery
cell. Reference [32] provided the equations for the behavior of the lumped components +$� , ’0, �C , ’C under di�erent
values of depth of discharge �$�, while the properties of the cell are presented in Table 2. The cell mass is calculated
to match the selected battery pack energy density. The Pack-to-Cell mass ratio is 1.5, taken from the Battery model of
the NASA X-57 Maxwell [33]. Nonetheless, this value is optimistic as safety and certi�cation requirements would
increase the insert mass of the pack [34].

3+�
3C

=
�24;; (C)
�C

−
+� (C)
’C �C

3�$�
3C

=
�24;; (C)
�24;;

*24;; = +$� −+C − �24;; ’0

%� = *24;; �24;; (#B4A84B × #<>3D;4B)

(1)

Power provided to the cell is calculated by dividing the required battery power at the pack terminals. The pack is
composed of groups of cells in series called modules, which are arranged in parallel to each other to meet the required
capacity. The battery pack sizing procedure is as follows:

1) Calculate the number of cells in series for each bar to meet the nominal system voltage: #B4A84B =
+BHB
+24;;

2) Increment the charge required to �y the mission by a guessed factor k: �C>C0; = : × �<8BB8>=
3) Calculate the number of modules to meet the required capacity: #<>3D;4B = �C>C0;

�24;;
4) Simulate the cell discharge by solving eq. 1 after dividing the pack power by the total number of cells
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Fig. 3 Thevenin Electric Model for a Battery Cell.

%24;; = %�
#B4A84B#<>3D;4B

5) Repeat steps 2-4 by changing : , until the pack depth of discharge matches the target of 80%.
6) Calculate the total mass of the pack by multiplying the number of cells by the cell mass. This value is then

incremented by the packaging factor to account for the battery pack mass overhead.

With the battery pack properly sized, the circuit model is run to evaluate the e�ciency of the battery pack and its
discharge characteristics.

D. Battery Aging Model
The holistic aging model developed in [35] was adopted to model the fade of the energy and capacity of the cell and

the growth of its internal resistance, as it is put into operational use. Results from the equivalent circuit model of III.C
(current, voltage, and depth of discharge) allow to estimate the degradation of the lumped circuit parameters after one
cycle. Cell temperature is also present as input. Nevertheless, for this study, it is assumed the thermal management
system maintains it in the ideal range.

The simulation of the battery pack aging is performed by running the mission analysis and updating the cell
parameters after a certain amount of time has passed. This study evaluates the battery pack performance after one year
of operations, assuming 2 �ights per day, 7 days per week. A 5 days time-step was selected as an adequate trade-o�
between computational cost and error.

E. Mission Analysis Method
Figure 4 presents the procedure used to �nd the burned fuel mass and the battery pack mass for the speci�ed mission.

After an initial guess of the fuel mass " 5 and the battery pack mass "1, the mission take-o� mass ")$ is calculated
and iteratively updated until both fuel and battery pack masses converge. Two nested loops are used, the innermost for
" 5 and the outmost for "1.

The calculation is performed by splitting the entire mission into small parts, and for each of them calculating the
power required to �y each phase, using the altitude �, velocity + and climb rate +I prescribed by the mission. This
power is then split between the two powertrains with the speci�ed degree of hybridization �$�, and chain e�ciencies
are applied to calculate the power required by the gas turbine %�) and by the battery pack %�. The burned fuel mass is
calculated by multiplying the current fuel �ow � 5 ;>F of the gas turbine by the elapsed time, and summed over all the
mission phases. Once the fuel mass is converged, the total charge is calculated and used to size the battery pack with
the procedure explained in III.C. After sizing the battery pack, the degraded condition is evaluated. The procedure
simulates one year of operational life, updating the energy capacity and internal resistance after every 5 days. At each
step the original energy management �$� is scaled proportionally, without changing its topology, to avoid the battery
going above the 80% depth of discharge. Since the capacity of the cells reduce as it ages, more fuel is required to carry
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Fig. 4 Mission Analysis Method Flowchart.

7



out the same mission, hence it is reasonable to adopt as a representative variable for battery aging the ratio between the
original fuel consumption and the fuel consumption after one year of use (Eq. 2).

A346A =
" 5 D4;� 1 H40A DB4

" 5 D4;� 5 A4B� 10CC4A H
(2)

F. Design Mission and Energy Management pro�le

� ��� ��� ��� 	�� ����

� �"#���������

�

����

����

����

����

����

����

����

	���


�#
�#

$�
���

��

��

� ����

�!$�"�

��"���#

���� �


�����
# �
�#�!��#�

�!$�"�
# �
�#�!��#�

� �����

��"���#
# �
�#�!��#�

�������

Fig. 5 Mission pro�le.

The selected mission pro�le is shown in Figure 5, which has been adopted by the FutPrint50 [8] project as a
maximum range design mission, including a �ight to an alternate airport to account for fuel reserves. The main �ight
stage is 432 nm (800 km) and the alternate stage of 51 nm (95 km) with a 30-minute holding pattern. The average climb
rate is 996 ft/min (5.059 m/s), while the cruise speed is 268 kt (137.78 m/s).

It is assumed that the aircraft would have exhausted its energy reserves (fuel and batteries) at the end of the entire
�ight. Electric power use is restricted to the climb and cruise phases of the main portion of the mission.

Energy management strategies are de�ned as a continuous piecewise linear DOH function over the entire mission,
with values ranging from 0 to 1 (Fig. 6), as detailed in Ref. [17]. These parameters allow for a �exible de�nition of the
shape of the EMS over each phase. In total, 4 parameters describe a complete energy management strategy for a full
mission analysis.

A B

C

h0
D

h1

Fig. 6 Linear Energy management strategy adopted for this study.

IV. Test Case
The design space exploration test case is formulated as an optimization problem, shown in Eq. 3. For this study, we

consider linear energy management segments, applied to the climb and cruise phases, and the energy density of the
battery pack. Input values for the P-DOPT framework are presented in Table 3. The selected �gures of merit are the
total burned fuel during the mission " 5 , the mass of the emitted NOx, and the ratio of the burned fuel mass after one
year of operation over the original amount with a fresh battery pack.
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given - = {410CC4A H � �02; � �12; � �02A � �12A }
minimize

-
" 5 D4; � "#$G � A346A

subject to ")$ ≤ 23000 kg (%B0C ≥ 0�5)

(3)

Parameter Values
Pack Energy Density [Wh/kg] 410CC4A H [350, 400, 450, 500, 550]
Start Climb DOH �02; (0,1) divided into 4 levels
End Climb DOH �12; (0,1) divided into 4 levels
Start Cruise DOH �02A (0,1) divided into 4 levels
End Cruise DOH �12A (0,1) divided into 4 levels

Table 3 Input Parameters.

This last objective is to study the system performance e�ects of aggressive hybridization when the battery pack
is fresh. While it is not directly a battery pack parameter, it is an indicator of how much the capacity of the cell has
degraded over one year of operation. Indeed, to meet the same 80% DOD target, the energy management system has to
use more power from the gas turbine powertrain, leading to higher fuel consumption and higher emissions.

The take-o� mass ")$ is constrained to the ATR-72 maximum take-o� mass, and introduced as a probabilistic
constraint to the exploration step, with a minimum satisfaction probability %B0C of 50%. Areas of the design space that
fall below this threshold are discarded and not considered for optimization.

Results are compared to the baseline, which is the same ATR-72 model without electric propulsion and loaded with
the same payload. Values for the baseline are presented in Table 4.

Take-O� Mass 17,792 kg
Burned Fuel 1242 kg

NOx Emission 8.59 kg
Table 4 Baseline Quantities.

V. Results
Figure 7 presents the Pareto front solutions produced by the design space exploration framework. Three major

results are clear from this graph. First, high 410CC4A H produces higher values of A346A overall. However, when comparing
equal values of fuel burn reduction, the battery ages slower when the speci�c energy is higher (Fig. 7a). As will be
discussed later, this is caused by the mass of the cells and not the cell aging (Fig. 10). With more energy per unit of
mass, fewer cells are required to achieve the same reduction in fuel consumption. The airplane is less heavy, hence when
the capacity fades over time, the dead weight of the batteries has a smaller impact on fuel consumption. Instead, when
all the mass available for batteries is used, the rate of degradation is higher because of the higher extra dead weight.

Secondly, the rate of degradation and the other two objectives compete, most evidently with the reduction of fuel
consumption. This trade-o� is important for airline operators, where the cost of fuel and the cost of battery maintenance
would compete.

Finally, the results indicate that the pack energy density should be greater than 400 Wh/kg in order to reduce the
emissions and fuel consumption above the baseline (Fig. 7b). This sets a technological requirement of a minimum 600
Wh/kg energy density for the individual cells, which will be achieved no earlier than the year 2040, as discussed in
section V.F.

The following subsections explore the data in detail, analyzing the interaction between 410CC4A H , A346A , EMS, and
the battery life alongside the performance of the aircraft compared to the baseline.
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Fig. 7 Pareto front of the three objectives with di�erent battery pack energy densities.

(a) Parallel coordinates with selections. (b) Pareto front with selections.

Fig. 8 E�ects of Battery Energy Density on the Energy Management Strategies.

A. E�ects of 410CC4A H on Energy Management Strategies
Figure 8 presents the resulting optimal energy management strategies for each level of battery energy density. Since

the strategies are all linear segments, the input variables have been decomposed into an average value, the segment
midpoint, and discrepancy, the slope of the segment, as shown in Equation 4.

(
‘�$� = �1+�0

2
��$� = �1−�0

2
(4)
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Higher values of energy density allow for higher values of average �$�, both in climb and cruise. More of the
�ight power can be provided by the electrical source at the same maximum take-o� mass limit. The climb segment is
more hybridized than the cruise segment. Regarding the slope of the segments, the cruise phase presents a positive
slope directly correlated with the energy density. On the other hand, the climb segment presents a negative slope with
some exceptions, at the highest 410CC4A H of 550 Wh/kg. In conclusion, more speci�c energy in the battery pack enables
more hybridization and more �exibility in the slope of the segments, owing to being able to store more electrical power
onboard for the same amount of maximum take-o� mass.

B. E�ects of A346A on Energy Management Strategies
Figure 9 presents for three di�erent levels of battery energy density the e�ect of the degradation parameter A346A

over the other variables. Battery life was calculated as the number of days after which the electri�ed airplane matches
the fuel consumption of the baseline conventional aircraft (see Fig. 10(a)). It is correlated with A346A , where the battery
lasts the longest with low degradation EMS. All three technological scenarios feature similar correlations between A346A
and the average values of �$�: the higher the electrical power demand, the faster the degradation of the cells. On the
other hand, ��$� is concentrated around zero when A346A is the lowest. It spreads without a speci�c trend at values of
high degradation. It can be concluded that the average electrical power requirement drives the degradation of the cell,
rather than the speci�c value over time.

(a) High values of A346A .

(b) Low values of A346A .

Fig. 9 E�ects of Degradation on the Energy Management Strategies.

C. E�ects of 410CC4A H on A346A and Battery Life
Six speci�c points, two per 410CC4A H value, were selected for analyzing the history of battery degradation over one

year of operation. Each pair is composed of the designs with least fuel consumption at zero days and the highest battery
life, as de�ned in the previous section V.B. Figure 10 presents these results on two scales: fuel consumption relative to
the conventional baseline and relative to the day zero condition.

As shown in Fig. 10(a) the lifetime of the battery is greater with higher 410CC4A H and, respectively, the gap from the
lowest degradation to the highest is larger for each case. In contrast, Fig. 10(b) shows that A346A grows faster when
410CC4A H is greater and the degradation is high, the opposite is true when degradation is low. Despite all these di�erences,
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