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ABSTRACT 

 
Shallow lakes are ecologically and economically important; many users are interested in 

methods to assess their response to restoration measures and in tools to predict the impact of 

specific measures. These users include: local and governmental authorities, private companies 

or nature conservation organisations. 

 

This research is centred on the Broads. The Broads are shallow, eutrophic lakes, probably the 

result of medieval peat workings, concentrated in the Ant, Bure, Thurne and Yare river 

valleys. These man made lakes and their surroundings are unique in Europe in terms of both 

ecology and landscape, forming one of the few remaining large areas of lowland river 

grassland in the UK.  

 

A catchment scale model, SWAT, has been used to model past and future land use and 

climate scenarios for river basins supplying water and nutrients to the Broads. SWAT is a 

comprehensive model that requires a diversity of information including climate, topography, 

soil, land use, agricultural practices, water abstraction and discharge data.  

 

Future scenarios run with SWAT suggest that increases in rainfall and temperature through 

climate change and changed land use increase nutrient and sediment yields and runoff. Future 

scenarios therefore suggest increased eutrophication problems for both the rivers and Broads 

within the study area and an increase in the already high risk of ecological failure to the 

Broads.  

 

Various management scenarios based on erosion control measures were designed to alleviate 

nutrient and sediment yields and increased run-off to the system. SWAT modelling showed 

the best-case future scenario in terms of land management was to convert the area to 

grassland. Where land is still used for agriculture erosion control, measures such as cover 

crops and conservation tillage should be employed. 

 

Overall, the work has increased the understanding of water quality, water movement, nutrient 

and sediment dynamics and agricultural management practices within the study area. The 

environmental implications of different future scenarios and erosion control measures on the 

ecology of the Broads provide a basis for management of the area. 
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Chapter One  Introduction 

 

1.0 Introduction 

 

Throughout the world shallow lakes are more abundant and important to people and 

wildlife than deep lakes. Despite this, knowledge about them has not developed as 

rapidly as knowledge of deep lakes, but progress is now being made (Madgwick, 

1999). They have a complex ecological structure and support the bulk of the 

biodiversity associated with freshwaters (Moss, 1998). 

Shallow lakes are ecologically and economically important. Many users are interested 

in methods to assess their response to restoration measures and in tools to predict the 

impact of specific measures (Moss et al., 1997). These users include: local and 

governmental authorities, private companies or nature conservation organisations. 

Within the UK there are three lake districts. The English Lake District in Cumbria is 

well known, the second lake district, the North West Midland Meres is the least 

known. The third is a set of around 50 very small lakes linked by rivers called the 

Broads; on a world scale these lakes are tiny (Moss, 2001). However the area forms a 

network of wetlands that is unique in Europe in terms of both ecology and landscape, 

forming one of the few remaining large areas of lowland river grassland in Britain. 

The 'Broads' are shallow lakes, probably the result of medieval peat workings 

(Lambert & Jennings, 1960). They are concentrated in the Ant, Bure, Thurne and 

Yare River valleys often fringed by fen and reedbeds with associated areas of carr 

woodland. In addition, a long history of settlement has left a legacy of historical and 

archaeological features. The Broadland area is rich in wildlife; the mosaic of wetland 

habitats in the Environmentally Sensitive Area (ESA) supports many rare and 

interesting species of plant, invertebrate and bird life. 

1.1 Background 
 

The entire Upper Thurne forms part of the Broads Special Area of Conservation (SAC) 

and is therefore an extremely important part of the Broads National Park in terms of 

biodiversity, recreation and agricultural use. In particular, Hickling Broad is the 
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largest of all the Broads (116 ha) and is the richest site in the UK for the algal group 

of charophytes. Charophytes require clear water and good water quality to thrive. 

This more ecologically desirable, clear water, plant dominated system occurred in the 

Broadlands until the 1960’s, but now only occurs in 3 out of the 41 broads in the 

national park. Hickling Broad also supports important populations of overwintering 

waterfowl and is renowned as a venue for boating.  

 

In recent years Hickling Broad has been at the centre of scientific and management 

attention.  In 1998 aquatic plants, particularly the intermediate stonewort (Chara 

intermedia), multiplied and the water became clear for the first time in decades 

(Broads Authority, 1999). However in the winter of 1999/2000 the Chara lawns died 

back. Since then the broad has been in an unfavourable ecological condition, with 

turbid water and Chara intermedia confined to certain refugial areas.  

 

In 2000 the Chara grew much less and there was a small resurgence in growth of 

Prymnesium parvum, which had caused fish kills in the early 1970’s (Moss, 2001). 

Heavy grazing by coot during autumn 1999 and their consequent droppings is thought 

to have increased nutrient concentrations and resulted in algal blooms. In addition to a 

decrease in light penetration to Hickling Broad higher water levels added to the 

problem in 1999/2000 (Harris, 2001).  

 

This sequence of events has led the Broads Authority to identify gaps in current 

knowledge and to develop clear research goals. They recognise the incomplete 

understanding of the system and wider catchment, particularly with respect to nutrient 

cycling. Therefore the Authority’s overall aim is to develop a sound understanding of 

the functioning of the Upper Thurne system for future management purposes.  

 

An understanding of the movements of water and nutrients within the Thurne and its 

wider catchment area (Bure and Ant) is required. Such an understanding will allow 

identification of the spatially and temporally varying sources of water and 

contaminants to the system. Furthermore evaluation through computer modelling of 

proposed changes in water and or nutrient management before they are implemented. 
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To meet these requirement the Broads Authority are supporting three PhD’s in this 

area. To look at the river hydrodynamics, groundwater management and catchment 

scale modelling of diffuse pollutants. Together it is hoped they will be able to address 

the legal requirement of sustainable management of Hickling Broad, given by the 

Water Framework Directive (Directive 2000/60/EC). 

 

This Directive requires the European member states to ensure that heavily modified 

water bodies (i.e. the Broads) reach ‘good ecological potential’ (DEFRA, 2004a). To 

achieve this in the Broads wiser management of the entire catchment as well as a 

cluster of local solutions will be required (Moss, 2001). 

 

1.2 Aims and Objectives 

 

Within this wider research topic the aim of this PhD ‘An integrated catchment scale 

model of a lowland eutrophic lake and river system: Norfolk, UK’ is: 

 

To identify the effect of future climate and land use changes on flow patterns and 

nutrient loads in the Upper Thurne, Ant and Bure system. 

 

To achieve this the following objectives will need to be addressed: 

 

• To analyse current hydrological functioning of the catchments 

• To apply a catchment model to current situations in the three areas 

• To define likely future climate and land use scenarios 

• To use the catchment model to quantify the impacts of future scenarios on 

flow and nutrient dynamics 

 

The Upper Thurne is a very fragile ecosystem with a number of pressures on the 

system. These pressures are key to the more ecologically desirable clear water, plant 

dominated system that characterised the Broadlands until the 1960’s. The physical 

structure and aquatic flora of the river ecosystem has been destroyed by the damage 

boats have done in the past, although boating activities are better managed now. The 

current water quality of the system is not compatible with diverse biological plant 
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communities that are remembered from 50 years ago or more.  There are over 200 

sewage treatment works in the Broads. Many of which serve less than 1000 people 

and therefore do not fall under the Urban Waste Water Treatment legislation requiring 

works to undertake phosphorus stripping. There is still a great quantity of phosphorus 

being released into the Broadland system from sewage effluent, but legislation exists, 

were it to be used, to eliminate this source almost entirely.  

 

Diffuse sources of nutrients from cultivated land, stock wastes, sediments and 

agricultural drainage systems are less easy to control but do however need to be 

addressed. Until water quality can be improved on a catchment wide-basis it is not 

worth attempting restoration measures such as the use of bio-manipulation in the 

Broads.  

 

This thesis presents work carried out to address the aims and objectives specified 

above. Chapter 2 gives background information for the research with a review of 

understanding of nutrient sources, a review of catchment modelling and management 

and previous research related to this work. An overview of the study area in terms of 

available data for modelling purposes is given in chapter 3. An investigation into the 

sources and dynamics of nutrients in the study area system is presented in chapter 4. 

Chapter 5 outlines the catchment model build process using the Soil Water 

Assessment Tool (SWAT) for the first model and chapter 6 discusses the calibration 

and validation of this model. From the calibration and validation results of the first 

SWAT model the building of the second SWAT model to be undertaken in this 

research is explained in chapter 7. The definition of possible future scenarios with 

their impacts on nutrient loading, together with methods to minimise nutrient loads to 

the study area are given in chapter 8. Chapter 9 is for general discussion and 

conclusions. 
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Chapter Two  Literature Review 

 

2.0 Eutrophication 

 

Nutrient enrichment (eutrophication) ranks as probably the most pervasive water 

quality problem on a global scale, potentially affecting all water bodies from rivers 

and lakes to estuarine and marine. The Urban Waste Water Treatment Directive 

defines eutrophication as: 

 

‘the enrichment of water by nutrients especially compounds of nitrogen and/or 

phosphorus compounds, causing an accelerated growth of algae and higher forms of 

plant life to produce an undesirable disturbance to the balance of organisms present 

in the water and to the quality of the water concerned’ (91/271/EEC). 

 

Phosphorus and nitrogen are the nutrients of most concern because of their primary 

role as potential growth limiting factors for phytoplankton (algae) and aquatic plants 

in water bodies (Novotny & Olem, 1994). In natural systems, nutrients are commonly 

derived from weathering and leaching from rocks and soils. However, nutrient inputs 

to aquatic ecosystems can be significantly accelerated by human activities, resulting 

in nutrient enrichment (Ostry, 1982). This represents anthropogenic eutrophication, 

which is in contrast to the natural ontogenic eutrophication process observed in water 

bodies.  

 

Nutrient sources can be broadly segregated into two categories: readily identifiable 

point sources (such as sewage effluents) and diffuse sources (such as the run-off from 

agricultural land), with the relative contribution of each varying between river basins 

(Ongley, 1996).  

 

For nitrogen, inputs to fresh waters in Europe come principally from diffuse sources, 

particularly agriculture, although point sources (usually urban wastewater) also 

contribute significantly in many regions. In England and Wales 70% of the total input 

of nitrogen to inland surface waters is estimated to come from diffuse sources 

(agriculture, precipitation and urban run-off, in order of decreasing importance). The 

remaining 30% comes from sewage effluent and industrial discharges (Morse et al., 
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1993). For phosphorus, the actual contributions in any given river basin will depend 

on the nature of the river basin and the human activities within it (Heathwaite & 

Johnes, 1996). 

 

In the past, point source pollution, for example wastewater treatment plant effluents, 

often formed the major nutrient inputs to water bodies. They are most obvious and 

easily identifiable sources (Ryding, 1986). Eutrophication control measures, including 

phosphorus removal from effluents, were often directed at such effluents. Over the 

last twenty years, legislation and regulation have become more effective at tackling 

point sources of pollution to ground and surface waters (DEFRA, 2002b).  One such 

regulation is the Urban Waste Water Treatment Directive (91/271/EEC). This 

regulates the phosphorus content of discharges but only for larger sewage treatment 

works (STW’s) where the discharge is to a ‘sensitive area’, as defined in the directive. 

 

Data from the Environment Agency (EA) has shown that since sewage treatment 

work improvements have been brought on-line there has been a steady improvement 

in water quality. Nevertheless, rivers over large areas of England and Wales continue 

to show, high, very high or excessively high phosphorus levels (DEFRA, 2003). This 

classification is derived from the Environment Agency’s General Quality Assessment 

Scheme (GQA) (see Table 2.0.1). The scheme provides a way of comparing river 

quality from one river to another and for looking at changes through time.  

 
Table 2.0.1: GQA classification for phosphate  

Classification for 

Phosphate 

Grade limit (mg P l-1) 

Average 

Description 

1 0.02 Very low 

2 0.06 Low 

3 0.1 Moderate 

4 0.2 High 

5 1.0 Very high 

6 > 1.0 Excessively high 

  

The EU Water Framework Directive (Directive 2000/60/EC) is the most significant 

piece of European water legislation to be produced for over twenty years. The 
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Directive, which will eventually replace a number of earlier ‘water’ directives, seeks 

to address water policy in a coherent, holistic and sustainable way for all waters. It 

requires all member states to achieve at least ‘good’ water quality status for all surface 

and ground water bodies by 2015. For surface waters ‘good’ is defined by both 

chemical and ecological parameters and requires a standard only slightly below that of 

a water body showing no effects resulting from activities of mankind i.e. in a pristine 

state (Chave, 2001). Table 2.0.2 gives an example of the EA classification of water 

bodies at risk of non-compliance with the Water framework Directive.  

 
Table 2.0.2: Risk Category of lakes in Norfolk 

Site Name 
Point 

source 
pollution 

Diffuse 
source 

pollution 

Water 
abstraction and 
flow regulation 

Physical or 
'morphological' 

alteration  
Alien 

species 

Hickling Broad or 
Heigham Sound Not at risk At risk Not at risk Probably not at 

risk 
Probably not 

at risk 

Horsey Mere Probably 
not at risk 

Probably 
not at risk Not at risk Probably not at 

risk 
Probably not 

at risk 

Barton Broad At risk At risk Not at risk Probably not at 
risk 

Probably at 
risk 

Martham Broad or 
Martham Broad 

(North and South) 

Probably 
not at risk 

Probably 
not at risk Not at risk Probably not at 

risk 
Probably at 

risk 

 

It is apparent that the point source controls are not universally successful in 

eliminating anthropogenic eutrophication of lakes and reservoirs (Ryding & Thornton 

1999). A major component of the nutrient budget of a water body has been found to 

arise from non point sources within a river basin.  Significant non-point nutrient 

sources include agriculture and urban run-off, intensive livestock activities and 

atmospheric deposition (Vollenweider & Kerekes, 1982b). Because sources are 

diffuse, this pollution is difficult to measure and regulate. Ironically, due to intense 

efforts to increase the fertility of the land, waters have problems of excess fertility that 

impair water supply and create the need for costly remediation (Vollenweider, 1981). 

 

Eutrophication can have both temporary and long-term effects on aquatic ecosystems 

(Anderson, 1995). Large fluctuations in dissolved oxygen concentrations can occur 

between day and night. Low oxygen levels, the result of plant respiration, may lead to 

the death of invertebrates and fish. This process can be compounded when algal 

blooms, through their decay, further reduce the oxygen content of water. The growth 
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or decay of benthic (bottom-dwelling) mats of macro-algae can also lead to the 

deoxygenation of sediments (Cooke et al., 1993).  

Certain algal species, particularly freshwater blue-green algae and marine 

dinoflagellates can produce toxins, which may seriously affect the health of mammals 

(including humans), fish and birds. This occurs either through the food chain or 

through contact with, or ingestion of, the algae. Algal species also cause fish deaths, 

for example by physically clogging or damaging gills, causing asphyxiation. 

Eutrophication ultimately detracts from biodiversity, through the proliferation and 

dominance of nutrient-tolerant plants and algal species. These tend to displace more 

sensitive species of higher conservation value, changing the structure of ecological 

communities (Welch, 2004).  

Eutrophication can adversely affect a wide variety of water uses such as water supply 

(e.g. algae clogging filters in treatment works), livestock watering, irrigation, fisheries, 

navigation, water sports, angling and nature conservation. It can give rise to 

undesirable aesthetic impacts in the form of increased turbidity, discolouration, 

unpleasant odours, slimes and foam formation (Tunney, 1997).  

Problems of eutrophication are not only ecological. It has been estimated that in 

England and Wales eutrophication causes £75 – £114.3 million per year of damage to 

areas of freshwater. This is due to, for example, higher treatment costs for drinking 

water, reduced amenity value, reduced value of waterfront dwellings and loss of 

tourism. An estimated additional £54.8 million per year is spent in measures to 

address this damage (Pretty et al., 2003). 

2.0.1 Nutrient Sources 

 

Non-point source pollution (alternatively known as diffuse pollution), occurs when 

there is no discrete point of discharge and pollution enters the environment by a 

multitude of pathways. Non-point source pollution can therefore be defined as follows: 
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“Pollution arising from land-use activities (both urban and rural) that are dispersed 

across a catchment, or sub-catchment, and do not arise as a process effluent, 

municipal sewage waste effluent, or an effluent discharge from farm buildings” 

(DEFRA, 2002b). 

 

While the sources of non-point pollution may be man made, the environment itself 

often mediates their presence in the aquatic environment. Rainfall and the physico-

geochemical properties of the land itself play a major role in determining the extent of 

diffuse pollution (Carpenter et al., 1998). 

 

To further protect water quality and to meet current and future legislation, diffuse 

sources of water pollution need to be identified, quantified and controlled. There are a 

wide variety of diffuse sources of pollutants to the aquatic system. These are generally 

dispersed and diverse in nature. Individually the sources may be small, but their 

collective impact can be damaging (Baker, 1992). Diffuse pollution can be derived 

from current and past land use in both agricultural and urban environments and can 

also include atmospheric deposition. 

 

Diffuse water pollution is mainly related to the way land and soil are used and 

managed. Agriculture is a key generator of diffuse pollution, but it is not the only 

source and other land use activities also contribute to diffuse pollutant loads 

(Sagardoy, 1993). Activities such as forestry, industry, construction, urbanisation, 

transport and recreation may all contribute to the problem.  

 

The main sources of phosphorus to surface water in the UK are presented in Figure 

2.0.1, for 1993. It illustrates the significance of discrete point sources (41%), 

compared with diffuse sources (59%), of which 50% comes from agriculture and 9% 

is due to natural background levels (Morse et al., 1993). 
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Figure 2.0.1: Major phosphorus inputs to surface waters in the UK (Morse et al., 1993) 

Evidence suggests that diffuse pollution and its impacts on the wider environment are 

increasing throughout the UK. Johnes et al. (1994) estimated that total nitrogen and 

phosphorus concentrations in 10 English and Welsh rivers had increased by 62-372% 

and 53-171% respectively between 1931 and 1988. Similarly, in a selection of 94 UK 

lakes and reservoirs, it was estimated that total phosphorus loading had changed by 

between -89 and +9602%. Total nitrogen loads were estimated to have changed by 

between -78 and +9793% over the same period (1931 – 1988). Since these data were 

published, in terms of overall chemical water quality of rivers, there has been 

relatively little change in the proportion of rivers of good or fair quality in the UK 

since 2000, but there has been an improvement since 1990. Figure 2.0.2 shows that 

62% of river lengths were of good chemical quality in 2003, compared with 43% in 

1990 (DEFRA, 2004b). 
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1: Scottish river classification network changed in 2000 

2: Northern Ireland classified network significantly expanded in 2002 

Figure 2.0.2: Rivers of good chemical quality 1990-2003 (DEFRA, 2004b) 

 

The amount and relative contributions of point and diffuse sources to total pollution 

loads varies between river basins, depending on the local biogeochemistry, 

geomorphology and the anthropogenic activities within (Bonta, 1998). For individual 

river basins these contributions will change with time. This can be both in the short-

term, in response to land management and climatic variation, and in the longer term in 

response to technological advances, national and international regulations and 

voluntary codes of practice. Table 2.0.3 illustrates modelled nutrient budgets for four 

river basins in England, which show that agriculture contributes varying amounts of 

diffuse phosphorus in different river basins compared with point source phosphorus 

contributions from sewage treatment works (STW’s). 

 
Table 2.0.3: Annual Inputs of P (tonnes P year-1) (Mainstone, 2000) 

Source 
Upper reaches of 

Hampshire Avon 

Warwickshire 

Avon 

Pevensey 

Levels 
River Ant 

Atmospheric/natural 12.5 (14%) 57.9 (5.5%) 0.6 (1.6%) 0.08 (1.6%) 

Inorganic fertiliser 19.9 (22.4%) 209.5 (20%) 2.5 (7.4%) 1.04 (21.3%) 

Livestock 18.7 (21%) 99.5 (9.5%) 2.4 (7%) 2.89 (59.3%) 

STWs 35.5 (39.9%) 654.3 (62.6%) 28.7 (84%) 0.86 (17.6%) 

Unsewered pop.  23.8 (2.3%) - - 

Industry 2.5 (2.8%) - - - 

Total 89.1 1045.0 34.2 4.87 

Catchment area (km2) 1249 2892 56 49.3 

P load exported to river 

(kg ha yr-1) 
0.7 3.6 6.1 1.0 
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2.0.2 Nutrient Transfers 

 

The role of hydrology in nutrient transfer is crucial as it provides both the energy and 

the carrier for nutrient transfer (Preedy et al., 1999). Without it there would be no 

transport mechanism from the hill slope to watercourse. Investigations of diffuse 

losses of nutrients from agricultural soils necessitate a clear understanding of the 

potential for nutrient transfer by surface and subsurface hydrological pathways.  

 

Figure 2.0.3 illustrates the pathways from land to the aquatic environment, both via 

surface and groundwater. It illustrates the movement of pollutants from land to 

surface water by run-off and over land flow. Important processes here include erosion, 

leaching, adsorption and decomposition. Pollutants can also enter surface waters by 

interflow (subsurface flow) within the unsaturated zone in soils. In soils, pollutant 

concentrations are modified by adsorption, desorption, oxidation and decomposition. 

Once pollutants percolate to shallow groundwaters, interaction can occur between the 

groundwater and surface water systems. Finally, with percolation to deep groundwater, 

pollutants can cause long term contamination of water. It is important to note that 

pollutants generated on, or applied to, the land surface as a result of agricultural 

practices, move and/or undergo transformation reactions when water is present. Thus 

water is usually the main carrier or transporting medium of non-point pollutants 

(MAFF, 1998a). 
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Figure 2.0.3: Diagram illustrating generalised losses of pollutants from land to water (Goulding, 

2000) 

 

Experiments in the UK have shown that most nitrogen is lost from arable farms by 

leaching during autumn and winter as nitrate (NO3) and ammonium (NH4) (mainly on 

sandy soils) (Hatch et al., 2002). Denitrification is where NO3 and nitrite (NO2) are 

reduced to gaseous forms of nitrogen; nitrous oxide (N2O), nitrogen (N2) and nitric 

oxide (NO). There are two general hydraulic pathways by which mobile forms of 

nitrogen can be leached or transferred into waterways (Goulding & Webster, 1992). 

Horizontal flow occurs in soils with poor drainage. This may occur on the soil surface 

or above impermeable layers within the soil profile, such as the movement in duplex 

soil (sand over clay).  
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Losses of nitrogen by surface flow in eroded soils may contribute to nitrate loads, if 

the organic nitrogen present in the soil particles is released into watercourses then 

decomposes during or after the erosion process. This may happen many years after the 

erosion event. Sediments in lakes can release nutrients when disturbed by water 

movements in the lake as temperature changes and if the lake is dredged. 

 

Vertical flow through the soil profile can be either via matrix flow through the whole 

soil body in tightly textured soils, or through bypass flow in large macropores and 

cracks in heavy textured soils. Retention times of mobile nitrogen within a soil are 

therefore dependent on many properties: for example texture, porosity and slope, or 

position in the landscape as well as the volume and frequency of rainfall events. For 

this reason the prediction of nitrogen leaching from soils is difficult (Stockdale, 1999). 

 

The movement of phosphorus to surface and groundwaters occurs primarily in 

association with organic matter. Soil erosion by water and overland flow are widely 

recognised as the principal mechanisms by which phosphorus is removed from land 

(MAFF, 1998b). On poorly permeable soils or soils with poorly permeable sub-

structure, mobilised phosphorus is likely to reach watercourses rapidly, either by 

surface run-off or throughflow in the soil, particularly via macropores or cracks.  

 

The transport of phosphorus along throughflow pathways in agricultural river basins 

has been clearly demonstrated in a number of studies (e.g. Sharpley et al., 1981). In 

the UK, soluble reactive phosphorus release from adsorbed phosphorus in the soil is 

controlled by desorption kinetics. In soils where adsorption capacity has been reached 

or exceeded, additional inputs of soluble phosphorus from fertilisers may be directly 

leached through infiltration, together with the desorbed fraction, vertically down the 

soil profile away from the root zone. This load may reach subsurface drains through 

macropore flow, allowing rapid transport of soluble reactive phosphorus to adjacent 

watercourses along this subsurface quick flow pathway, bypassing soil adsorption 

capacity. Where soils are not under drained, soluble reactive phosphorus leached 

down to the soil profile where the lower organic content reduces adsorption capacity 

still further, can then follow a lateral pathway as through flow parallel to the hill slope, 

or vertically as percolation to groundwater. Therefore gradual phosphorus saturation 

of progressive horizons, leading to complete saturation of soil and groundwater 
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adsorption capacity can be assumed, given long term application of phosphorus in 

excess of crop requirements and soil adsorption capacity. 

 

The atmosphere can play a substantial role in the transport of non-point source 

pollutants. One of the first recorded examples of this was the international study of the 

Pollution From Land Use Activities Reference Group of the Joint Commission on 

non-point source pollution in the North American Great Lakes Basin (PLUARG 

(Pollution Land Use Activities Reference Group), 1978). A result of the PLUARG 

study was the finding that the majority of the annual phosphorus load to Lake 

Superior (the most pristine of the North American Great Lakes) entered via 

atmospheric deposition. Elsewhere, Balon and Coche (1974) have noted a similar role 

for the atmosphere relative to nitrate-nitrogen inputs to Lake Kariba 

(Zimbabwe/Zambia). 

 

The importance of flux of pollutants from the atmosphere directly onto the surface of 

land and inland water depends primarily on the magnitude of the pollutant load from 

other pollutant sources in the drainage basin. Wet deposition is a function of 

contaminants carried to water surface by precipitation. Dry deposition is the common 

name for all deposition processes other than wet deposition. It includes transfer of 

gases from the atmosphere to vegetation, soil, lake water etc. and may involve both 

biotic and abiotic fixation of the gases. Large particles will fall by gravity; 

atmospheric movements must transfer smaller ones to the surface where they can be 

captured by impact, interception or molecular diffusion through the layer nearest the 

surface. As with gases the deposition rate depends on the surface topography and 

atmospheric turbulence but also particle size. Dry deposition rates are dependent on 

particle size distribution. 

 

2.0.3 The Impact of Land Use on Nutrient Supply and Transfer 

 

All forms of land use potentially can affect the quality of run-off or leaching from the 

land surface to receiving waters. In an undeveloped area naturally occurring physical, 

chemical and biological processes interact to recycle most waterborne materials in 

run-off (Gburek & Sharpley, 1998). When a river basin becomes more developed 

these processes, which ameliorate the potential environmental effects of natural 
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pollutants, are disrupted. Humans contribute to this disruption by adding polluting 

materials such as fertilisers to the land surface. Run-off will wash these materials off 

the land surface, or when leaching moves them through the soil, the non-point source 

pollutant loads carried to receiving waters can increase significantly (Kwaad, 1991). 

 

The term ‘land use’ refers to the purpose for which a given area of land is being used 

(Ryding & Thornton, 1999). The concept of land use is fundamental to assessing non-

point source pollution, primarily because it denotes the activity on land (or use of land) 

that generates pollutants of concern. In its simplest designation, land can be 

categorized as forest, agriculture or urban. There are many delineations and sub-

delineations of land usage, which may need to be considered along with the 

atmosphere as a transport pathway and a source of non-point nutrient pollution. Table 

2.0.4 provides the general characteristics of nutrient generation from specific land 

uses. 

 

Although the atmosphere has been listed as a source of nutrient contamination, in fact, 

with the possible exception of some specific chemical reactions related to the 

hydrolysis of acidic emissions from industrial sources, the atmosphere does not 

constitute a ‘source’ of any pollutants (Ryding & Thornton, 1999). It should be 

viewed instead as a transport pathway for pollutants released to the atmosphere. 
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Table 2.0.4: General characteristics of nutrient generation from specific land uses (Reckhow et al.  

1980) 

Land Cover Factors 

Forest • Forest river basins with sandy soils overlying granitic igneous river basins produce 
half the phosphorus export of forest river basins with loam soils overlying 
sedimentary formations 

• Young (< 5 years) forests produce greater water and sediment-phosphorus run-off 
than old forests 

• Areas with warm climates and high rainfall produce greater water and higher 
phosphorus export than other climatic regions 

• Deforestation or timber harvest activities generally cause greater nutrient export than 
undisturbed forested river basins 

• Forest fires cause a temporary increase in phosphorus export; however, the levels 
usually return to pre-fire conditions relatively quickly  

Cropland 
• Phosphorus export via run-off from sandy or gravel soils is generally small 
• Phosphorous export in run-off from clay soils and organic soils generally is large 
• The time of fertiliser application is critical; for manure-type fertilisers applied to 

frozen soils, the phosphorus export following snowmelt and high rainfall periods is 
large; incorporating applied fertilisers into the soil results in reduced nutrient export 

• Fertiliser application above recommended levels for existing soil conditions produced 
increased nutrient export 

• Conventional tillage methods (e.g. fallow land during non-growth seasons, harvest 
removal of crop residues) results in large nutrient export 

• Conservation tillage practices reduce nutrient export; however, they can result in 
increased herbicide usage and export 

• Row crops produce much larger nutrient exports than non-row crops  
Pasture  
• Limiting livestock grazing time on a given parcel of land reduces nutrient export, in 

contrast to continuous grazing on the same parcel 
• Fertilised pastures often exhibit increased nutrient export 
• The greater the animal density, the greater the potential for increased nutrient export 

Agriculture 

Feedlot and manure storage 
• The greater the extent of impervious surface, the greater the nutrient export 
• The greater the animal density, the greater the nutrient export 
• The greater the roof area: feedlot area ratio, the smaller the nutrient run-off 
• The use of a detention basin decreases nutrient export 

Urban • The greater the extent of impervious surface, generally the greater the nutrient export 
• Increases in housing density, fertiliser applications, and pet density result in increased 

nutrient export 
• Decreases in grass and vegetative cover result in increased nutrient export 
• Commercial, business, and industrial areas often have considerable vehicle/ 

pedestrian traffic, resulting in greater nutrient export than residential areas 
Atmosphere • In agricultural areas, increased nutrient export can result from ammonia volatilization 

from feedlots and fertilisers, and from wind erosion of fertilised soils 
• Increased nutrient loads from agricultural areas often coincide with fertilisation and 

tilling periods 
• Increased nutrient export can result from boiler and furnace operations, and from 

automotive and aviation emissions, in urban areas 
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2.0.4 The Role of Climate Change 

 

The natural background stream water chemistry is determined by atmospheric inputs, 

river basin geology and soil type, the process by which water reaches the river 

network and by chemical and biological processes operating in the river. 

Superimposed on these natural controls are anthropogenic factors such as river basin 

land use, deposition of atmospheric pollutants, the discharge of used water from 

sewage treatment works and other uses, drainage from urban areas and pollution 

incidents. The effects of climate on natural or chemical processes will be 

superimposed on these anthropogenic factors, which are also varying through time for 

many reasons, including climate. 

 

Temperature is perhaps the most important physical quality characteristic of river 

water. It not only affects biological and chemical processes in the river, but also 

influences aquatic ecosystems. The rates of biological and chemical processes are 

temperature dependent. Temperature influences the ability of water to absorb gases 

such as nitrogen, oxygen and carbon dioxide.  

 

Increases in temperature can increase the rates of both nitrification and denitrifaction, 

but denitrification rates are most affected so, other things being equal, high water 

temperatures would lead to a reduction in nitrate concentrations (Jenkins et al., 1993). 

Increased residence times, due to lower flows, would also result in lower nitrate 

concentrations because denitrification could continue longer. These effects might be 

offset by the reduced dilution due to lower flow volumes: the actual change in nitrate 

concentrations in a river will therefore depend on temperature change, the change in 

stream flow volumes and the volume of nitrate inputs. 

 

Jenkins et al. (1993) simulated nitrate concentrations and temperature change in a 

number of rivers and showed that nitrate concentrations are reduced, particularly 

during the summer. There are three other important potential effects of increased 

temperatures. First, a change in agricultural practices triggered by climate might lead 

to a change in inputs of agro-chemicals. Second, higher temperatures and drier soils 

would increase the rate of mineralization of organic nitrogen in the soil, increasing the 

amount of nitrogen available to be washed into the rivers. Third, peak nitrate 
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concentrations occur in autumn when nitrates that have accumulated in the soil 

through prolonged summer dry spells are flushed into the river. Taken together these 

three influences might lead to an increase in nitrate concentrations and more 

particularly to an increase in peak concentrations.  

 

Increased temperatures are likely to increase the duration of stratification in lakes and 

by changing rates of bacterial activity will alter dissolved oxygen (DO) levels. For 

example, Blumberg and DiToro (1990) simulated a reduction in DO in Lake Erie of 1 

mg l-1 in the upper layers and up to 2 mg l-1 in the lower layers for a rise between 3.5 

and 4.3 degrees in air temperature. Stefan and Fang (1994) found larger changes in a 

number of smaller lakes in Minnesota and simulated reductions in temperature at 

depth in some lake types. In many lakes DO levels at the surface are close to 

saturation and so would change relatively little as temperature rises. Shallow lakes do 

not develop thermal stratification. Given an increase in summer radiation, water 

temperatures in such lakes are likely to rise and DO concentrations will fall.   

 

Changes in catchment vegetation, rainfall and hydrological regimes will affect erosion 

on hill slopes and in river channels, sediment transport and deposition, and river 

channel stability. There have been very few studies into the implications of global 

warming and it may be difficult to separate climate change effects from the 

consequences of land use change.  

 

Boardman et al. (1990) simulated the effects of changes in rainfall regimes on soil 

erosion in Britain, assuming no change in land use. Increased winter rainfall resulted 

in greater erosion from arable fields in lowland Britain, but lower losses in upland 

Britain because warmer temperatures meant that ground cover lasted longer through 

the winter. Not all the sediment created by soil erosion reaches the river network, so 

the implications for stream sediment yields are difficult to estimate.  

 

The effects of global warming on stream and lake water quality are much less well 

understood than effects on water quantity. It is clear that changes will depend on local 

climatic, geological and hydrological conditions as well as on the environmental 

control measures in place. There appears to be a general deterioration in water quality 
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with higher water temperatures, especially in lakes and rivers, which already receive 

high effluent inputs.  

 

2.1 Eutrophic Lakes 

 

Although it has been recognised that eutrophication affects all water bodies the main 

focus of this thesis is that of lakes. All further discussion will be restricted to lakes. 

Eutrophication research has had a high profile since the late 1980’s. The widespread 

occurrence of blue-green algal blooms in standing slow-flowing fresh waters gave rise 

to considerable interest and concern by the public, the media and within the water 

industry (FWR, 2000). The relation between nutrients and lake eutrophication is 

reasonably well understood. In the past 5 years it has been recognised that many more 

factors such as light, temperature, flow regime, turbidity, zooplankton grazing and 

toxic substances are affecting the eutrophication process in addition to, or maybe 

instead of, the nutrients (Van der Molen & Boers, 1999). However, not much progress 

has yet been made in the quantification of these factors. 

  

Eutrophic lakes are typically small, shallow and rapidly flushed. It has been estimated 

that in the northeastern states of America 65% of lakes, which are eutrophic, are less 

than 23 hectares in size, shallower and in river basins with more human activity than 

natural lakes (US Environmental Protection Agency, 2002). A similar situation can be 

seen in Italy, where most of the lowland lakes subject to more or less severe 

eutrophication processes occur in highly populated and industrialised areas. This is 

attributed to high point source loading in the past and high nutrient input from arable 

land at present (Institute of Ecosystem Study, 2002). 

 

In Denmark the majority of lakes are highly eutrophic due to high nutrient input from 

domestic sources and agricultural activities. Here, attempts have recently been made 

to reduce nutrient loading on lakes by intervening at the source level and by 

improving the retention capacity of river basin areas (Jeppesen et al., 1999). External 

loading of some Danish lakes is now so low that a shift to clear water state ought to 

have taken place. Slow recovery is sometimes observed due to both chemical and 

biological factors. Phosphorus release (internal loading) from the phosphorus pool 

accumulated in lake sediments during the time when loading was high may counteract 
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the reduction of external loading. A good example is the shallow Lake Sobygaard in 

which internal loading was still high 13 years after a 90% reduction in external 

loading (Sondergaard et al., 1993). 

 

Internal loading problems can also be seen in Lake Muggelsee in Germany. Lake 

Muggelsee was highly loaded with phosphorus and nitrogen by the River Spree up to 

the end of the 1980’s. At the end of the 1980’s, the phosphorus retention capacity of 

the sediment was exceeded and the lake became a source of phosphorus. The lake 

regained its ability to retain phosphorus in the sediment after external load reduction 

in the 1990’s. However, the internal load of phosphorus still remained high, off 

setting any change in phosphorus load expected by external load reduction (Kozerski 

et al., 1999).   

 

Both external and internal loading problems have occurred in the Naardermeer Nature 

Reserve in the Netherlands, where during the last century the chemical composition of 

the surface water has changed from brackish to fresh and from unpolluted to nutrient 

rich. Lake Grote Meer contained <0.03 mg l-1 PO4, < 0.1 mg l-1 NO3 and 0.1 mg l-1 

NH4 in 1908 (Bootsma et al., 1999), which in 1985 had increased to 0.05, 0.38 and 

0.18 respectively as a result of both internal and external inputs (Barendregt et al., 

1995). Internal sources were guano from the Cormorant colony nearby, mineralization 

of the peat soil, which was due to the lowering of the water table and nitrogen fixation 

by alder. The main external nutrient sources were from local sewage treatment works 

and agriculture. 

 

In the UK similar problems with eutrophication have been occurring. Currently there 

are 86 rivers and canals, 10 estuaries, 16 lakes and reservoirs, which have been 

identified and designated Sensitive Areas (Eutrophic) under European legislation 

(Newson, 1991). One such site is the Broads. 

 

2.1.1 Eutrophication in the Broads 

 

The Broads were created in medieval times by peat digging (Lambert & Jennings, 

1960); man from then to the present day has influenced the area. Until the turn of the 

20th century the rivers were important arteries for local transport, but with the 



Jodie Whitehead  Ph.D. Thesis 

Chapter Two  - 22 - 

development of railways their value as a recreational resource began to be recognised. 

Many naturalists have provided documentary evidence of the wealth and diversity of 

the biota found in the Broads (George, 1992).  

 

By the late 1960’s surveys revealed that the now highly eutrophic Broads had changed 

considerably (Mason & Bryant 1975) from the state described at the turn of the 20th 

century.  The once clear water, dominated by a variety of submerged aquatic plants, 

including a diverse array of charophytes, had almost completely disappeared. 

Associated with this loss was a dramatic reduction in invertebrate diversity and an 

improvised fish community of low biomass dominated by small roach (Rutilus rutilus) 

and bream (Abramis abramis) (Phillips et al., 1999). There is also evidence of an 

increase in salinity of the water some years prior to and perhaps during these changes 

because of more powerful land drainage pumps which were installed in 1939 (Watson, 

1981) to the immediate river basin and potentially exploited a deeper more saline 

water table. 

 

The coincidence of these changes in aquatic ecology and water quality suggest that 

they are inter-related and their magnitude indicates a potent cause rather than some 

subtle progressive natural change (Moss and Leah, 1982). Two likely causes have 

been identified: eutrophication and salinity changes. The system has been brackish for 

many decades, probably for two centuries, and it is unlikely that chloride changes in 

an already brackish system would have caused the major loss of aquatic plants. Lakes 

elsewhere also support rich charophyte and other aquatic plant communities at 

chloride concentrations far higher than those seen in the Broads e.g. the upper Baltic 

Sea and Loch Obisary (Moss & Leah, 1982). The change in plant dominance is more 

likely to have resulted from eutrophication rather than salinity changes. 

 

Eutrophication of the Broads can be described in three phases, each relating to 

different nutrient levels. These phases are conveniently defined by the level of 

phosphate in the water, since phosphate is a critical and often the limiting nutrient for 

algal and plant growth (Broads Authority, 1982). 
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Phase 1 (Pristine State): This is the situation that existed in most of the Broads prior 

to 1900. In this condition the Broads resembled the ‘marl lakes’ which occur on chalk, 

limestone or on fluvial deposits derived from these rocks. An example of this is the 

Malham Tarn in North Yorkshire and the Durness Lochs in the Highland region of 

Scotland (George 1992).  

 

The vegetation was fairly sparse and of low growing species. Stoneworts and the 

Bladderwort, which favour relatively infertile water, but which, unlike algae can take 

phosphorus they require from sediment, would have been prominent. Fossil diatoms 

from cores suggest that epiphytic and bottom living algae were scarce and 

phytoplankton virtually absent (Moss et al., 1996). The water therefore would have 

been crystal clear. 

 

Studies have shown that prior to 1800 Barton Broad had a total phosphorus loading of 

about 0.4g m-2 y-1, and that the mean concentration of total phosphorus was therefore 

only 13.3 µg P l-1. A level of fertility of approximately 3% of the mean of about 360 

µg P l-1 recorded at this site in the 1970’s (Moss, 1980). Data obtained from cores 

taken from Belaugh, Hoveton Great and Cockshoot Broads indicate that during the 

nineteenth century, the mean total phosphorus levels in these sites and the River Bure, 

with which they are connected, were similar at this time to those of Barton Broad. 

Unfortunately none of the Broads today still possess a true Phase 1 flora. 

 

Phase 2:  The second phase was marked by a gradual increase in the nutrient loadings 

of the rivers and Broads. This was due to the increasing efficiency of farming methods 

and the increasing quantities of raw sewage being discharged into the rivers. The 

higher nutrient levels encouraged a more luxuriant growth of taller plant species. 

Those successful in the Broads include Horned Pondweed, Water Soldier and Yellow 

Water Lily, particularly the Spiked and Whorled Water-milfoils and Fennel-leaved 

Pondweed. The robustness of these nutrient demanding species gave them a 

competitive advantage over the waterweeds of Phase 1.   

 

Sedimentation cores show that the mean total phosphorus loading of Barton Broad 

increased from 1.55 g m-2 yr-1 in 1900 to 2.15 g m-2 yr-1 in 1920. From these figures it 

can be calculated that the mean total phosphorus concentrations in the water increased 
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from 52 – 72 µg P l-1 (Moss, 1980). Evidence suggests that the transition from Phase 1 

to Phase 2 in the River Ant and the River Bure occurred between 1850 and 1890. In 

the Thurne Broads the Phase 1 dominated flora persisted longer, with the transition 

taking place in the mid 1930’s. Ten different species of Chara were still recorded in 

these Broads at the turn of the 20th Century. Six of these species were still present in 

1960 but by then were growing in association with species typical of Phase 2 flora 

(Jackson, 1978).  

 

Phase 3: Most of the open waters in the region are now in this phase. The high 

nutrient level of the water resulted in a substantial loss of diversity in the benthic 

invertebrate fauna. An accelerated rate of sediment deposition could also be seen 

along with a large increase in the amount of phytoplankton in the water and eventual 

disappearance of the waterweed flora.  

 

The switch between Phase 2 and 3 was assumed to be a relatively simple process and 

was attributed to the increased phosphorus loading of the rivers. It has however been 

found that the transition from Phase 2 to Phase 3 is complex and subtle (George, 

1992). It is thought that Phases 2 and 3 are alternative, relatively stable communities 

at high nutrient concentrations with self regulatory mechanisms existing which buffer 

the effects of extreme change (Moss et al., 1996). One of these buffers is the heavy 

predation to which cladocerans are subject in the absence of water weeds. 

Cladocerans graze on algae, with increased nutrient loads algal populations will 

increase. If cladocerans are subject to heavy predation from fish then algal 

populations cannot be controlled resulting in turbid waters (Moss, 2001). This can 

result in the consequent tendency for Phase 3 community to remain in this state once 

the switch from Phase 2 has occurred. 

 

Currently 53% of the Broads are in fair (Phase 2) ecological condition (Broads 

Authority, 2003). These include Hickling, Horsey and Martham South Broad. All 

three rivers in the study area (Bure, Ant and Thurne) are designated as sensitive areas 

(eutrophic) under the Urban Waste Water Treatment Directive (Moss, 2001). 

 

Nutrient inputs to land from fertilisers and animal wastes in the Anglian region are 

amongst the highest in the UK (Johnes, 1997; Johnes et al., 1996a). Under the Water 
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Resources Act 1989 all sewage treatment works and industrial sources receive 

phosphorus removal treatment before being discharged into the River Ant. All the 

major sewage treatment works discharging into the River Bure also receive 

phosphorus removal treatment before entering the water course (Moss, 2001). There 

are still many sewage treatment works that do not fall under the Water Resources Act, 

due to their size. When these two nutrient inputs are combined, sewage treatment 

works and septic tank facilities are combined with nutrient inputs from land. These 

comprise a large potential source of nutrient export to adjacent rivers and lakes. The 

nutrient enrichment of the major rivers feeding into the Broadland ESA has been 

studied for some time (Moss et al., 1984; Moss et al., 1988). The impacts of these 

increases in nutrient loading on the Broads are well known (Moss et al., 1985).  

 

There is a perceived need to restore their ecological status, the Broads have become a 

classic site for research on bio-manipulation as a technique for the restoration of the 

ecological status of eutrophic standing waters (Phillips et al., 1994). This technique 

holds great potential as a restoration tool, but is unlikely to achieve a sustainable plant 

dominated, clear water state in the Broads unless nutrient loading on the system can 

be reduced in tandem (Johnes, 1996b).  

 

2.2 Eutrophication Management 

 

Eutrophication has been recognised as a problem throughout the world for many years 

(Banens & Davis, 1998). A huge number of fresh and marine water areas, of varying 

sizes, have been seriously affected by eutrophication. This is a result of increasing 

discharges of phosphorus and nitrogen from modern society (Vollenweider, 1981). 

The large-scale decline of many aquatic ecosystems due to eutrophication has been 

recent and precipitous. In the Black Sea, for instance, severe eutrophication has a 

history of about three decades. This has been attributed to increased standards of 

living and food production which led to a high increase in nutrient discharge to rivers 

with subsequent algal blooms (Mee, 1997). In Lake Victoria, the world’s second 

largest freshwater lake, eutrophication is a result of increased nutrient levels since the 

1950’s, when population started to increase along the shores of the lake and in its 

river basin area (Nyirabu, 1997).  
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The development of large scale eutrophication in other parts of the world is in 

principle regulated by the same factors as those causing deterioration in Lake Victoria 

and the Black Sea, namely: 

 

• A growing population and urbanization of the river basin areas 

• Increased standards of living and food production including several fold                              

growth in use of fertilisers and irrigation in agriculture (Forsberg, 1998). 

 

In order to control eutrophication it is of central importance to know which nutrient is 

most limiting for algal growth. Comprehensive limnological research during the 

1960’s and 1970’s demonstrated with nutrient enrichment experiments, nutrient 

supply ratios, and relationships between nutrients and algal biomass, that phosphorus 

is most often the limiting nutrient in fresh water (Vollenweider & Kerekes, 1982a). In 

the marine environment e.g. the Baltic Sea, nitrogen is regarded to be more important 

than phosphorus (Graneli et al., 1990). But during the summer, blooms of 

cyanophytes have the ability to fix atmospheric nitrogen and therefore phosphorus 

may also act as the limiting nutrient here. In the Broads, there is still debate on which 

nutrient is the most important for limitation of algal growth. 

 

In Denmark the debate over nitrogen versus phosphorus as the limiting factor of algal 

growth caused the Danish Government to make a far-reaching decision. In 1987 the 

Danish Government decided to limit the pressure on the aquatic environment by 

reducing the loads of phosphorus and nitrogen by 80% and 50% respectively 

(Harremoes, 1998). In Denmark the reduction of the phosphorus load has been 

successfully accomplished by government legislation and the reduction of nitrogen 

from wastewater has been achieved; but the reduction of diffuse sources has not been 

very successful. 

 

The lake restoration strategy in the Netherlands has also focused on the reduction of 

external nutrient loading. Standards for general environmental quality were set at 0.15 

mg l-1 for total phosphorus and 2.2 mg l-1 for total nitrogen. So far the control of 

external loading has not resulted in the water quality desired (Hosper, 1998).  
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Turbid lake ecosystems tend to be resistant to recovery and solely reducing the 

external nutrient loading seems to be insufficient for attaining clear water conditions. 

It has been found that the reduction in external loading may be counteracted by 

internal loading, giving a marginal response in water quality (Shapiro, 1980). It is 

necessary to enforce a shift from the turbid to the clear state using quite rigorous 

methods. 

 

Biomanipulation, the removal of a large part of the fish population from the system, 

has been applied in various lakes. By removing large fish from a turbid lake, effects 

may ‘cascade’ through the trophic system, resulting in a switch to the clear water state. 

Unfortunately almost half of the biomanipulations in the Netherlands were 

unsuccessful due to too high external nutrient levels (Coops, 2004).  

 

Phosphorus treatment was attempted in the Eau Galle Reservoir (Wisconsin, USA) in 

1986. Internal loading was three to six times greater than external loading (James et 

al., 2003). This was undertaken by hypolimnetic injection of alum. Internal loading 

dropped substantially in the first year after treatment. Exceptionally high external 

loads increased phosphorus levels, thus negating the reduced internal loading by the 

second year. High external loading of nutrients hampered the successfulness of 

eutrophication management in the Eau Galle Reservoir, as also highlighted in the 

Netherlands 

 

Work carried out by Edwin et al., (1998) in the Netherlands suggests more specific 

standards should be set that are water type dependent. Table 2.2.1 shows standards 

proposed by Edwin et al., (1998) these standards have yet to be incorporated into any 

Government policy and do not include standards for lakes. The standards were 

defined as a list of physical and chemical values and by a verbal description of the 

biotic community that had to be present.  
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Table 2.2.1: Proposed Standards for Nutrients (Edwin et al., 1998) 

Watercourse 

description 

Orthophosphate 

(mg P l-1) 

Total phosphate 

(mg P l-1) 

Nitrite – nitrate 

(mg N l-1) 

Ammonium  

(mg N l-1) 

Hill stream 

upper reach 
0.08 0.24 4.95 0.20 

Hill stream 

middle reach 
0.54 0.72 4.24 0.30 

Hill stream 

lower reach 
0.80 1.00 4.65 1.30 

Lowland stream 

upper reach 
0.06 0.15 2.40 0.14 

Lowland stream 

middle reach 
0.14 0.18 5.64 0.37 

Lowland stream 

lower reach 
0.19 0.36 5.00 0.70 

Sandy bottom 

ditch 
0.05 0.08 0.34 0.27 

Clayish bottom 

ditch 
0.08 0.17 0.89 0.16 

Peaty bottom 

ditch 
0.05 0.14 0.11 0.20 

Acid ditch 0.05 0.05 0.14 0.05 

Brackish ditch 0.20 0.42 2.30 1.80 

Slightly 

brackish ditch 
0.82 1.90 1.28 3.40 

 

It can be seen that the restoration of lakes requires two phases, each addressing a 

different source of nutrients in the lake. The first phase needs to be river basin wide to 

deal with nutrient loading from external sources. The setting of a single water quality 

standard by Governments does not guarantee the minimum quality level in 

watercourses to protect the relevant aquatic communities.  

 

The second phase cannot be implemented until the first phase has been completed. In 

the second phase, methods are employed to reduce the recycling of nutrients from 

sediment into the water column, such as biomanipulation, dredging, lake drawdown, 

aeration and chemical treatments (Beegle et al., 2000). River basin wide issues that 
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affect water quality must be addressed and external loading reduced before in-lake 

treatments are done.  

 

A restoration programme for a specific lake starts with a definition of the targets or 

objective for the lake e.g. a natural reference state may often be included in the 

objective for lake restoration. Even if a natural reference state is known and maybe 

even achievable, another reference state may be preferred. Many birds inhabit for 

example man-made polders in the Danube Delta, Romania. Taken with the remaining 

reed-areas, these have increased the number of habitats available (Molen & Boers, 

1999). The original natural state is not always preferred even from a natural reference 

point of view. 

 

Several factors affect the feasibility of a natural reference and derived water quality 

targets: the present and future functions of the lake are often related to this along with 

hydrological and nutrient constraints. Functions like recreation and commercial 

fisheries limit the ecological possibilities of a lake. Disturbance is detrimental to 

several bird species and mammals (Benndort, 1987). Recreation and other water 

transport can seriously affect the shoreline of water bodies and their habitats and will 

have an impact on the re-suspension of sediments. It is clear that most functions of a 

water body other than ‘nature’ conflict with ecological water quality targets. 

 

The effects on lake management are related to the condition of the system. Based on 

the costs of restoration, protection of lakes not affected by pollution should have the 

highest priority. Re-establishing the ability for self-restoration can combat minor 

influences on lakes. When the conditions can be created for a natural recovery, 

patience is preferred over a hasty approach with additional measures to achieve the 

target. For most lakes in the Netherlands lake re-creation is necessary. Due to many 

factors affecting the lake water quality, water managers should be aware that the re-

creation of a more beneficial system is a more realistic approach than to re-create the 

pristine state (Schot et al., 1998). 
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2.2.1 River basin Management 

 

Water resource and land use planning can no longer be undertaken in isolation. This 

has been highlighted in the recent EU Water Framework Directive (WFD), which 

aims to understand the implication of integrating policies with regard to land use and 

diffuse pollution and point source regulation (Cleverly, 2001). River basin 

management involves the linking of physico-chemical attributes of water with 

ecological targets and the requirement for cost: benefit analysis as a key component of 

sustainable management. Other forms of legislation and restrictions on land use, such 

as the Nitrates Directive and protected areas also impact on river basin management 

(Environment Agency, 2003). 

The river basin provides a unique spatial context for linking processes within and 

between ecosystems (upland, lowland and coastal). In particular, the hydrological 

cycle links together the atmosphere, biosphere and geosphere and water quality and 

water resources are fundamentally influenced by biogeochemical reactions within 

soils and the landscape (Roberts & Coutts, 1997). The underpinning geochemical 

reactions and sink-source relationships for nutrients and pollutants can be heavily 

influenced by management and manipulation that can influence the quality and 

ecology of both surface and ground waters (Queensland Department of Primary 

Industries, 1991). River basin management requires an understanding of the complex 

interactions between water and habitat quality and the various impacts arising from 

the often conflicting needs and pressures from water and land users (Fig 2.2.1). 
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Figure 2.2.1: River basin Management (ADAS, 2004) 

There are many different ways of approaching river basin management. In central 

Europe the most common technique is landscape planning with very exact rules that 

are fixed in legislation (see Bastian & Schreiber, 1999). In the USA, river basin 

management is more flexible and based on the analysis of actual conditions (Peterjohn 

& Correll, 1984). 

 

In Australia river basin management issues are addressed through a community wide 

program called LANDCARE. This programme has strong government support at all 

levels and promotes more sustainable land and water management. This is achieved 

through a balance between economics, ecology, productivity and resource protection 

whilst contributing strongly to community development. LANDCARE has over 4500 

autonomous community groups. Most are comprised of farmers and other landowners 

restoring land and increasing sustainability (Youl et al., 2003).  

 

LANDCARE partnership projects tackle salinity, revegetation, wildlife rescue, 

vegetation management, environmentally sustainable development, research and 

wetlands. One such project is the Riverglades Wetland Complex in South Australia. 

The Riverglades are being transformed from a degraded area into a functioning and 

healthy wetland with improved water quality and biodiversity. The project involves a 
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feasibility study into infrequent drying cycles to control carp and plague minnows and 

to trigger regeneration of native plant species (Zukowski, 2001).  

 

In New Zealand a lot of research has gone into the management of the impacts of both 

natural and anthropogenic change on land and water resources. Early on the value of 

whole-river basin studies as a means to quantify these impacts was recognised. 

Integrated Catchment Management (ICM) is a widely used tool throughout New 

Zealand. This is an approach which recognises the river basin as the appropriate 

organising unit for research on ecosystem processes for the purpose of managing 

natural resources in a context that includes social, economic and political 

considerations (Bowden, 2000). One such project is in the Motueka and Riwaka river 

basins; the goal of this program is to use historical research, biophysical 

experimentation, simulation modelling, and social learning to address resource 

management issues. Like LANDCARE projects in Australia this project relies on 

community groups, landowners and farmers due to its multiple, interacting and 

potentially conflicting land uses (Basher, 2003).  

 

A relatively recent technique is assessment of critical source areas (Behrendt et al., 

1996; Sharpley et al., 1994 & Pionke et al., 2000) to determine areas in the river basin 

where possible nutrient leaching and run-off are higher. This approach is based on the 

detailed spatial analysis of the river basin, where all natural and human impact 

conditions are considered, to determine sources of nutrients. Main factors affecting 

the nutrient transport are land use and soil cover (Sharpley et al. 1994; Pionke et al. 

2000). Spatial analyses allow the identification of areas where nutrient losses are 

expected to be higher and where river basin management measures should 

consequently have more effect. 

 

To decrease nutrient losses from river basins different mitigation measures can be 

used. The most common measures that are widely used in many countries, are a 

design of landscape structure with proper relation of natural and cultivated areas with 

connecting corridors (Forman & Gordon 1986; Haycock & Muscutt 1995; Collinge 

1996), buffer zones (Lowrance et al. 1984; Peterjohn & Correll 1984; Pinay & 

Decamps 1988; Mander et al. 1995), constructed wetlands (Fleischer & Stibe 1991; 

Arheimer & Wittgren 1994; Straškraba 1996; Blackwell et al.1999; Kuusemets & 



Jodie Whitehead  Ph.D. Thesis 

Chapter Two  - 33 - 

Mander 1999), and river restoration (Petersen et al. 1992). Storage lakes are also 

considered as possible nutrient sinks (Straškraba 1996; Jensen & Skop 1998; Mander 

& Järvet 1998). These storage lakes can be filled with sediments and saturate with 

nutrients and become sources of secondary pollution if they are not cleaned regularly. 

 

2.2.2 Agricultural Management  

 

A second method for addressing diffuse pollution is to reduce the transportation of 

pollutants from the field to watercourses by changing agricultural management. The 

activities that increase the availability of the pollutant, or cause soil release, are 

mechanical agitation of the soil (such as ploughing), removal of ground-cover plants 

and applications that are badly timed relative to weather or nutrient demand by the 

crop (Kuusemets & Mander, 2002). Activities that increase the rate of run-off are soil 

compaction caused by machinery, furrows (tramlines) that channel water flow 

towards water bodies, drainage, over irrigation and depletion of organic matter in the 

soil (Santhi et al., 2002). 

 

There have been steady gains in the adoption of conservation tillage by farmers. In 

1983, 23% of all the cropland in the USA was under some form of conservation 

tillage and in 1993 the percentage increased to 37% (Bull and Sandretto, 1996). There 

are many different forms of conservation tillage. Examples include no tillage, mulch 

tillage and other tillage operations that leave crop residue on the soil surface. The 

main benefit of conservation tillage is the protection provided to the soil by the crop 

residue. The crop residue reduces the detachment of soil particles by rainfall impact. 

Conservation tillage is classified as a source reduction and managerial practice that 

reduces sheet and rill erosion (Mostaghimi et al., 1992). Researchers have reported 

reductions of up to 50% with 9-16% increase in crop residue coverage (Baker and 

Laflen, 1982). Other benefits of conservation tillage include: increased infiltration 

(Doa, 1993), protection from wind erosion (Blevins and Frye, 1993), reduction in 

evaporation (NRCS, 1998), increased soil organic matter and improved tilth (Hubbard 

and Jordon, 1996). 

 

Although conservation tillage is very effective in reducing erosion, there are some 

concerns that it may increase potential pollution by other transport processes. 
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Conservation tillage increases infiltration and the potential for leaching of dissolved 

chemicals (Drury, 1993). Under conventional tillage, fertiliser or manure is 

incorporated into the soil by direct injection or by tillage operations. Both of these 

operations incorporate the crop residue. Under conservation tillage the manure or 

fertiliser is usually applied to the soil surface and not incorporated to minimise residue 

disruption. The nutrients tend to accumulate near the soil surface (Erbach, 1982). The 

increased nutrient level at the soil surface leads to increased nutrient concentrations in 

surface run-off (Baker and Johnson, 1983). 

 

A further effective erosion control practice on low to moderate sloping land is contour 

farming. Contour farming is defined as farming sloping land in such a way that land 

preparation, planting and cultivating is done on the contours (NRCS, 1998). Contour 

farming provides protection against sheet and rill erosion. The greatest protection is 

provided against storms of moderate to low intensity on fields with mild slopes. A 

shortcoming of contour farming is that it provides minimum protection against high 

intensity storms on steep slopes. When storm intensity greatly exceeds the infiltration 

rate the accumulation of water behind the furrows many lead to ‘overtopping’ 

(Medez-Delgado, 1996).  Overtopping occurs when ponded water overtops the furrow 

and from one furrow to the next creating a cascade of failures. This failure may result 

in severe local erosion in the form of gullies. Overtopping can also occur for storms of 

moderate intensity if contour farming is used on steep fields (Heatwole et al., 1991). 

 

Contour farming is generally used as a component of other practices, such as strip 

cropping and terraces. Strip cropping on the contour allows for the application of 

contour farming on steeper slopes. The closely spaced crops used in strip cropping 

reduce the potential for overtopping.  

 

Buffer zones or filter strips reduce the transport of pollutants and are considered 

structural practices. They are planted or indigenous bands of vegetation that are 

situated between pollutant source areas and receiving waters to remove pollutants 

from surface and subsurface runoff (NRCS, 1998). The most prominent pollutant 

removal processes in filter strips tend to be infiltration of dissolved pollutants and 

deposition of sediment bound pollutants (Medez-Delgado, 1996). Buffers are used for 

the treatment of surface run-off from cropland or confined animal facilities. Robinson 
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et al. (1996) observed that a 3m wide buffer effectively removed up to 70% of the 

sediment load from cropland runoff. Edwards (1997) reported that buffers were 

effective for removing metals found in runoff from fields treated with poultry litter. 

Barone (1998) reported that buffers were effective for removing nutrients, bacteria 

and pesticides from surface runoff. 

 

Dillaha et al. (1986) has observed that the effectiveness of buffers tended to decrease 

with time. With proper maintenance, buffers are expected to function for up to 10 

years (Dillaha and Hayes, 1991). Sediments accumulate in the buffer over time, large 

flows from extreme precipitation events may flush the buffer of its sediment load. 

Without harvesting the biomass grown in the buffer, the trapped nutrients will 

accumulate, thus increasing the risk of groundwater pollution or increasing the 

nutrient concentration of waters leaving the buffer.  

 

Cover crops are a source reduction managerial practice. The main purpose of cover 

crops is to provide soil cover and protection against soil erosion. Cover crops also 

sequester nutrients over the winter, prevent nutrient loss, and provide a ‘green’ 

manure source in the spring (Wyland, 1996) if the cover crop is left in field or 

ploughed under before planting of the primary crop. Another benefit of cover crops is 

soil moisture management by reducing soil evaporation when plants are dormant 

(Ewing et al., 1991).  

 

Another valuable natural resource is wetlands. Constructed wetlands have been used 

to treat municipal waste, industrial and more recently agricultural wastes (Reed, 1991). 

Wetlands are cost effective, efficient and suitable method for treating a wide range of 

pollutants. Magmedov and Yakovleva (1988) found that sulphates, ammonium and 

nitrate concentrations of up to 100 mg l-1, chlorides up to 1500 mg l-1 and suspended 

solids up to 300 mg l-1 did not suppress wetland biocenosis. Due to the complexity of 

wetland systems, wetland behaviour will vary from site to site (Reed and Brown, 

1992). 

 

Nutrient management plans are one of the most common ways to address diffuse 

pollution from agricultural lands (NRCS, 1998). Nutrient management is a source 

reduction managerial practice and aims to enhance crop yields while minimising the 
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loss of nutrients to surface and groundwater resources. This is achieved by managing 

the amount, form, placement and timing of plant nutrient applications (Beegle and 

Lanyon, 1994).  In most cases nutrient management plans are based on the nitrogen 

needs of the crops. When the amount of fertiliser applied to cropland is based on crop 

nitrogen needs over application of phosphorus may occur because the nitrogen content 

of fertilisers are generally less than the phosphorus needed by crops (Sharpley, 1994).  

 

In the past it was assumed that the excess phosphorus would be held by soil minerals 

and not be available for transport (Sims, 1995). The over application in some areas 

has resulted in the phosphorus saturation of agricultural soils. Therefore any 

phosphorus applied to these soils would increase the potential for degradation of the 

aquatic habitat in the receiving waters. This is especially true for orthophosphorus, 

which is highly mobile by surface runoff and is an essential nutrient in the 

eutrophication process (Sharpley, 1994).  

 

Effective nutrient management planning and effective execution of best management 

practices requires a thorough understanding of the behaviour of nitrogen and 

phosphorus in the system and of the controls of the losses. This understanding is still 

incomplete (Oenema & Roest, 1998).  

 

2.3 Possible Future Scenarios 

Scenarios are used to determine how conditions may change in the future. A scenario 

is a coherent, internally consistent and plausible description of a possible future state 

of the world (Parry and Carter, 1998). A scenario is not a prediction of the future, 

since use of the term “prediction” or “forecast” implies that a particular outcome is 

most likely to occur. Rather, a scenario represents one of any number of possible 

futures, which can be used to provide data for vulnerability, impacts and adaptation 

studies; to scope the range of plausible futures; to guide and explore the implications 

of adaptation and mitigation decisions; and to raise awareness of climate change 

issues. They provide a range of possible futures that allow consideration of the 

uncertainty relating to the different pathways that exist for future social, economic and 

environmental change.  
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2.3.1 Climate Change 

 

The Earth’s climate has been changing throughout its history and until now this has 

been mostly due to natural causes (UKCIP, 2002). According to the 

Intergovernmental Panel on Climate Change (IPCC) the increase in surface 

temperature over the 20th century for the Northern Hemisphere is likely to have been 

greater than that for any other century in the last thousand years (IPCC, 2001). 

 

Climate changes affect the hydrological cycle, thus modifying the transformation and 

transport characteristics of nutrients. At the current stage of knowledge, large-scale 

global circulation models (GCM) are probably the best available tools to estimate the 

effects of increases in greenhouse gases on rainfall and temperature patterns through 

continuous three dimensional simulation of atmospheric, oceanic and cryospheric 

processes (Bouraoui et al., 2002).There is a general consensus that the Earth will be 

subject to warming (Nijssen et al., 2001). For Europe, Beniston and Tol (1998) 

reported a surface air temperature increase by 0.8oC during the 20th century with large 

temporal and spatial variations. 

 

Four GCMs have been reviewed thoroughly by the IPCC (IPCC, 1996): CSIRO-Mk2 

(Hirst et al., 1996), ECHAM4 (Roeckner et al.  1996), CGCM1 (Flato et al., 1999) 

and HadCM2 (Johns et al., 1997). GCM predictions of temperature increases are often 

associated with large uncertainties, the source of which is well documented in the 

literature (Allen et al., 2000; Mitchell & Hulme, 1999; Reilly et al., 2001; Visser et al., 

2000). Hulme and Carter (1999) summarise that these uncertainties stem from the 

coarse resolution of the models and their representation of atmospheric and other 

processes. 

 

Despite these uncertainties, monitoring, research and model simulation results show 

that climate change can have a significant impact on soil and water resources 

(Murdoch et al., 2000). Reviews on the impact of climate change on the water cycle 

are available for the US (Gleick, 1999) and for Europe (Arnell, 1999). In its latest 

report the IPCC (IPCC, 2001), notes that long term studies have already shown the 

adverse effects of increased temperature on physical and biological systems in many 

parts of the world. Murdoch et al. (2000) reviewed the potential impact of climate 
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change on surface water quality in North America. It was noted that an increase in 

diffuse source pollutant loads is among the effects to be expected. As seen earlier, 

diffuse losses of nutrients, especially those from agricultural origins, are among the 

major contributors to the total load of nutrients to the river system (Novotny & Olem, 

1994).  

 

Kallio et al. (1997) looked at the impact of climatic change on agricultural nutrient 

losses in Finland. Changes in nitrate and particulate phosphorus losses from 

agricultural areas were estimated in a new equilibrium climate assuming an increase 

of 4.7oC in temperature and 12% in precipitation as compared to the present climate. 

On the basis of model estimations Kallio et al. (1997) predicted increases in 

precipitation and temperature would increase the nitrogen loss from agricultural areas 

to surface waters. The main reasons for the increase were thought to be the 

acceleration of organic matter mineralization in agricultural soils and the increased 

water flow through the soil column. Particulate phosphorus losses showed a mean 

decrease for all agricultural land in Finland. The main causes for the decrease were 

attributed to the shorter period of frozen soil and the reduced snowfall, both of which 

reduce surface run-off. 

 

The predicted reduction in particulate phosphorus in Finland due to climate change 

may explain the conclusions drawn by Frisk et al. (1997). By looking at climate 

change and lake eutrophication with the use of a dynamic simulation model they 

concluded that an increase in the spring peak of phytoplankton could be expected, but 

the average biomass would remain the same. According to the simulations, the effects 

of climate change on the trophic status of lakes would not be great. In contrast Hassan 

et al. (1998) predicted that an increase in phytoplankton growth rate would occur 

throughout the year due to climate change using a hydro-quality mathematical model 

and future climate estimates from HadCM2SUL. On the basis of modelling results it 

can be concluded that climate change may cause an increased risk for eutrophication 

in some lakes. 
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2.3.2 Agriculture Futures 

 

The consequences of global climate change on agriculture and ecosystems are highly 

uncertain (Clifford et al., 1996). There will be both positive and negative effects for 

agriculture. For example if global warming causes a change in climate zones to higher 

latitudes then parts of Russia and Eastern Europe will become wetter and as a result 

their agricultural productivity would rise. The arable areas of North America and 

Southern Europe would become drier and warmer; as a result there will be more heat 

waves and droughts, which could mean widespread crop failures. This could lead to 

worldwide famine (Liverman, 1986). 

 

The impact of climate change on arable crops, horticulture, weeds, pests and diseases, 

grasslands and livestock includes changes in the location of agricultural activities, 

earlier development and growth, changed yields and quality (Table 2.3.1). In the UK 

it is predicted for winter wheat that a temperature increase of 2ºC and a precipitation 

decrease of 10% will lead to increases in cereal production in western England, whilst 

areas of East Anglia become less suitable because of drought.  Brignall et al. (1994) 

suggested that sunflower and grain maize might become more common in areas 

currently dominated by cereals. 
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Table 2.3.1: Predicted effects of climate change on agriculture over the next 50 years (Leake, 

2000) 

Climatic 
element Expected changes by 2050's Confidence in 

prediction Effects on agriculture 

CO2 
Increase from 360 ppm to 450 

- 600 ppm Very high 
Good for crops: increased 

photosynthesis; reduced water 
use 

Sea level rise 
Rise by 10 -15 cm Increased 

in south and offset in north by 
natural subsidence/rebound 

Very high 
Loss of land, coastal erosion, 

flooding, salinisation of 
groundwater 

Temperature 

Rise by 1-2oC. Winters 
warming more than summers. 
Increased frequency of heat 

waves 

High 

Faster, shorter, earlier growing 
seasons, range moving north 
and to higher altitudes, heat 

stress risk, increased 
evapotranspiration 

Precipitation Seasonal changes by ± 10% Low 
Impacts on drought risk soil 
workability, water logging 

irrigation supply, transpiration 

Storminess 
Increased wind speeds, 

especially in north. More 
intense rainfall events. 

Very low Soil erosion, reduced infiltration 
of rainfall 

Variability 
Increases across most climatic 

variables. Predictions 
uncertain 

Very low 

Changing risk of damaging 
events (heat waves, frost, 

droughts, floods) which affect 
crops and timing of farm 

operations 

As well as climate the main drivers that will shape agriculture in England and Wales 

under the possible futures are (Berkhout et al., 1999): 

• Change in or abandonment of EU agricultural policy (especially CAP reform) 

• Demand for and supply of agricultural commodities in England and Wales and 

world markets due to population growth, economic prosperity and preferences 

• Pressures on natural resources 

• Importance given to social and environmental issues 

• Technology development. 

Morris (2003) has constructed future agricultural and related environmental scenarios 

based on the above drivers, drawing on the methodology developed by the UK 

Foresight Programme (DTI: 1999, 2002) (Table 2.3.2). Foresight considers long term 

futures and possible implications for UK industry and society. The programme 

constructed four possible futures, which are distinguished in terms of social values 

and governance (Berkhout et al., 1998).   
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Table 2.3.2: Future Agricultural and Related Environmental Scenarios linked with the Foresight 

Programme (Morris, 2003) 

Foresight 

Scenario 
Agricultural Policy Scenario Intervention regime 

 Baseline 
Moderate: Existing price support, export subsidies, 

with selected agri-environment schemes 

World Markets 
World Agricultural Markets 

(without CAP) 
Zero: Free trade: no intervention 

Global 

sustainability 

Global Sustainable 

Agriculture (Reformed CAP) 

Low: Market orientation with targeted 

sustainability ‘compliance’ requirements and 

programmes 

Regional 

enterprise 

Regional Agricultural Markets 

(Similar to pre-reform CAP) 

Moderate to High: price support and protection to 

serve national and local priorities for self 

sufficiency, limited environmental concern 

Local 

Stewardship 
Local Community Agriculture 

High: locally defined support schemes reflecting 

local priorities for food production, incomes and 

environment 

The four socio-economic scenarios described above form an important part of 

possible agricultural futures. Socio-economic change has a major effect upon the 

vulnerability of agriculture, water and biodiversity to climate change (Shackley & 

Wood, 2001). As with climate change scenarios, socio-economic scenarios help to 

provide indicative measures of change, reducing a multiplicity of possibilities to more 

manageable proportions. Parry et al. (1998), for instance, has shown that trade 

liberalisation is likely to have a greater effect upon agriculture in the UK over the 

course of the next few decades than climate change.   

Future land use under different climate change scenarios and socio-economic 

scenarios have been modelled as part of a ‘Regional climate change impact and 

response study’ (RegIS). This has been carried out to adapt and develop mathematical 

climate change impact models for the coastal, agriculture, water and biodiversity 

sectors, in two regions; East Anglia and North West England (Holman & Rounsevell, 

2001). Five scenarios have been modelled; the UKCIP98 2050’s Low and High 

climate scenarios with no socio-economic change and then with linked socio-

economic (Regional Enterprise and Global Sustainability) and climate scenarios for 

the 2050’s (Audsley et al., 2001). 
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The simulations showed that when the socio-economic scenario is unchanged, the 

proportions of the major crops are also little changed. The area of grassland in the 

East Anglian region has increased to almost double its current area under the 2050’s 

high scenario, although it is still a low proportion of the total. The majority of this 

increase is due to land changing from arable to pastoral agriculture due to the risk of 

flooding. When the Global Sustainability socio-economic scenarios are introduced 

break crops such as oilseed rape, beans and peas are increased at the expense of 

cereals and the areas of sugar beet and potatoes decrease.  The effect of the Regional 

Enterprise socio-economic scenario is to eliminate all break crops other than sugar 

beet and potatoes, but these do not increase. Instead barley and oats increase and 

wheat reduces. 

In terms of nutrient input RegIS predicts that nitrogen requirement is almost 

unchanged for all the scenarios except for the Regional Enterprise socio-economic 

scenario where the large increase in yields of the crops means there are 

correspondingly large increases in the economically optimum level of nitrogen to be 

applied. Combined with the change in cropping this amounted to an increase of over 

60% in nitrogen requirement for the region. 

The results from this study show that it is possible to integrate agricultural land use 

modelling directly into climate change studies involving socio-economic scenarios 

and river modelling. It has also highlighted the need under some scenarios for 

agricultural adaptations to be undertaken in response to climate change.  

The Centre for Rural Economic Research (University of Cambridge) (2004) has 

looked at the future of agriculture over a shorter timescale than RegIS. It aims to 

produce estimates of agricultural land use in England and Wales by 2015, the time 

when the EU Water Framework Directive comes into force. Table 2.3.3 shows 

projections for change in agricultural activities by 2015 in the Eastern Region of the 

UK.  
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Table 2.3.3: Projections for Change in Agricultural Activities by 2015 in the Eastern Region (The 

Centre for Rural Economic Research, 2004) 

Activity Projected Change (% to 2015) 

Total Agricultural Area -0.9 

Grass -10.0 

Wheat 11.5 

Winter Barley 6.0 

Spring Barley 12.0 

Oats 12.0 

Potatoes -8.0 

Sugar Beet -30.0 

Field Beans 15.0 

Peas (harvested dry) 25.0 

Oilseed Rape 12.0 

Linseed -50.0 

Maize 10.0 

Unlike RegIS a decrease in grassland has been predicted, however predictions for 

break crops for both projects show a general increase except for sugar beet and 

potatoes.   

The importance of farm and state level adaptations to climate change and variability 

has been demonstrated in further studies (e.g. Rosenberg et al. 1989; Waggoner 1983; 

White, 1974). Adaptations to climate change exist at the various levels of agricultural 

organization. In temperate regions, farm-level adaptations include changes in planting 

and harvest dates, tillage and rotation practices, substitution of crop varieties or 

species more appropriate to the changing climate regime, increased fertilizer or 

pesticide applications, and improved irrigation and drainage systems. Governments 

can facilitate adaptation to climate change through water development projects, 

agricultural extension activities, incentives, subsidies, regulations, and provision of 

insurance. 
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2.4 Modelling of Non-point Source Pollutant Loads 

 

In ideal conditions it would be possible to continuously measure tributary flows and 

the pollutants carried in the flowing water. Under such conditions, the product of 

these two variables would provide an extremely accurate measurement of pollutant 

loads. In reality, however, the available field, technical and financial resources are 

never adequate to accurately measure a pollutant load from all potential non-point 

sources in a river basin. The result is that individuals and agencies often must make 

use of mathematical models to estimate and/or predict present and future non-point 

source pollutant loads to water bodies (Jorgensen et al., 1996).  

 

Models can be viewed as physical or theoretical tools that attempt to provide a 

‘picture’ of the real world, without the necessity of having to actually ‘construct’ a 

representation of the real world. The development of mathematical modelling 

techniques (chemical, physical, or biological) has not yet reached a stage where 

modelling is a completely accurate and reliable basis for quantitatively describing 

and/or forecasting non-point source pollution processes (Jolankai et al., 1999). In 

addition, even if modelling techniques were firmly established, a lack of necessary 

data would still limit the practical application of sophisticated modelling techniques. 

Nevertheless, in order to design realistic non-point source pollutant control strategies, 

relevant cause and effect relationships must be quantified. Pollutant inputs from all 

major sources must be related quantitatively to their measured impacts in the 

components of the environment receiving the pollutants. 

 

2.4.1 Modelling Approaches 

 

River basin models can be classified into three categories: empirical, physically based 

and conceptual models.  

 

Empirical models do not utilise physical laws to relate input to output. Conducting 

measurements on both inputs and outputs develops them. In empirical models, the 

variation within the river basin characteristics is not accounted for directly. However, 

the mathematical formulae used implicitly represent the physical system within the 

range of data they were developed from. SWATCATCH (Hollis et al., 1996), HSPF 
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(Crawford and Linsley, 1966), INCA (Wade et al., 2002) and INCA-P (Wade et al., 

1988) are some examples of empirical models. Since this type of model is not based 

on physical characteristics of the river basin, empirical models cannot be generalised 

to other locations and scenarios without reducing their accuracy (Wood and 

O’Connell, 1985). These models are generally only applied to conditions for which 

the parameters have been calibrated. 

 

Physically based models are those based on complex physical laws and theories. The 

‘real world’ is simplified to different degrees in space and time. Physically based 

models are intended to represent a synthesis of the individual components, which 

affect the river basin, including the complex interactions between various factors and 

their spatial and temporal variability. Physical modelling of a river basin would imply 

using fundamental physical equations at a small scale, such as the law of conservation 

of mass. Given the complexity of a river basin, this can be done in practice only for 

water routing (Ouarda et al., 1997). Consequently, only short term flow forecasts can 

be obtained from physically based models, since the effects of precipitation, 

infiltration and evaporation must be negligible.  

 

Few physically based river basin models have been used in practice as they are over 

complicated for the level of data often available (Brooks et al., 2003), although many 

have been developed and tested as part of research projects (ANSWERS; Beasley et 

al., 1985 and MIKE-SHE; DHI, 1998). Extensive data are needed for even the simpler 

models and just as much calibration is needed as with the use of other model types.  

 

Conceptual models fall in a category between physically based models and empirical 

models. They usually represent physical formulae in a simplified form. Singh (1988) 

noted that these models are able to provide useful results efficiently and economically 

for some problems. Conceptual models can either be lumped or distributed. Lumped 

models treat the river basin as a single unit, with state variables that represent the 

averages over the river basin area. Distributed models make predictions that are 

distributed in space, by splitting the river basin into a large number of elements or 

grid squares. These models are capable of reflecting changes in river basin 

characteristics if the parameters used are physically based. Conceptual models are 
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therefore, very useful for inferring the distribution, magnitude, past, present and future 

behaviour of processes with limited observations. 

 

All three model types have their advantages and disadvantages, but conceptual 

modelling allows future river basin behaviour to be modelled and requires less 

extensive data than physically based model types. Of the hundreds of conceptual 

models on the market the Soil Water Assessment Tool (SWAT; Arnold et al., 1996) 

(see below) is designed for looking at long term outcomes. This makes it very suitable 

for looking at future climate and land use change within a river basin. 

 

2.4.2 Soil Water Assessment Tool  

 

The Soil Water Assessment Tool (SWAT) was created by the United States 

Department of Agriculture (USDA) as an integrator of the simulators CREAMS 

(Knisel, 1980), GLEAMS (Leonard et al., 1987), SWRRB (William and Nicks, 1994) 

and ROTO (Neitsch et al., 2000). The model was developed with the object of 

modelling the effect of agricultural practices in large un-gauged basins (Arnold et al. 

1994; Srinivasan & Arnold, 1994). It is a spatially distributed, river basin level 

biophysical model, whose components include; weather, surface run-off, return flow, 

percolation, crop growth, irrigation, groundwater flow, reach routing and nutrient and 

pesticide loading among other features (Srinivasan et al., 1995). It operates on a daily 

time step and is designed to study long-term impacts (Neitsch et al. 1999). 

 

The model itself is based on the water balance equation. Surface run-off is calculated 

applying an improved SCS (Soil Conservation Service) Curve Number approach 

(Arnold et al., 1998). The percolation component consists of a linear storage with up 

to ten layers. The flow rate is governed by the hydraulic conductivity and the 

available water capacity of each layer. For lateral subsurface flow, a kinematic storage 

model is used. Percolation from the root zone recharges a shallow aquifer (Arnold et 

al., 1993), which is also connected to stream flow. The model calculates evaporation 

from soil and transpiration from plants separately, as described by Ritchie (1972). The 

actual evaporation is a function of soil water content, plant type and soil depth. 
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Transpiration is computed as a linear function of potential plant evapotranspiration 

and leaf area index. Canopy storage for each crop is also included. 

 

SWAT also contains a plant growth model, which is a simplified version of the plant 

growth approach of the EPIC model (Williams et al., 1983). It is based on 

accumulating heat units, harvest index for the partitioning of grain yield, the Monteith 

approach for potential biomass (Monteith, 1977) and water, nutrient and temperature 

stress concepts. A single model is used for simulating all the crops considered. Tillage 

systems and agricultural management can be specified for each crop.  

 

2.4.3 SWAT Applications 

 

Natural river basin systems maintain a balance between precipitation, runoff, 

infiltration, and water, which either evaporates from bare soil and open water surfaces 

or evapotranspires from vegetated surfaces, completing the natural cycle. The 

understanding of this hydrologic cycle at a river basin scale, and the fate and transport 

of nutrients, pesticides and other chemicals affecting water quality is essential for 

development and implementation of appropriate river basin management policies and 

procedures (Montanari & Uhlenbrook, 2004). 

 

In recent years, application of models has become an indispensable tool for the 

understanding of the natural processes occurring at the river basin scale (Downs, 

2001). As the natural processes become more modified by human activities, 

application of integrated modelling to account for the interaction of practices such as 

agricultural management, water removals from surface bodies and groundwater, 

release of sewage effluent into surface and sub-surface waters, urbanization, etc., has 

become more essential (Slater et al.  1993). 

 

The program SWAT due to its continuous time scale, distributed spatial handling of 

parameters and integration of multiple processes such as climate, hydrology, nutrients 

and pesticides, erosion, land cover, management practices, channel processes, and 

processes in water bodies has become an important tool for river basin-scale studies 

(Cau et al., 2003; Conan & Bouraou, 2003; Griensven et al., 2001; Kirsch et al., 2002; 

Van Liew & Garbrecht, 2003). 
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SWAT has been applied to numerous projects and applications have shown some 

promising results. Peterson and Hamlett (1998) applied SWAT to model the 

hydrological response of the Ariel Creek river basin of northeastern Pennsylvania, 

which contains fragipan soils and wetlands. The report revealed that model calibration 

yielded Nash-Sutcliffe coefficients (ENS) of 0.04 and 0.14 when comparing daily and 

monthly flows respectively. These ENS values are particularly low, optimum values 

should be as close to 1 as possible.  Eckhardt and Arnold (2001) used a stochastic 

global optimization algorithm to perform the automatic calibration of SWAT 

simulation on a low mountain range river basin in central Germany. The results 

indicated a good agreement of measured and simulated daily flow with an ENS value 

of 0.7. They concluded that the mean annual stream flow is slightly underestimated by 

4%.  

 

The applicability of SWAT for estimation of agricultural nutrient loads and the effects 

of agricultural management practices on these loads is well documented. Saleh et al. 

(2000) applied SWAT to assess the effect of dairy production on water quality within 

the Upper North Bosque river basin in north central Texas. Model outputs were 

compared to flow, sediment and nutrient measurements for 11 stream sites within the 

river basin for the period 1993 – 1995. Results indicated that SWAT was able to 

predict the average monthly flow, sediment and nutrient loadings at 11 stream sites 

reasonably well with ENS values ranging from 0.65 to 0.99. 

 

Outside of the USA Melo de Souza et al. (2003) applied SWAT to a small river basin 

of 1.8 hectares at Darnum in West Gippsland, Victoria, Australia. The river basin is in 

a typical rural area and has been monitored since 1994. The main objective of the 

project was to assess the total phosphorus (dissolved and particulate) concentration in 

overland flow – run-off – from farmland to the water body. In terms of run-off, 

outcomes from model simulations were not accurate when compared with the 

measured data. The model over predicted run-off, giving an ENS of 0.48. This was 

attributed to the model being based on the Soil Conservation Service (SCS) run-off 

equation, which was developed in the 1950’s for estimating the run-off yield from 

rainfall for a variety of soil types and land use conditions of river basins in the US. 

The SCS curve number (CN) is a function of soil permeability, land use and 

antecedent soil water conditions (Neitsch et al., 2000). Some adjustments in the CN 
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curve number and the soil water capacity value were necessary to refine the model 

performance.  

 

The total phosphorus concentrations needed fewer adjustments than the run-off 

simulations and ENS of 0.99 was obtained. The initially poor predictions by the model 

could be related to default values, based on current USA characteristics that were 

likely to be different in Australia. It is also possible that the differences were related 

to the size of the river basin, which was smaller than those for which the model has 

been calibrated in the USA.  

 

The suitability of SWAT for the use on smaller river basins in the UK has been 

demonstrated in a number of projects. The SWAT model has been applied using data 

from a Unilever experimental river basin at Colworth, (1.415 km2) Bedfordshire, UK 

(Kannan, 2004). This is an intensively monitored river basin and provided perhaps the 

best spatial and temporal resolution data required for a SWAT model run. The 

inconvenience with using such a data set is that SWAT was designed as a 

management model and as such is best suited to application at the larger river basin 

scale. Nonetheless, calibration and validation carried out for daily data gave ENS
 

values of between 0.63 and 0.70. The work carried out at Colworth therefore provided 

the opportunity to investigate the operation of the SWAT software in considerable 

detail, providing promising results. 

 

Under the Terrestrial Run-off Modelling for Risk Assessment of Chemical Exposure 

(TERRACE) project the Exe river basin in south-west England has been modelled 

using SWAT (White et al., 2003). The overall aim of the TERRACE project was to 

develop a simulation model for evaluation of diffuse source chemical run-off at the 

regional scale across Europe. The purpose of modelling the Exe river basin was to 

demonstrate how SWAT software could be used to provide contaminant inputs to the 

GREAT-ER model. The model was calibrated at three sites and gave ENS values of 

0.35, 0.67 and 0.40 respectively. Although these results are slightly lower than other 

modelled river basins in the UK the final predictions by SWAT showed its flexibility 

to configure a river basin in an environment outside the USA.  
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In the UK SWAT has also been evaluated to determine its suitability of use in the 

Ythan river basin under a benchmark criteria to assess appropriateness of models for 

use in implementation of the Water Framework Directive (Dilks et al., 2003). The 

Ythan river basin is an area where diffuse nutrient pollution, specifically nitrates from 

agricultural fertiliser, has been identified as the main pressure (Edwards et al., 2003). 

SWAT performed successfully when evaluated against qualitative diffuse pollution 

benchmark criteria.  It was therefore considered to be suitable for assessing the long-

term implications of various management strategies of relevance to the Ythan river 

basin. These included good agricultural practice (e.g. timing and amount of fertiliser 

applications), the effects of buffer strips and land use change. 

 

Further evaluation of SWAT as a tool for identifying potential source areas of water, 

sediment, nitrate and phosphate with the Water Framework Directive in mind has 

been carried out in the Wensum river basin in East Anglia (White et al., 2004). Two 

management scenarios have been run using different crop rotations and tillage 

patterns to demonstrate the sensitivity of the SWAT model to the types of change that 

might be envisaged as management controls on sediment and nutrient loss. 

Calibration results gave an ENS of 0.93 for predicted flows. Nutrient results have also 

been successfully modelled and demonstrated much more variability in nutrient 

transport than can that monitored using a four-weekly sampling exercise, such as that 

currently in use by the Environment Agency. 

 

SWAT has been successfully applied in Europe and more specifically the UK. The 

most recent published work conducted within the UK has however, focused on 

evaluating the impact of climate change on water quality. Bouraoui et al. (2002) 

applied SWAT to the Yorkshire Ouse river basin to assess the impact of potential 

climate change on nutrient loads to surface water.  The study followed the impact 

approach described by Carter et al. (1994) using a three-step procedure: calibrate and 

validate the hydro-geochemical model using measured climate data, define the climate 

change scenarios and perturbation to be applied to the actual climate data, and then 

run the model using the baseline and perturbed climate time series. 

 

Climate scenarios were developed from the output of climatic Global Climate Models 

(ECHAM4, CSIRO-Mk2, CGCM1 and HadCM2) experiments. For each of the 
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climate scenarios, two variables were used: precipitation and temperature. The 

perturbations of the baseline daily time series were carried out simply by adding the 

estimated change in temperature in each month to the baseline of everyday of that 

month. Similarly, the baseline daily precipitation of each month was multiplied by the 

estimated change in precipitation in that month to obtain the daily perturbation. 

 

All climate scenarios, except one, predicted an increase in surface water flow and all 

climate scenarios significantly affected not only water quality and nutrient loads from 

agricultural areas but also crop growth patterns. This agrees with other studies 

(Hanatty & Stefan, 1998; Kallio et al., 1997). One of the major conclusions is that 

climate change will increase the nutrient losses to surface water firstly by accelerating 

soil processes such as mineralization of organic matter and by increasing the amount 

of water transiting through the soil profile to the river network. Furthermore all 

scenarios predicted a shift in crop growth. This will affect the soil and crop 

management, so that traditional crop rotations and management practices will have to 

be adjusted. 

 

Literature has shown that SWAT is responsive to both management practices and 

climate; however the choice of future management practices will be greatly influenced 

by predicted future climate change impacts. It is therefore judged that SWAT can be 

used to study the impact of future climate and land use scenarios to predict the 

impacts of these scenarios on flow and nutrient dynamics in the Broads. 
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Chapter Three Study Area and Available Data 

 

3.0 Spatial Data 

 

3.0.1 Geography/Location 

 

The Broads are a group of small, very shallow lakes, interconnected by a tidal river 

system in eastern England. Geographically they extend over an area of approximately 

560 km2 in the lower valleys of the rivers Waveney, Yare and Bure together with two 

Bure tributaries the Ant and Thurne (Bennion et al., 2001).   

 

The Upper Thurne broads are located approximately 5km southeast of Stalham, 

forming part of the headwaters of the River Thurne, approximately 4km from the 

coast (Fig 3.0.1). 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.0.1: Map of the Broads 
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3.0.2 Topography 

 

The relief of the Thurne river basin is subtle, with some distinct topographical 

features. There are two areas of higher ground, ranging from +16mOD in the 

northwestern parts around Hickling to +23mOD along the southern watershed near 

Martham. There is a minimum of -2mOD in the deeper drained levels. Slightly higher 

areas within the broads are called ‘Holmes’. 

 

A 30 km belt of sand dunes with heights up to 10mOD and a width of approximately 

100 m protect low lying areas from flooding by the sea (Holman & Hiscock, 1998).  

 

3.0.3 Geology 

 

Figure 3.0.2 shows a geological cross section of the Upper Thurne Broads. It can be 

seen that the study area falls within the complex drift deposits of the Breydon 

Formation. These deposits are comprised of peat, clay, silt and sand, which are highly 

variable both laterally and vertically. In areas of peat diggings the Breydon Formation 

may be very thin or non-existent. It is believed possible that the base of Hickling 

Broad (covered by recent fluvial sediment) consists of sands and gravels of the 

Pleistocene drift formation (Power et al.  2001).  

 

 
Figure 3.0.2: General geological section across the River Thurne river basin (Holman & Hiscock, 

1998) 
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Underlying the drift are rocks of the Pleistocene Crag Group. The Crag consists of 

marine shelly sands and silty and micaceous clays. Middle to late Pleistocene deposits 

consist of glacial and interglacial deposits including the Kesgrave Sands, Cromer 

Forest Bed and Anglian glacial till deposits (Holman et al., 1999).  

 

Underlying the Crag are beds of Palaeogene Age, namely the London and Thanet 

Formations. These clays are mainly mudstones and siltstones with ash layers and are 

underlain by Cretaceous Chalk. 

 

3.0.3 Soils 

 

The higher areas in the river basin have coarse soils such as Gresham (0711v) and 

Wick (0541s) Associations. Both are non-calcareous and therefore have potential to 

become acid from leaching. The level of acidity is only slight except around the edges 

of the lowest ground (Burton, 1990).  The main river valley contains a ground gley 

soil such as the Hanworth (0871c) Associations, with the large side valleys 

comprising of peat soils such as the Altcar 2 (1022b) Association. There are also 

sandy soils present in the river basin bordering the dunes, which belong to the 

Sandwich (0361) Association (Fig 3.0.3). 

 
Figure 3.0.3: National soils map of the Broads  
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National Soil Map 
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3.1 Spatially and Temporally Varying Data 

 

3.1.1 Climate 

 

In common with other parts of East Anglia, the Broads have a slightly more 

continental climate than other parts of the UK with an annual maximum mean 

temperature of 12.8oC and minimum temperature of 7.2oC (1961 – 1990). Annual and 

diurnal temperature ranges are higher than for much of the UK and annual rainfall is 

lower.  

 

The amount of bright sunshine at Norwich varies from about 50 hours in the months 

of December and January to nearly 200 hours in May, June and July (George, 1992). 

However, ‘frets’ (low level mists) tend to occur on sunny days for up to 4 miles inland, 

these tend to dissipate further inland as a result of the warming influence of the sun on 

the land. It is for this reason that sites such as Wroxham can be basking in bright 

sunshine, when Hickling Broad and Horsey Mere, only a few miles to the east are 

covered in thick mist. 

 

Annual rainfall is approximately 636.8mm yr-1 for the period between 1961 and 1998 

(Power et al. 2001). Rainfall is unevenly distributed throughout the year, with 60% 

occurring in the second half of the year. Autumn is the wettest with 31% of the 

average annual rainfall. Spring and winter are the driest seasons with largely cyclonic 

rainfall and 21% and 22% respectively of total annual rainfall (Burton, 1990). In 

terms of water levels in the Broads effective rainfall only arrives in the winter and is a 

minor source of water compared with river basin inputs. 

 

Future climate change may well have a greater impact on the East of England than in 

other regions. The following two figures (3.1.1 and 3.1.2) show anticipated changes in 

annual and seasonal temperature in the East of England and anticipated changes in 

seasonal precipitation in the region.  
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Figure 3.1.1: Changes in East of England annual and seasonal precipitation for the 2020’s, 2050’s 

and 2080’s (UKCIP, 2002) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 3.1.2: Changes in East of England annual and seasonal average temperatures   for the 

2020’s, 2050’s and 2080’s (UKCIP, 2002) 

 

The greater intensity and frequency of winter rainfall may increase the risk of 

flooding from rivers, while drier summers may put additional pressure on water 

resources.  

 

The study area has large low lying areas. The region is also sinking very slowly due to 

geological processes, making it vulnerable to coastal inundation as sea levels rise. 

Water is already pumped off the land to provide adequate drainage, climate change 

impacts that are likely to be most significant are increased coastal and fluvial flooding 

as well as saline intrusion. Increased climatic variability and more intense winter 
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rainfall will put pressure on drainage systems; low summer river flows may affect 

water quality.  

 

Increased temperatures will result in an increased thermal growing season with 

reduced summer precipitation and soil moisture greatly affecting agriculture in the 

region. Adaptation will be required in many farming activities, such as the timing of 

planting and harvesting, the level and timing of fertiliser applications and ploughing 

techniques. Adaptation to water pressures will also be very important. Farmers will 

need to consider growing crops with lower water requirements. These climate impacts 

will need to be taken into account when looking at development of future scenarios 

for use in the river basin scale model. 

 

3.1.2 Land Use 

 

Up until the early 19th century the Thurne river basin was poorly drained marshland 

with arable farming restricted to the Holmes. With better drainage, productivity 

increased and by the end of the 19th century some of the marshland was under arable 

crops, the remainder being grazed. Most fields were small, usually less than 5ha. In 

1978 – 1981 dyke removal allowed the amalgamation of small fields to large fields 

preferred by modern arable farmers.  

 

Today with the available incentive schemes in the area from DEFRA as part of the 

Broads Environmentally Sensitive Area (ESA) there has been an increased uptake in 

sustainable farming practices with controls on maximum nutrient application rates 

(Hoare, 2002). Table 3.1.1 shows that the proportion of land covered by permanent 

grassland and set aside has increased between 1995 and 2001. This was matched by 

declines in the Thurne area of cereal and other arable production. Arable reversion 

from crops to permanent grassland and extensification of livestock has therefore been 

noticeable. 
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Table 3.1.1: Land use as a percentage of the total agricultural area within the Upper Thurne 

river basin (Hoare, 2002) 

Agricultural Area 1995 1998 2001 

Permanent Grassland 31.4 32.2 42.5 

Cereal 31.5 36.2 26.7 

Other Arable 24.5 24.4 16.4 

Rough Grazing 7.8 5.8 5.5 

Set Aside 4.8 1.4 8.9 

 

To allow further investigation into land use change the 1990 CEH land cover map 

(Fig 3.1.3) and Edinburgh Data Library Agricultural Statistics have been obtained 

from 1969 - 2000. The use of the EDL data will also allow investigation of land use 

change and subsequent water quality change over time. The 1969 data will provide a 

baseline against which to compare subsequent change. It is also hoped that it will give 

an idea of land use and how it affected water quality in pre-phase 3 ecosystems and in 

some cases phase 2 systems within the Broads. 

 
In 1990 the largest land use type is tilled land (Fig 3.1.3). The EDL data show that 

cereal crops, field vegetables (peas) and root crops (potatoes and sugar beet) are the 

dominant crops in the river basin. There is virtually no rough grazing land, which 

would receive no additional fertiliser inputs. Set-aside land that would also receive no 

fertiliser application is scattered throughout the river basin. Since this land would 

have previously been utilised for intensive arable production (condition of entry into 

the set-aside scheme) these areas may well still contribute to diffuse nutrient export 

through mineralization of soil nitrogen and phosphorus reserves in saturated soils. 
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Figure 3.1.3: The CEH 1990 Land Cover Map

1990 CEH Land Cover 

 0                        3 cm 

0                        9 km 



Jodie Whitehead  Ph.D. Thesis 

Chapter Three  - 60 - 

Land use change in the UK is characterised by the intensification and expansion of 

agriculture after the Second World War, dating from the enactment of provisions in 

the Agricultural Act 1947 (MAFF, 1993). This was designed to increase food 

production in the UK.  1969 has been selected as a baseline to compare subsequent 

change, as these are the earliest EDL data available. Earlier data are available from 

parish summaries of the Annual Agricultural Census returns, which are open for 

public inspection. 

 

It can be seen from the graph below (Fig 3.1.4) that the area of cereal cropping 

increased from 1969 – 1976, but then declined as the cultivation of other arable crops 

such as potatoes and sugar beet increased in response to EC subsidies. As arable 

cultivation generally increased, the area of permanent and temporary grass has 

decreased. Crop types requiring high rates of mineral and organic fertiliser application 

have replaced Land receiving low rates of fertiliser application. This addition of 

fertiliser will be to land, which is bare for much of the year. Thus, considering 

historical land use data an increase in nutrient export from diffuse sources might be 

expected. 

Land use change in the study area (1969 - 2000)
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Figure 3.1.4: Land use change in the study area (1969 – 2000) 

 

Under the new EU Water Framework Directive all heavily modified water bodies 

must reach ‘good ecological potential’ by 2015. In order to do this in the Broads it has 

been estimated that approximately 50% of agricultural land needs to be converted to 
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semi-natural vegetation (Moss, 2003). If this is the case then in excess of 43870 ha of 

land in the study area would need to be taken out of arable production along with the 

minimisation of cultivation and fertilisation throughout the river basin. This would 

mean changing over a century’s worth of agricultural intensification. It may therefore 

be more realistic in obtaining a Phase 2 ecological status. 

 

By calculating the annual mean total phosphorus concentration, 35 µg 1-1, of four 

broads (Martham North and South, Blackfleet and Upton) in which phase 2 flora still 

occurred, and comparing this with estimates of the amount of phosphorus likely to be 

used by plants, Phillips (1977) suggested that the switch from Phase 2 to 3 occurred 

once the annual mean concentration of total phosphorus exceed 100 µg 1-1. 

Subsequent studies by Moss and others lend general support to this hypothesis. The 

switch to Phase 3 occurred in most Broads in the early 1950’s, but the larger Thurne 

Broads retained Phase 1/2 flora similar to that still found in Martham and Blackfleet 

Broads until the late 1960’s (George, 1992).   

 

Habitat features found in the Thurne river basin (other than marshes and dykes) 

include open water (broads); river; reed bed; fen and alder carr (Fig 3.1.5). The 

following sites have also been designated (Fig 3.1.6): 

 

Upper Thurne Broads and Marshes: SSSI, including Hickling, Horsey Mere, 

Calthorpe Broad and Martham North and 

South. 

Calthorpe Broad and Hickling Broad: National Nature Reserve (NNR) 
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Figure 3.1.5: Habitats within the Broads 

 

There are several County Wildlife sites within the Upper Thurne area. All of the 

above fall within the Broads Special Protection Area (SPA), candidate for Special 

Area of Conservation (cSAC) and the RAMSAR wildfowl designations. 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
Figure 3.1.6: Designated protected areas within the Broads 
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3.2 Hydrology 

 

3.2.1 Surface Water 

 

Rivers 

 

The river basins of the Broadland rivers are large for the UK (Table 3.2.1) with the 

Bure, Yare, Wensum and Waveney together draining a substantial part of East Anglia. 

The rivers have very gentle gradients as they flow through Broadland, approximately 

3cm per kilometre (George, 1992). However, their water regime is complicated by 

tidal influence and also by differences in run-off rates (Table 3.2.2). These are due to 

variations in the permeability of the soil types which predominate in the river basins; 

those of the Bure being relatively permeable to rainfall, with an estimated annual 

infiltration rate of 143mm (East Suffolk and Norfolk River Authority, 1971). The 

mean discharge rates of the rivers are given in Table 3.2.3. 

 
Table 3.2.1: River basins areas (East Suffolk and Norfolk River Authority, 1971) 

River basin Sub-catchment Gross Area (km2) 

River Bure 330.7 

Spixworth Beck 61.5 

North Walsham & Dilham Canal 49.3 

Tidal River Bure & River Ant 164.2 

Tidal River Bure & River Thurne 271.7 

River Bure 

Total 877.4 

 
Table 3.2.2: Rates of river basin run-off (Anglian Water Authority, 1981) 

River Bure Ant 

Gauging Station Horstead Mill Honing Lock 

River basin Area (km2) 313.0 49.3 

Period of Observation 1974-1982 1971-1981 

Mean run-off (mm) 219.0 191.1 

Maximum run-off (mm) & year 272.4 - 1981 221.5 - 1981 

Minimum run-off (mm) & year 164.5 - 1974 157.3 - 1973 
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Table 3.2.3: Mean discharge rates (calculated from EA daily flow data 1978 – 2000)  

River & Location 
Measured (M) or 

Estimated (E) 
Mean Discharge (m3 s-1) 

River Bure – Horstead Mill M 2.38 

River Bure – confluence with River Ant E 3.2 

River Bure – confluence with River Yare E 6.2 

River Ant – Honing Lock M 0.32 

River Ant – confluence with River Bure E 1.1 

River Thurne – confluence with River 

Bure 
E  0.96 

 

The River Bure rises at Melton Constable at a height of 80m OD and flows east to 

Blickling Mill then south to Horstead at its tidal limit, finally flowing east once more 

to the sea at Great Yarmouth (Fig 3.2.1). There are a number of large tributaries above 

Wroxham; Scarrow Beck flowing south to join the Bure below Blicking Mill, Kings 

Beck flowing south and joined by its tributary Stake Beck before its confluence with 

the Bure above Buxton Mill, and Spixworth Beck which flows east to join the Bure 

above Wroxham. River flow is continuously monitored at two gauging stations at 

Ingworth and Horstead Mill. 

 
Figure 3.2.1: Map of the River Bure sub-basins 

 

In part of the Bure’s course its long term discharge is only approximately 3 m3 s-1, 

with a water retention time of about 5.4 days (Moss et al., 1989). Winter high flows 

are on average less than double the summer flows. Discharge at Ingworth in January – 

Not to Scale 
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March averages 4.3 m3 s-1 and in July – September 2.4 m3 s-1.  The contribution of the 

River Ant increases the Bure flow by about one-third; there is little addition of new 

water below Hoveton Bridge. There is almost certainly some ground water seepage, 

but in the summer when evaporation greatly exceeds precipitation in the river basin, 

this is very small. 

 

The River Ant flows southwards through Norfolk. It rises near Honing at 

approximately 59.0m OD and eventually joins the River Bure west of St Benets 

Abbey, having passed through Barton Broad. In one stretch it was straightened and 

deepened to form a channel in the late nineteenth century, with locks at North 

Walsham and Honing.  The Ant is a very narrow winding river, approximately 1.5m 

deep (Gurney, 1911) with an average discharge of 0.32 m3 s-1.     

 

The River Thurne nominally drains an area of about 109km2 and for several centuries 

it has not taken the shortest route to the sea, instead flowing inland towards the River 

Bure. The River Thurne receives gravitational drainage from only small areas of the 

river basin since drainage of the marshland, and associated peat shrinkage, have left 

the river standing above the general ground level. This results in the river having a 

very low natural discharge which is compounded by its very low gradient (0.002%) 

(Holman  & Hiscock, 1998). The River Thurne has several sources (Fig 3.2.2): 

 

Key: 
A: Hickling Broad  

B: Heigham Corner 

C: Heigham Sound 

D: Candle Dyke 

E: Meadow Dyke 

F: Horsey Mere 

G: Martham North  

H: Martham South 

I:  River Thurne 

 

 
 

 

Figure 3.2.2: Diagram of the Upper Thurne System (Bales et al., 1993) 

Not to Scale 
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• One lies near East Somerton and feeds Martham Broad 

• The main sources of water for the Thurne system discharge into Horsey Mere 

and Meadow dyke, draining an area north of Hickling Broad and Horsey Mere 

bordered by the coast. 

• A minor source drains land near the village of Catfield and discharges through 

Catfield dyke into Hickling Broad. 

• The outflows from Horsey Mere and Hickling Broad converge in the riverine 

Broad – Heigham Sound. 

• Heigham Sound has its outlet in Candle Dyke, which joins the River Thurne 

7km above its confluence with the River Bure. 

• Between these points is a smaller Broad, Womack Water, which also 

discharges into the River Thurne. 

 

Broads 

 

There are a total of 39 broads in the study area. Apart from the headwater sites such as 

Hickling Broad and Horsey Mere the broads fall into two categories. ‘Side-Valley’ 

sites which are situated in tributary valleys and ‘by-passed’ broads, which are located 

to the side of the main river (Gregory, 1892).  

 

The hydrology of the side-valley broads is fairly simple, the majority being fed by 

small tributary streams. All the side-valley sites and some of the by-passed broads are 

separated from the main river system by sluices. These are installed to maintain a 

reasonable depth of water for supply or angling purposes, without interfering with the 

drainage of the adjoining marshland.  

 

The water regime of the broads which are in open communication with the rivers is 

much more variable and complex. In some cases, the channel or channels connecting 

the site with the river are so wide that the water in them is replaced very frequently, 

especially if the system is subject to strong tidal action. In contrast, sites such as 

Snape’s Water, which are connected to the main river system by narrow, often heavily 

silted dykes have much longer retention times (George, 1992). 
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Moss et al. (1984) showed that relatively rapid mixing of water masses takes place in 

sites such as Wroxham Broad, and that wind-induced currents, as well as tidal action 

are responsible for this. Results showed that Wroxham Broad has a retention time of 

about 4 weeks during dry spells in the summer, but this decreases to 2 weeks in wet 

summers, and to 1 week in the winter. These figures represent mean flushing rates of 

about 4, 8 and 12 per cent a day respectively. In contrast further results showed that 

Hoveton Great Broad has a theoretical replacement time of between 6 and 8 weeks; 

however, retention time will be much greater during dry periods in the summer.   

 

The Upper Thurne system is more hydrologically complex as can be seen in Figure 

3.2.2. Water enters Horsey Mere and Meadow Dyke through the land drainage pumps, 

mostly in winter; little new water enters in summer when evaporation rates are high. 

Not much water enters Hickling Broad directly at any time; what does, comes through 

Catfield pump, which serves only a small part of the river basin area. The winter 

water is pushed into Hickling Broad by the flood tides and replaces progressively that 

left from the previous summer; most of the water pumped from the river basin does 

not enter Hickling Broad. 

 

In summer, water may be moved between Hickling Broad and Heigham Sound and 

Horsey Mere by tides, but little new water is likely to enter the system.  The tidal 

range at Hickling Broad is about 4cm, equivalent to 3-4% of its volume. 

Exceptionally high tides are capable of exchanging 25% of the volumes of Hickling 

Broad and Horsey Mere within 2-3 days (Holdway et al., 1978). 

 

The winter high water drops gradually from February and then rapidly in May to a 

low level through July. The levels then pick up again steadily to the winter level in 

November, as can be seen in the graph below. There was a general increase in water 

levels in the period from 1993 - 2000 (Hoare, 2002). 
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Figure 3.2.3: Monthly mean water level from Hickling Broad (1993 – 2000) 

 

3.2.2 Land Drainage System 

 

Land drainage of the marshlands enables the Thurne river basin to be one of the most 

intensively farmed areas in the Broads (Watson, 1981). In the marshes where cattle 

grazing is practised, a high water level is required to provide water for the cattle and 

to maintain a water table for grass. Conversely, to achieve high arable yields a 

freeboard of about 1.25m is required throughout the year, together with levelling and 

under drainage of the marshes (Holman & Hiscock, 1998). 

 

The Internal Drainage Boards (IDB) controls Land drainage. Two IDBs operate 

pumps in the Upper Thurne area; the Smallburgh IDB, with Catfield, Stubb Mill and 

Eastfield pumps; and the Happisburgh to Winterton IDB with the Brograve, Horsey 

Mill, Somerton North and Somerton South pumps. They are responsible for draining 

all land below 2.74m and therefore the combined drainage area of the pumps totals 

approximately 4180 ha (Hoare, 2002).  

 

A bank to prevent the flooding of neighbouring areas if the dunes or river were to be 

breached encloses each drainage area. The water from the large internal networks of 

surface drains and tile drains flows into the arterial main drains where 13 drainage 

pumps electrically pump it into the external system of connected rivers and lakes.  
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Each pump has an attendant who is responsible for maintenance and recording 

information from the pump on a regular basis. This information includes the electric 

meter readings, water level on the drain side and hours pumped (where available). 

These data have also been obtained from the Environment Agency, although records 

were not complete for all pumps and the Agency do not hold data on the rest of the 

pumps in the Thurne river basin. 

 

Table 3.2.4 shows the annual water balance for the Thurne river basin. It demonstrates 

that the land drainage system forms a highly significant component of the river basin 

hydrology. The drainage pumps discharge the equivalent of the hydraulically effective 

rainfall falling on the entire Thurne river basin. It is evident that land drainage is also, 

by at least an order of magnitude the largest groundwater abstractor in the Thurne 

river basin (Holman et al., 1999). 
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Table 3.2.4: Water balance calculations for the River Thurne river basin (Holman et al., 1999) 

 Year 1 (1991/1992) 

Volume (x 103 m3) 

Year 2 (1992/1993) 

Volume (x 103 m3) 

Inflows 

Rainfall 59896 72409 

Saline intrusion 658 957 

River leakage 918 1018 

Mains water leakage 165 165 

Irrigation returns 0 0 

Total inflows 61637 74549 

Outflows 

Evapotranspiration 46201 57610 

Open water transpiration 334 335 

  

9920 16454 

658 957 

Drainage discharge: 

Freshwater 

Saline water 

River leakage 918 1018 

Groundwater outflow 55 51 

Groundwater abstraction 215 91 

Total outflows 58301 76516 

Storage changes 

Soil moisture 1515 -1908 

Groundwater 371 186 

Surface water 16 -15 

Total storage change 1902 -1737 

Total discrepancy 1434 -230 

 

3.2.3 Tides 

 

Although the emphasis of this study is the Upper Thurne river basin the Bure and Ant 

river basins are also being considered because of the complex hydrological connection 

between the waters of the Bure, Ant and Thurne due to the twice-daily tidal incursion.  
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Recordings early in the 20th century describe tidal ranges of 23 – 37.6cm at Acle 

Bridge, 19cm at Thurne Mouth, 17.6cm at St Benet’s Abbey, 9.7cm at Horning Ferry 

and 2.5 – 8.4cm near Hoverton Great Broad (Gurney, 1911). Current tidal ranges are 

similar to those recorded by Gurney. At Great Yarmouth the range is approximately 

1m in summer and 2.7m in autumn and winter, rising higher in periods with 

northwesterly gales. At Acle Bridge it is normally 26cm, exceptionally 45cm and at 

Hudson Bay it is 8 – 12cm, rather less than the 20 – 30 cm changes which frequently 

occur as a result of changes in river flow (Moss et al., 1989).  

 

On the River Thurne the tidal range at Womack Water, 1.25 miles from the Thurne 

mouth is 16.61-19.81cm and at Potter Heigham Bridge, which is 3 miles from the 

mouth, it is approximately 12.7cm (Gurney, 1911). At Heigham Sound a tidal gauge 

was used three times by Gurney (1911) to give an average range of 4cm, with 

averages for the three sets of charts of 2.54, 3.81 and 5.5cm. Therefore these charts 

show great irregularity in the tidal range at Heigham Sound. Further upstream at Deep 

Dyke the current varies in direction, sometimes flowing out of Hickling Broad and 

sometimes into the Broad, but it has been shown that this flow does not correspond 

with the tide (Watson, 1981). 

 

The tidal range increases progressively down the whole system and there are 

considerable cyclical level movements and mixing in the lower reaches and at the 

confluence of the River Bure and Thurne. These movements between the Bure and 

Thurne have been traced by dye additions (Rhodamine WT) (Moss et al., 1989). They 

indicated that sewage effluent discharges from points far downstream could influence 

water quality several kilometres upstream. Moss et al. (1989) placed 2.4 kg of 

Rhodamine WT in the River Thurne at the start of the ebb tide on 22nd October 1980. 

The trace first moved into the River Bure below Thurne mouth and then back into the 

Thurne during the flood tide later that day. No dye entered the Bure above the Thurne 

mouth. On the next flood tide, which was slightly higher, approximately 40% of the 

dye returned to the Thurne. This went as far upstream as Ludham water and 60% 

entered the Bure above the Thurne mouth and penetrated for approximately 1.5km.  

 

The implication of this experiment is that water may be retained in this part of the 

system for weeks before it moves out of this stretch to the lowest part of the system. 
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In this period it may move between the rivers Thurne, Bure and Ant several times. 

Long retention times in the main channel have also been confirmed by Moss et al. 

(1989) by following rates of chloride dilution after high tides, which gave values for 

retention time of 3-4 weeks.  

 

It is clear from the above research that water from the Rivers Bure and Ant regularly 

enters the River Thurne, travelling as far upstream as Potter Heigham. Therefore 

nutrient loads from the Bure and Ant river basins are also transported into the Thurne 

river basin although the extent of this is unknown due to the possible restriction of 

flow by the bridge at Potter Heigham. The effect of this hydrological connection 

needs to be considered and investigated further (Parallel PhD - Sofía Martínez). 
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Chapter Four  Water Quality in the Hickling System 

 

4.0 Nutrients 

 

The ecology of the Broads is heavily dependent on the chemistry of the water 

reaching it. The two main nutrients in the study area are phosphorus and nitrogen. 

Nitrogen is a major plant nutrient and is often applied in large amounts to agricultural 

land to maintain optimal yields. To ensure that plant nitrogen availability does not 

limit crop yields additional nitrogen is generally added to agricultural crops as 

inorganic fertilisers or in organic forms such as farmyard manure, slurry or sewage 

sludge. When nitrogen fertiliser is applied in excess of plant requirements it 

undergoes a series of transformations and transfers in soil, which can lead to pollution 

of the waterways and gaseous emissions from soil. Nitrogen may also be introduced 

into the system by nitrogen fixing plants, rainfall and directly from the atmosphere in 

the form of ammonia, nitrogen oxides and nitrate. 

 

Phosphorus is one of the most important mineral nutrients for biological systems, yet 

it is also one of the least available nutrients in terms of its demand in terrestrial and 

aquatic environments (Jarvie et al., 2002). Therefore, mineral phosphate fertilisers 

and animal manures are applied to agricultural land to raise soil phosphorus levels and 

maintain crop yields. As well as commercial fertilisers and animal manures 

phosphorus may be introduced into the environment by plant residues, rainfall, 

municipal agricultural and industrial wastes or by-products in addition to the natural 

weathering processes of soil minerals. 

 

4.0.1 Sources and Movements 

 

Point sources of nutrients such as effluent from STW (Sewage Treatment Works), 

industrial process effluents and discharges from septic tanks are not particularly 

significant in the mainly agricultural catchment of the Upper Thurne; however they 

play a more prominent role in the Bure catchment. 

 

There are no STW or process industries which discharge to the Thurne catchment. 

However there are scattered septic tanks and small sewage digesters with EA 
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(Environment Agency) consented discharge licences. These are small inputs over a 

wide area and occur at low density so their impacts on nutrient levels in the system as 

a whole represent a more diffuse pollution source. There are many small sewage 

treatment works in the Bure catchment which do not undertake phosphate removal 

though effluent discharged from the larger works (Aylsham, Belaugh, Briston and 

Rackheath) all undergoes phosphate removal. Discharges from these works with 

phosphate removal have a quality target of an annual average of 1mg l-1 in the final 

effluent (Madgwick, 1999). 

 

The River Bure can be considered in two parts, separated at Swan Bend, above which 

the tidal influence is small. In the lower part of the catchment there are two further 

sewage treatment works, Acle and Caister. Neither of these have phosphate removal 

as it is deemed that these works ‘do not require treatment for improvement of water 

quality’ (Broads Authority, 1982).  

 

Significant phosphorus loading was however added to the Thurne system in the late 

1970’s, which the above identified sources could not account for. This was attributed 

to guano from a large roost of black headed gulls and consequent phosphorus release 

from sediment (Hoare, 2002). The levels of P in the sediment have gradually been 

declining since the refuse tip, which the gulls visited in the day, was closed. The 

remaining major source of diffuse nutrients is run-off from agricultural land e.g. 

manures and chemical and green fertilisers. Nutrient losses from these can also be 

affected by on farm management.  

 

The Bure valley catchment is intensively farmed; therefore non-point sources of 

nutrients are important. Johnes (1996) looked at the nutrient inputs and transport 

dynamics in the Bure catchment at eight sample sites (Fig 4.0.1). All the sites showed 

seasonal patterns in nitrogen concentrations suggesting that nitrogen reaches the river 

through predominantly non point sources except for at Bickling Mill. Data from this 

site showed no seasonal pattern for nitrogen or phosphorus concentration.  The 

majority of the sample locations showed no seasonal phosphorus patterns, this was 

however only over a one year period (1995-1996). This signified that the main source 

of phosphorus concentrations in the catchment was from point sources such as septic 

tanks and smaller STW’s. Spixworth Beck had the lowest phosphorus concentration 
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in the catchment reflecting the predominantly non point source of total phosphorus in 

this tributary. 

 
Figure 4.0.1: EA sample sites, gauging stations and STW’s in the Bure and Ant river basins 

 

All four major treatment works in the Ant catchment (North Walsham, Stalham, 

Worstead and Horning) along with all industrial effluent sources undergo phosphorus 

removal before discharge into the river (UK Water Resources Act, 1989). Flow from 

the North Walsham sewage treatment works has been redirected to a coastal outfall at 

Mundesley in 1980. 

 

Work carried out by Phillips et al. (1999) suggests that the installation of tertiary 

chemical dosing at Stalham in 1977 to remove phosphorus from the final effluent has 

had a very small impact on the river load, as the initial impact of the Stalham 

discharge on Barton Broad was relatively small (Osborne, 1981) . In comparison the 

diversion of the North Walsham sewage treatment effluent in 1980 resulted in a 

substantial 90% reduction in the discharged phosphorus load. Total river phosphorus 

load clearly responded to this change, although the 90% reduction in discharge load 

was only matched by a 50% reduction in river load at the point where it enters Barton 

Broad (Hunset Mill). Osborne (1981), Moss et al. (1988) and Johnes (1996) all 

Not to Scale 
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concluded that the discrepancy between discharge load and reduction in river load 

was due to the uptake of phosphorus by sediment. This sediment can move 

downstream under flood conditions, undetected by spot-sampling regimes, ultimately 

to be deposited in Barton Broad where subsequent chemical and biological 

transformation can make it available to the overlying water (Phillips et al., 1994). 

 

Since 1980 further upstream at Honing Lock, the river load has been higher than that 

discharged from remaining upstream point sources, revealing the presence of other 

non-point source inputs. Further downstream the discrepancy between river load and 

upstream point sources are less apparent.  

 

Phosphorus release from sediments is of fundamental importance in relation to the 

nutrient enrichment problem on the Broads. Phosphorus release occurs during much 

of the year and varies considerably in different Broads and river sediments. The rate 

of the release is controlled by two principal factors: the phosphorus concentration in 

pore water and the amount of ferrous iron in the sediment (George, 1992).  

 

Considerable research has been carried out into nutrient export in the Broads. These 

have in the past considered phosphorus as the controlling nutrient causing 

eutrophication in the Broads. This is because in most fresh water systems phosphorus 

is the limiting nutrient. Therefore an increase in phosphorus loads can affect the 

composition and diversity of the aquatic ecosystem. Consequent attempts to restore 

shallow lakes have seen increasing plant populations, however these are usually very 

limited in species and the restored sites frequently revert to algal dominance after a 

few years (Meijer et al., 1999). One possible reason for this is that high nitrogen 

levels lead to low plant diversity. Such low diversity communities are vulnerable to 

damage early in the season through natural variations in weather or pressures from 

grazing waterfowl (James et al., 2003). Restoration of stable diverse plant 

communities might then require nitrogen as well as phosphorus control. This factor 

needs to be considered when looking at future land and water management scenarios. 

In terms of nutrient movement the low rates of rainfall in Norfolk mean that soluble 

reactive phosphorus export along through-flow pathways will be limited. However, 

export along field drains may be a significant pathway during wet periods, and 
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particularly during snow melts, when soluble phosphorus in excess of adsorption 

capacity may be flushed along macropore pathways into field drains and into adjacent 

watercourses. True overland flow is unlikely in the Norfolk region, given the low 

degree of slope, and low annual rates of rainfall. Some overland flow may be 

generated in the stream corridor on arable land, particularly where direct grazing of 

fodder crops by livestock takes place, since this will compact surface soil horizons, 

reducing infiltration capacity and porosity, but it is unlikely to be the dominant 

pathway. However, much of the region is under drained to allow arable cultivation to 

take place on low-lying land. When combined with the high proportion of fine 

particulate matter in the loamy soils of this region, selective transport of phosphorus 

adsorbed to fine particulate matter is likely to be an important pathway for the 

transport of phosphorus to Norfolk Rivers. Therefore the transport of these nutrients 

to watercourses can take one of several routes in the study area: 

 

• Significant amounts are transported in tile drain flow. 

• Other processes which mobilise nutrients are poaching of dyke margins by 

livestock, dyke clearance and deepening work, excessive manure applications 

during wet or frozen conditions 

• The route which nutrients take from the agricultural catchment of the Upper 

Thurne itself is via the drainage network and finally through the IDB pumping 

stations (Hoare, 2002). 

 

4.0.2 Dynamics 

 

In order to calibrate a catchment scale model of the study area a detailed record of 

total N and total P loading is required. In addition an understanding of the nutrient 

transport dynamics of the rivers will provide a valuable insight into the likely origins 

of nutrient loading. If little seasonal pattern were to emerge for P fractions, for 

example, this would suggest that the origins of P loading were from non-seasonal 

point source discharges rather than from non-point catchment sources. This pattern 

will also be influenced by in stream transformations of N species and P fractions, but 

to lesser extent than in standing waters, since river hydrochemistry is largely 

determined by flow and sediment transport in all but the slowest flowing rivers.  
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In all three catchments river water quality data from the Environment Agency have 

been obtained for the period 1981 – 2000. Figure 4.0.2 shows the location of these 

sites and Table 4.0.2 describes the dynamics of these sites. Data from 1998 are shown 

graphically in Appendix One to aid the understanding of the nutrient dynamics in the 

system. 

 
Figure 4.0.2: Location of Environment Agency sample sites 

 

From Table 4.0.2 it can be seen that despite tidal incursion, water quality data for 

oxidised N in the Bure catchment shows a seasonal pattern with winter maxima 

associated with periods of high catchment run-off, and summer minima reflecting 

lower rates of run-off, plant uptake and export to the atmosphere through 

denitrification in the slower reaches. The pattern is not extreme, reflecting the 

subdued river regime of the rivers in the Norfolk regions. Ammonium concentrations 

are highest during the spring period, reflecting spring storm flow, combined with 

periods of low flow and low oxygen saturation in the river. Overall the N species 

show a weak seasonal pattern with a winter maximum, suggesting that N export to the 

Bure is largely derived from non-point sources in the catchment, with a small percent 

of the total load derived from point source discharges from STWs, notably at Belaugh.  

Key: 

River 
 
EA sample site 
 
River basin 
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Overall the P data for the Bure show no strong seasonality and suggest that point 

source discharges are likely to be the dominant source of P loading on the River Bure. 

However EA routine sampling only takes place bi-monthly therefore the P load from 

event-based flow in which the majority of P load would be exported from non-point 

sources was unlikely to be recorded at this sampling interval. 

 

The Ant is a small river with a catchment, which is less intensively farmed than that 

of the Bure. This is reflected in much lower nitrogen concentrations than those 

observed in the Bure. P concentrations are however similar to those seen on the Bure, 

but a more defined seasonal trend can be observed, suggesting that P concentrations 

are dominated by non-point source origins. 

 

The Thurne catchment has no STW’s discharging above Potter Heigham Bridge. N 

species show seasonal trends of winter maxima and summer minima. In contrast to 

the Bure and Ant catchments ammonia also shows a seasonal trend of summer 

minima and winter maxima, this is due to the influence of peat drainage in the 

catchment.  Phosphorus shows no real seasonal trend but does however have the 

lowest concentrations in all three catchments. The nitrogen levels are modest 

compared to the other two catchments, as the Thurne catchment is not so intensively 

farmed. Most nutrients that enter from the catchment do so in winter when pumped 

volumes are the highest. 
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Table 4.0.2: Nutrient dynamics in the study area (adapted from Johnes, 1996b) 
Site Nitrogen Trends Phosphorus Trends Reason 

River Bure at Scarrow Beck N-oxidised & N-inorganic 
show clear seasonal trends with 
winter maxima and summer 
minima 

No clear trends Overall no clear trends likely caused by a greater 
contribution of nutrients from human sources in 
the catchment 

River Bure at Kings Beck Nitrogen speciation show 
marked seasonality, with 
winter maxima and summer 
minima 

No clear trends Clear nitrogen speciation trends and very few 
human settlements suggest the importance of 
non-point sources in this catchment 

River Bure at Aylsham Ammonia repeats summer 
maximum pattern, mostly 
recorded as < 0.5 mg l-1. 
Increase in oxidised N (highest 
for all sample sites) 

No clear trends High oxidised may reflect different balance in 
arable and livestock production in this part of the 
Bure catchment. Ammonia recorded as < 0.5 mg 
l-1 reflects higher oxygen saturation in the faster 
flowing waters at this site. Few human 
settlements so trends may reflect a greater 
proportion of livestock waste utilised as organic 
fertiliser 

River Bure at Horstead Mill Weak seasonal pattern Weak seasonal pattern Weak seasonal trends reflect export from non-
point sources. Horstead lies upstream from 3 
major STW’s 

River Bure at Wroxham Rail 
Bridge 

Weak seasonal pattern No strong seasonality Weak seasonal N species patterns suggest that N 
export is largely derived from non-point sources. 
No strong P trend suggests point sources 
discharges are likely to be the dominant source 

River Ant at Honing Lock Lower N concentrations then 
those in the Bure 

P concentrations similar to 
the Bure, but more defined 
seasonal trends 

Less intensively farmed catchment reflects in 
lower N concentrations. Seasonal P trends 
suggest P concentrations are dominated by non-
point sources 
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Site Nitrogen Trends Phosphorus Trends Reason 
River Ant at Wayford Bridge Nitrogen has a weak seasonal 

trend. Ammonia trend is out of 
line with trends observed in 
other catchments 

Weak seasonal trend Lower concentrations for both P and N are a 
result of lower proportion of major urban areas 
and lower proportion of intensive livestock 
production 

River Ant at Hunsett Mill Sparse data No seasonal pattern No seasonal P pattern suggests that the majority 
of P comes from point sources. This site lies 
downstream of STW at Honing Lock, although 
phosphorus stripping takes place at this works 

River Ant at Irstead Church Ammonia shows no real trend. 
Oxidised N and inorganic N 
show winter maxima and 
summer minima 

No data Winter N maxima trends are associated with 
periods of high catchment run-off 

River Ant at How Hill No data Summer maxima Non-point sources are important in this 
catchment 

River Thurne at Martham 
Ferry 

N species show winter maxima 
and summer minima. Unlike 
the Bure and Ant ammonia 
also shows seasonal trends 

No seasonal trend. Lowest 
concentrations in study 
area 

Ammonia seasonal trends are due to the 
influence of peat drainage. Lower P and N 
concentrations are a result of a less intensively 
farmed catchment. Most nutrients enter the 
catchment in winter when pumped volumes are 
the highest 

River Thurne at Potter 
Heigham 

Weak N seasonal trend. 
Ammonia similar to Martham 
Ferry 

No seasonal trend Weak seasonal trends suggest N export is largely 
derived from non-point sources 

River Thurne at Ludham 
STW 

High N concentrations with no 
seasonal trend. Ammonia is 
recorded at < 0.5 mg l-1 for 
most of the time 

No seasonal trend Ludham STW discharges upstream of this site 
reflecting the lack of seasonal trends. Ammonia 
recorded as < 0.5 mg l-1 reflects a higher oxygen 
saturation in the faster flowing waters at this site 
due to discharge from STW 
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4.0.3 Changes 
 

Levels of both nitrogen and phosphorus have changed in both the Ant and Bure 

catchments over time (Fig 4.0.3 and 4.0.4). 

Nutrient Concentrations for Honing Lock (1980 - 2000)
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Figure 4.0.3: Nutrient concentrations at Honing Lock, River Ant (1980 – 2000) 

Nutrient Concentrations for Horstead Mill (1980 - 2000)
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Figure 4.0.4: Nutrient Concentrations at Horstead Mill, River Bure (1980 – 2000) 
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Although the graphs in Figures 4.0.3 and 4.0.4 suggest there has been a change in 

nutrient concentrations statistical analysis using the Student T test showed overall 

there has been no significant change in nutrient concentrations (Table 4.0.3). At 

Horstead Mill on the River Bure there has however been a significant increase in 

nitrogen levels between 1990-2000 and 1981-2000, there has also been a significant 

overall increase in phosphorus levels between 1981-2000. The use of the Student T 

test on the River Ant data for the same periods showed no significant change in 

nitrogen or phosphorus concentrations.  

 

At both Horstead Mill and Honing Lock seasonal patterns can be seen in the nutrient 

concentrations. At Horstead Mill from 1993 onwards a lower and upper trend in 

nitrogen can be observed. This may be a result of the increased sampling frequency at 

this site therefore capturing more event based nitrogen movement. 

 
Table 4.03: Statistical analysis on long term nutrient data for the River Bure (Horstead Mill) and 

Ant (Honing Lock) 

   Analysis Dates 

Site Parameter Statistic 
1981-
1990 

1990-
2000 

1981-
2000 

Degrees of freedom 85 86 21 

Tcal 0.44 6.49 3.36 

T tab 1.98 1.98 2.08 
N 

Significance at 5% level No Yes Yes 
Degrees of freedom 83 82 19 

Tcal 0.05 0.42 6.08 

T tab 1.98 1.98 2.09 

H
or

st
ea

d 
M

ill 

P 

Significance at 5% level No No Yes 
Degrees of freedom 27 23 26 

Tcal -1.52 -1.02 0.42 

T tab 2.05 2.06 2.05 
N 

Significance at 5% level No No No 
Degrees of freedom 63 66 35 

Tcal -1.86 0.58 -1.12 

T tab 2.00 2.00 2.04 

H
on

in
g 

Lo
ck

 

P 

Significance at 5% level No No No 
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4.1 Water Quality and Data Analysis 

 

An initial analysis of flow and water quality contaminants (Total Phosphorus and 

Total Oxidised Nitrogen) has been undertaken to help recognize simple temporal and 

spatial varying patterns in nutrient concentrations. The aim of this was to gain a better 

understanding of the system to aid the modelling of the system and to consider the 

implications of the system for modelling. 

 

4.1.1 Initial Flow Analysis 

 

As discussed previously the study area is very complex in terms of hydrology, 

especially the Thurne River basin. An attempt has however been made to understand 

the flow patterns within the system. Rainfall in the study area is low in the UK context, 

averaging 520.6 mm yr-1. Evapotranspiration is, by contrast, high in the UK context at 

an average 455 mm yr-1. As a result hydrologically effective rainfall, as a key driver 

for the generation of flow within the river channel and nutrient and sediment transport 

from land to water, is relatively low (as mentioned in Chapter Three) at 142 mm.   

This produces a mean annual flow of 0.30 m3 s-1 at Honing Lock and 2.38 m3 s-1 at 

Horstead Mill, both of which are low when compared with the rate of flow generated 

in other UK river basins of similar drainage area.   

 

Figure 4.1.1 and 4.1.2 show flow duration curves for the Rivers Ant and Bure. It can 

be seen that the curve for the River Bure slopes steeply which suggests that the river 

has highly variable larger flows. In contrast the River Ant has a gently sloping curve, 

which indicates a large delayed flow component. Both curves flatten out considerably 

at higher percentile flows. This may represent the perennial storage in the two 

drainage basins, with the River Ant showing a longer and flatter curve and hence the 

larger amount of storage. 
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Figure 4.1.1: Flow duration curve for the River Bure at Horstead Mill (1974 – 2000) (NRFA, 

2005) 

 

 
Figure 4.1.2: Flow duration curve for the River Ant at Honing Lock (1966 – 2004) (NRFA, 2005) 

 

The hydrographs in Figure 4.1.3 illustrate a broadly seasonal pattern in flow. Both 

rivers show a relatively simple regime having one period of high water and one period 

of low water each year. These periods coincide with high run-off values occurring in 

the winter months when evaporation is small and peak evaporation during the summer 

months (Fig 4.1.4). Higher run-off in winter months results in high nutrient run-off in 

the winter months as shown in Table 4.0.2, where maximum run-off can reach 272.4 

mm yr-1 in the Bure and 221.5 mm yr-1 in the Ant. Nitrate leaching losses are greatest 
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in the winter when plant uptake is minimal, and lowest in the summer when the plants 

are growing rapidly.  The annual infiltration rate of the Bure is approximately 143 mm, 

and therefore has relatively permeable soils to rainfall, this is similar to the River Ant. 

Along with their relatively large groundwater component this gives the Bure and Ant 

a stable flow regime.  

Average Monthly Flow at Horstead Mill (River Bure) and Honing Lock (River Ant) 1990-2000
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Figure 4.1.3: Average monthly flow at Horstead Mill and Honing Lock (1990-2000) 
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Figure 4.1.4: Average monthly rainfall and PET at Coltishall (River Bure) 



Jodie Whitehead  Ph.D. Thesis 

Chapter Four  - 87 - 

In terms of long term variations in flow it can be seen in Figure 4.1.5 that in both 

rivers there has been an increase in flow over time.  

 

Flow at Horstead Mill (River Bure)
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Flow at Honing Lock (River Ant)
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Figure 4.1.5: Variation in flow over time at Horstead Mill and Honing Lock 

 

It can be seen from Figure 4.1.6 that the higher peak flows occurring in 1991, 1994 

and again in 1998-2000 can be attributed to higher then average rainfall. Within the 

study time period 1990-2000 it can also be seen that there are a number of years with 

above average rainfall and a number of years with below average, however there is 

only one year with average rainfall (1993). It is know from previous studies that 

models are unlikely to perform well if calibrated against just particularly dry or wet 

years. Therefore by using the period 1990-2000 the model will be calibrated and 

validated against both wet and dry years. 
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Figure 4.1.6: Average annual rainfall in the study area (1990 – 2000) 

 

Both rivers have high Base Flow Index’s (BFI) as can be seen in Table 4.1.1. 

However total base flow contribution does vary over the year (Figure 4.1.7). It can be 

seen that throughout the year base flow makes up a considerable amount of total flow 

in both rivers, especially in the River Ant where it makes up nearly 90% of the flow. 

The high BFI suggests that most of the water drains down through the soils to a 

groundwater compartment and on average only 14% in the Ant and 17% of the water 

flows overland or as near-surface quickflow.   

 
Table 4.1.1: Base flow contribution to total flow  

Gauge BFI (HOST) 

Horstead Mill 83% 

Honing Lock 86% 
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Average Monthly Base Flow contribution at Horstead Mill and Honing Lock (1990-2000)
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Figure 4.1.7: Monthly average base flow contribution to total flow (1990 – 2000) 

 

Approximately 50% of base flow within the system is made up of STW discharges 

(Figure 4.1.8).  It can also be seen that STW’s often discharge more than their 

consented dry weather flow (DWF) and therefore contribute a significant amount to 

peak river flows during wet periods, diluting in stream nutrient concentrations. 

Considering the input of STW discharge into the rivers, especially during the summer 

months, estimates of base flow to the rivers would be halved. Base flow concentration 

of nutrients, especially phosphorus, is however likely to be higher during the summer, 

as can be seen at Horstead Mill (River Ant) (Table 4.0.2). At this time base flow is 

likely to be composed of water that has been in contact with mineral material for some 

time and as a result has a higher solute concentration than flows in storm periods, 

which have had a much shorter period of contact with the vegetation and soil material.  
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Aylsham STW discharge contribution to flow at Horstead Mill (River Bure)
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Figure 4.1.8: STW discharge contribution to total and base flow at Horstead Mill 

 
The channels of the River Ant and Bure have an extremely low gradient of 0.16% and 

0.17% respectively. This will promote the settlement on to the channel bed of much of 

the sediment load exported to the channel in high flow events. With this will be the 

sediment-associated phosphorus load exported from catchment sources (Johnes et al., 

1996). The hydrological function of the River Ant and Bure might be expected, 

therefore, to lead to the storage of sediments and particulate phosphorus within the 

channel bed sediments under base flow conditions, with re-suspension of the finer 

fractions during storm events.    

 
The hydrological function of the study area, its topography and soil characteristics 

provide a good indication of the patterns, which might be generated in the 

mobilization, and transport of nutrients from diffuse sources in the catchment.  

However, there are wide ranges of point sources discharging nutrients to the system 

and the impact of these discharges on the dynamic in stream hydrochemistry cannot 

be predicted from these broad catchment descriptors.   

 

4.1.2 Initial Water Quality Load Analysis 

 

No flow data are available for the River Thurne so no nutrient loading calculations 

have been done for this catchment. Nutrient load and flow data for Honing Lock on 
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the River Ant and Horstead Mill on the River Bure for 1990-1999 are presented 

graphically in Appendix Two, to establish a correlation between flow and nutrient 

load. These graphs were inconclusive so correlation coefficients have been calculated. 

The significance of the correlation coefficient has been tested using the student T test 

(Table 4.1.2). 

 
Table 4.1.2: Significance of the correlation coefficients 

Site Nutrient 
Sample 

size (n) 

Correlation 

Coefficient (r) 
T cal. T tab. 

Significance at 5 

% level 

N 48 0.255 1.79 1.68 Significant 
Horstead 

P 22 0.467 0.21 1.72 Not significant 

N 12 0.030 0.09 1.81 Not significant 
Honing 

P 24 0.037 0.17 1.72 Not significant 

 

Only nitrogen loads at Horstead Mill show a significant correlation to flow. From the 

graph in Appendix Two it can be seen that, as expected, nitrogen loading increases 

with high flow due to storm events and increased run-off.  

 

4.1.3 Initial Broads Water Quality Analysis 

 

Appendix Three shows the monthly mean Total phosphorus and Total Oxidised 

Nitrogen concentrations in the Upper Thurne Broads from 1978 - 2001.   

 

Hickling and Horsey Mere show a similar annual pattern with lower TP 

concentrations at the start of the year, increasing very slightly to a small peak in 

September then decreasing again. This pattern is much more distinctive in Heigham 

Sound, Candle Dyke and Martham Ferry. They all have peak TP concentrations 

during July and August, with lowest concentrations from December to March. 

Martham North and South Broad have matching patterns of steady low concentrations, 

with minimum concentrations occurring in September.  

 

The mid channel sample points, Heigham Sound, Candle Dyke and Martham Ferry, 

have lower TP concentrations during the winter and early spring due partly to the 

higher discharge in the channels at this time of the year. Increased volume of water 
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dilutes the amount of P present, to give a lower concentration in the water sample. 

Figure 4.1.9 shows the water levels during the winter months in Hickling. Although 

the Broad itself does not change markedly in TP concentration throughout the year, 

the water flowing in the narrower channels does. Sediment re-suspension may cause 

the higher TP concentrations in the summer channel sample points, as boat traffic is 

the highest during these months (Hoare, 2002). 
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Figure 4.1.9: Monthly mean water level from Hickling Broad (1993 – 2000) 

 

In terms of TON concentrations all the sample sites show the same annual pattern 

with higher concentrations in the winter, peaking in February, this suggests that TON 

concentrations are a result of groundwater contribution to the system. From February 

there is a decline in the concentrations to a minimum value in August.  

 

4.1.4 Initial Pump Loading Analysis 

 

From the electrical consumptions of the IDB pumps monthly mean discharge rates 

have been calculated as m3 day-1 by multiplying given conversion factors by 

electricity consumption rates. The following conversion factors were used for each 

pump: 
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Table 4.1.4: Conversion factors used for calculating water volume (m3) discharged by the IDB 

pumps from electricity consumption (kWh) (Holman, 1994) 

Pump Conversion Factor m3 kWh 

Catfield 153 

Stubb Mill 83 

Eastfield 66 

Brograve 44 

Horsey Mill 48 

Somerton North 51 

Somerton South 63 

 

Results of water quality monitoring from the IDP pumps are most usefully displayed 

in terms of the load delivered to the system. This represents how much actual mass of 

a particular substance has entered the system in a given period. In this case a mean 

rate has been calculated as kg day-1 for each month sampled. Multiplying the mean 

monthly concentration of the substance by the total monthly discharge volume over 

the number of days in the month derived the daily rate.  

 

There were several years when water quality data and pump discharge data were 

either not collected or not recorded. The graphs in Figures 4.1.10 and 4.1.11 represent 

mean daily loads of Total Phosphorus (kg day-1) and Total Oxidised Nitrogen (kg day-

1) for the IDB drainage levels for all collected data. 

 

For all the pumps winter is the period of highest P discharge with January and 

December having the highest loadings, suggesting that concentrations are a result of 

surface run-off. The pumped volume data also shows the winter as the period of 

greatest water discharge rate. July and August have the lowest TP loading, along with 

the lowest water discharge rate. 
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Figure 4.1.10: Graph of mean Total Phosphorous loads delivered by the IDB pumps in the Upper 

Thurne 
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Figure 4.1.11: Graph of mean Total Oxidised Nitrogen loads delivered by the IDB pumps in the 

Upper Thurne 
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TON loads also tend to be higher in the winter with peak loadings occurring in 

January and February, coinciding with high pump discharge rates. 

 

The data suggest that TP loads from the catchment have remained relatively 

consistent in the period from 1982 – 2001. However higher peak values can be seen 

over the last 10 years especially at the Horsey Mere and Brograve pumps. Higher 

peak TON loads can also be seen at Brograve in 2001. Peak TON loadings also 

occurred at Eastfield Pump, Brograve and Stubb Mill in 1984. The majority of these 

peak loading concentrations can be attributed to high discharge rates for example the 

high TP loading occurring at Brograve in June 2001 ties in with the highest discharge 

rate in the whole data series (88107.9 m3 day-1) (see Appendix Four for pump 

discharge rates). However the peak TON loading at Brograve pump in 1984 cannot be 

accounted for by high discharge levels, it is the actual TON concentration which is 

high at 17.60 mg l-1.  

 

An overall increase in discharge rates at the Brograve pump from 2001 can account 

for the more frequent higher TP and TON loadings. This increase may have occurred 

due to either unusually heavy rainfall or because of the diversion of Eastfield water to 

the Brograve pump, increasing the agricultural area drained by Brograve Pump. This 

diversion occurred some time in 1996; however nutrient data are unavailable for 1997 

– 2000 so it is difficult to confirm that this may have been the cause of the higher 

discharge rate (Table 4.1.5). 

 
Table 4.1.5: Brograve average monthly pump consumption (Kwh) 

Year Average monthly pump consumption (Kwh) 

1995 2041.5 

1996 6225.3 

1997 5661.5 

1998 13107.0 

1999 15726.4 

2000 12787.3 

2001 23654.4 
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Both the TON loadings of the pumps and concentrations found in the Broads follow a 

similar annual pattern with higher values occurring in the winter. However this is not 

the case with TP.  TP concentrations are higher in the summer months in the Broads 

when the summer pump loadings are at their lowest. This is attributed to the internal 

TP loading of the broads, which is released from the sediment as the water 

temperature increases. It is therefore clear that the discharge rate of the pumps play an 

important role in determining the nutrient loading entering the Upper Thurne system. 

 

4.2 Implications for Modelling 

 

The above analysis of water quality and flow data has highlighted a number of areas 

within the system which are important to ‘get right’ when modelling as they impact 

on a number of other processes. Nutrient load and concentration outputs depend on a 

number of inputs, e.g. soil data, fertiliser data, climate data, land use and management 

but more importantly the accuracy of the modelled system’s hydrology which is also 

dependent on the above mentioned inputs. Therefore the quality of input data is a 

major component and limitation of the model. Limitations of various data and the 

implication to the modelling of the system can be seen in the table below. 
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Table 4.2.0: Implications of data input to the modelling of the system 
Data 

Input 
Data quality/ availability Impact on system and modelling 

Solution 

Rainfall 

Daily data are available from BADC 

but many missing values and data are 

inaccurate by a factor of 10 

Important to model flows correctly, run-off 

contribution to flow, groundwater and 

evapotranspiration. Incorrect modelling 

will affect nutrient loads. 

A computer program has been devised by other BADC users, which 

will infill data gaps and correct data by a factor of 10. Discrepancies in 

data will still occur. 

PET 
No available data, only long term 

averages are available 

Daily data needed for modelling. Will 

impact hydrology of the system 

Can be calculated either by the model or outside the model. 

Investigation into best method is required. 

IDB 

pumps 

Sparse electrical data are available for 

the pumps. 

Cannot model pumps within SWAT.  IDB 

pumps are an important feature in the 

Thurne system in terms of hydrology and 

water quality 

Electrical data can be converted to pumped volumes as seen in section 

4.1.4. Investigation into the possible methods of modelling the pumps 

in SWAT is needed. 

Base flow 
No daily base flow data are available 

for calibration of model 

Important component for the hydrology of 

the system. Need to get right to model 

nutrient loads correctly. 

The SWAT user manual suggests a method to calculate base flow using 

SWAT outputs; however this method may not be used with observed 

flow data. By using the IH turning point method (section 4.1.1) for both 

observed and SWAT predicted flow data sound comparisons can be 

made between the 2 data sets to enable the calibration of base flow.  

STW 

discharge 

Few data are available for this. There 

are only water quality limits available 

for 3 sites. Daily discharge data are 

only available for 2 sites within the 

system – but only for 2000. 

STW discharge is a very important part of 

the system as it makes up over 50% of the 

base flow. It also impacts on the wet 

weather flow, making up a large amount of 

the peak flow. 

Consented DWF is available for all sites but as can be seen in the 

analysis during wet periods STW makes up a high proportion peak 

flow, therefore extra flow will be missed from the system. This will 

result in lower modelled peak flows. 
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Chapter Five  Catchment Scale Modelling 

 

5.0 The international use of the Soil Water Assessment Tool (SWAT)  

 

As was discussed in Chapter Two river basin modelling using the Soil and Water 

Assessment Tool (SWAT) is becoming widely adopted throughout the world for 

addressing different dimensions starting from hydrological modelling to policy 

making from a small catchment to a regional or continental level.  Although it was 

developed for United States conditions it is used in many countries throughout 

Europe, including assessment of the model for use in the implementation of the 

European Union Water Framework Directive (Dilks et al., 2003). The SWAT model 

is included in another European project intended for policy making. EUROHARP 

(EUROpean HARmonised Procedures) is a project aimed at developing European 

harmonised procedures for the quantification of nutrient losses from diffuse sources 

(http://www.euroharp.org/pd/pd/index.htm).  

 

The above studies discussed the selection of SWAT for projects at a European scale. 

At the river basin scale, Shepard et al., (1999) conducted an investigation to select 

suitable models for modelling nutrient transport to watercourses in the UK. Their 

evaluation revealed SWAT as the best package for assessing river basin scale nutrient 

pollution in the UK. The above mentioned studies have rigorously assessed SWAT 

before using the model to address their problems. Studies of this kind give direction to 

others who are in the process of selecting a modelling tool for investigating a specific 

environmental problem. These studies also support the selection of SWAT for use in 

the UK and in the context of this research. 

 

5.1 Soil Water Assessment Tool (SWAT) 

SWAT is the acronym for Soil and Water Assessment Tool, it is a river basin, or 

watershed, scale model developed by Dr. Jeff Arnold for the USDA Agricultural 

Research Service (ARS) (USDA Agricultural Research Service, 2000). SWAT is a 

semi distributed model which is able to predict the impact of land management 

practices on water, sediment and agricultural chemical yields in large complex 
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watersheds with varying soils, land use and management conditions over long periods 

of time. 

The benefits of using SWAT for this study are: 

 

• A semi-distributed or distributed approach allows the spatial interactions 

between weather, soil and land-use to be simulated; source areas of nutrient 

runoff can be identified to enable simulation and planning of future land 

management controls.  Remote sensing techniques may be a valuable tool for 

acquiring both spatial and temporal cropping / land management data. 

 

• SWAT is a mechanistic model, in which the physical processes are 

represented in some explicit form, meaning that short term dynamics and 

management controls can be simulated.   

 

5.2 Data Collection 

 

The following is a summary of data required to set up a SWAT model. Data obtained 

and the sources of data are shown in Appendix Five. 

 

Spatial data 

 

• Topography  

• Locations of the stream network, reservoirs and ponds 

• Land cover  

• Soil type and characteristics 

 

Temporal data 

 

• Daily weather data (rainfall, extreme temperatures, solar radiation, wind speed, 

relative humidity, potential evapotranspiration) 

• Agricultural practices (fertiliser and pesticide application, tillage, crop rotation 

schemes)  

• Water abstractions and discharges  
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• Land use statistics 

 

Calibration/validation data 

 

• River discharge  

• Water quality  

 

5.3 Model Build 

 

The initial model build exercise has concentrated on the Bure and Ant river basins 

only as these are simpler to model than the Thurne. Calibration parameters used for 

this initial model can then be used as a starting point for the Thurne model. The model 

has initially been built for the year 1990 for calibration purposes due to data 

availability restrictions. 

 

Soil and crop type data are only available at a national, regional level or parish level. 

These data are supplied in grid format with an associated dominant crop type or soil 

group, and a range of sub-dominant classes. In this context dominant is used in a 

spatial sense rather than a hydrological one, but sometimes a soil or crop, which 

covers less of the area, is more important in controlling either hydrological or 

erosional response, or both. As this study is focussed on potential future conditions it 

is essential that past and current conditions be modelled as accurately as possible, and 

that the responses at the sub-basin and basin level actually reflect the processes 

expected. SWAT is a comprehensive model that requires a diversity of information in 

order to run; therefore great care has been taken in selecting data for use in the model 

set up.  

 

5.3.1 Sub-basin Delineation 

 

The first step in setting up a river basin simulation is to define the configuration of the 

river basin. A detailed 50m grid, digital elevation model (DEM) supplied by CEH-

Wallingford has been used to ascertain the river basin outline of the Bure and Ant 

river basin. Due to the low elevation and gradient of the river basins and SWAT's 
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inability to model ground levels below sea level, 10m has been added to all ground 

levels (Fig 5.3.1) within the model. 

 

 
Figure 5.3.1: CEH Wallingford DEM of the Norfolk region  

 

The river network for the study area was also supplied by CEH – Wallingford and was 

used as an aid in the automatic definition of the river network within SWAT. The 

locations of EA gauging stations were used to help define outlets for sub-basins along 

with water quality sampling sites to help later with calibration and validation 

exercises.  

 

The Bure and Ant has been delineated into 29 sub-basins (Fig 5.3.2). Sub-basins 

possess a geographic position in the watershed and are spatially related to each other. 

For example, from Figure 5.3.2 it can be seen that outflow from sub-basin 23 enters 

sub-basin 22. These sub-basins are defined by the surface topography provided by the 

DEM so that the entire area within a sub-basin flows to the sub-basin outlet. A sub-

basin will contain at least one hydrological response unit, a tributary and a main 

channel or reach. 

 

Hydrological response units (HRUs) are portions of a sub-basin that possess unique 

combinations of land use/management and soil attributes. Whilst individual fields 

with a specific land use, management and soil may be scattered throughout a sub-

basin SWAT will lump these areas together to form one HRU. This process will 

DEM (mOD)  

 0                2 cm 

0               14 km 
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simplify a SWAT run, as it is often not practical to simulate individual fields. Within 

the Bure and Ant model each sub-basin has between 1 and 5 HRU’s.  

 

 
 

Key: Key: 

       

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.3.2: SWAT study area and sub basins 

 

5.3.2 Meteorological Data 

 

SWAT requires daily precipitation, temperature, relative humidity, wind speed and 

solar radiation data. Values may be read from records of observed data or may be 

generated. Daily precipitation, temperature and wind speed data were acquired from 

the British Atmospheric Data Centre (BADC). Relative humidity was then calculated 

from wet and dry bulb temperatures and solar radiation was estimated from hours of 

sunshine as can be seen in the equations below. 

 

Relative humidity (%)   

 
Where:   eswb  saturation vapour pressure at Twb (kPa)  

esdb  saturation vapour pressure at Tdb (kPa)  

ed   vapour pressure (kPa)  

Elv  elevation above sea level (m)  

P  air pressure (kPa)  

River Basin 
 
River 
 
Sub basin 1 

 0                2 cm 

0                7 km 
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Twb  wet bulb temperature (°C)  

Tdb  dry bulb temperature (°C)  

Approximate the air pressure, P in kPa (kiloPascals):  

 

Conversion factor, A: 

 

Saturation vapour pressure at Twb.  

 

 Vapour pressure, or the partial pressure of water vapour, ed in kPa:  

 

Calculate the saturated vapour pressure, esdb: 

 

Solar radiation was calculated using the Angstrom formula, which relates solar 

radiation to extraterrestrial radiation and relative sunshine duration:  

Solar radiation (Rs) 

Where:  Rs  solar or shortwave radiation (MJ m-2 day-1) 

                    N  actual duration of sunshine (hour) 

N maximum possible duration of sunshine or daylight 

hours (hour) 

                    n/N  relative sunshine duration  

                    Ra  extraterrestrial radiation (MJ m-2 day-1)  
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as regression constant, expressing the fraction of 

extraterrestrial radiation reaching the earth on overcast 

days (n = 0) 

as+bs fraction of extraterrestrial radiation reaching the earth 

on clear  days (n = N). 

 

Rs is expressed in the above equation in MJ m-2 day-1. The corresponding equivalent 

evaporation in mm day-1 is obtained by multiplying Rs by 0.408. Depending on 

atmospheric conditions (humidity, dust) and solar declination (latitude and month), the 

Angstrom values as and bs will vary. As no actual solar radiation data are available the 

recommended values as = 0.25 and bs = 0.50 where used. Values for Ra (16.83 MJ m-2 

day-1) and N (11.98 hours) were based on the latitude 52.69o for Coltishall (Allen et 

al., 1998). The actual duration of sunshine, n, was taken from BADC data.  

 

Data from a total of 16 rain gauges and 3 temperature gauges (Coltishall, Hemsby and 

Melton Constable) were collated for the three river basins (Bure, Ant and Thurne), 

these gauges were selected as they had the most recent available data. Only 10 rain 

gauges were located within the Bure and Ant river basins, of these only 7 were used 

due to lack of data at Stalham (only 2 years of data in total), Buxton Dudwick Cottage 

(only data from 1994) and Hevingham (only data up to 1997) (Fig 5.3.4). 

 

 
Figure 5.3.4: BADC rain gauge locations used in the model 

Key 
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Any missing values in the data set were infilled by deriving a relationship with 

Aylsham Bankfield House. This gauge was selected, as it was closest to the areal 

average rainfall. This was for both the Arithmetic Mean and Thiessen Polygon 

method, (Appendix Six) within the Bure and Ant river basin. 

 

Only the Coltishall temperature gauge has been used, as it was the only gauge located 

within the Bure and Ant river basin that had all the required data. The gauge located at 

Hembsy also had all the relevant data but is within the Thurne river basin. 

 

5.3.3 Evapotranspiration 

 

Daily potential evapotranspiration values are required by SWAT. These can be either 

calculated by SWAT or read in by the user.  The BADC data has also been used to 

calculate potential evapotranspiration. Three methods have been used: 

 

Penman-Monteith λE = ∆ . (Hnet – G) + ραιρ . cp . (eo
z – ez)/ra 

     ∆ + γ . (1 + rc/ ra) 

 

Where λE is the latent heat flux density (MJ m-2 d-1), E is the depth rate evaporation 

(mm d-1), ∆ is the slope of the saturation vapor pressure-temperature curve, de/dT 

(kPa oC-1), Hnet is the net radiation (MJ m-2 d-1), G is the heat flux density to the 

ground (MJ m-2 d-1), ρair is the air density (kg m-3), cp is the specific heat at constant 

pressure (MJ kg-1 oC-1), eo
z is the saturation vapor pressure of air at height z (kPa), ez 

is the water vapor pressure of air at height z (kPa), γ is the psychrometric constant 

(kPa oC-1), rc is the plant canopy resistance (s m-1), and ra is the diffusion resistance of 

the air layer (aerodynamic resistance) (s m-1). 

 

Hargreaves  λEo = 0.0023 . H0 . (Tmx  - Tmn)0.5 . (Tav + 17.8) 

 

Where λ is the latent heat of vaporization (MJ kg-1), Eo is the potential 

evapotranspiration (mm d-1), H0 is the extraterrestrial radiation (MJ m-2 d-1), Tmx is the 
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maximum air temperature for a given day (°C), Tmn is the minimum air temperature 

for a given day (°C), and Tav is the mean air temperature for a given day (°C). 

Priestley-Taylor λE = αpet .   ∆   . ( Hnet – G) 

                                                      ∆ + γ 

 

Where λ is the latent heat of vaporization  (MJ kg-1),  Eo  is  the  potential 

evapotranspiration (mm d-1),  αpet is a coefficient, ∆ is the slope of the saturation vapor 

pressure-temperature curve,  de/dT (kPa  oC-1), γ  is  the  psychrometric constant (kPa 
oC-1), Hnet is the net radiation (MJ m-2 d-1), and G is the heat flux density to the ground 

(MJ m-2 d-1). 

 

Figure 5.3.5 shows the monthly PET (potential evapotranspiration) values for 1990 

for all three methods. These have been compared against areal average values given 

by Smith (1976) based on measured data for the period 1941 – 1970 and MORECS 

for the region (1961 – 1998).  The Hargreaves method compares well to MORECS 

and Smith (1976) data throughout the year. The Priestley-Taylor method over 

estimates PET values throughout the year as does the Penman-Monteith method but 

not to the same magnitude. The values provided by Smith (1976) are lower for the 

winter months than those shown by the MORECS data. This may because of climate 

change since the 1970’s, which has resulted in a shift in PET values for the area. 

 

These values can later be compared to PET estimates given by SWAT using the 

Hargreaves method. The values estimated by SWAT will affect the model's ability to 

model flow volumes leaving any part of the model. Consequently the accuracy of the 

estimated values against local data is important. If SWAT significantly under or over 

estimates PET then values calculated outside of SWAT using the above Hargreaves 

method can be fed into the model as an ‘observed’ PET data set.  
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Comparision between calculated potential evapotranspiration and published data
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Figure 5.3.5: Evapotranspiration Comparisons 
 

5.3.4 Land Use  

 

The CEH 1990 land use map provided spatial distribution of major land cover classes 

within the study area (Fig 5.3.6).  
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Figure 5.3.6: 1990 land use map for the whole study area 

CEH 1990 Land Use 
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This land use map however defines all arable land within one class; as a result 

Edinburgh Data Library Agricultural Census data have also been obtained. Data have 

been collated for a 2km grid resolution for 1969, 1976, 1981, 1988, 1994, 1997 and 

2000. These two map layers have been overlain and for every intersection of EDL 

(1994, 1997 and 2000) and 1990 land use map areas defined as arable the dominant 

crop from EDL has then been used to help define crop rotations for the study area 

(section 5.3.6).  

 

5.3.5 Soils 

 

The soil data used by SWAT can be divided into two groups, physical characteristics 

and chemical characteristics. The physical properties of the soil govern the movement 

of water and air through the profile and have a major impact on the cycling of water 

within the HRU. Inputs for chemical characteristics are used to set initial levels of the 

different chemicals in the soil. While the physical properties are required, information 

on chemical properties is optional. The SWAT soil input file defines the physical 

properties for all the layers in the soil, so is very data intensive. 

 

The data required encompasses a large number of paper soil reports, maps and a large 

number of digital soil information. The NSRI LandIS database incorporates all these 

data sources and has been utilised to gain the appropriate data for SWAT. LandIS data 

are based on an average of 2 to 3 soil observations nationally. The National Soil Map 

details the distribution of 300 soil associations each of which contains three to five 

soil series. Together, these soil associations describe the wide range of soil conditions 

encountered across England and Wales. The average national percentage composition 

of each soil association is estimated from field experience. In these aggregated 

datasets, each mapped area is described according to the predicted percentage soil 

series composition. Therefore soil data provided by LandIS does not represent soils on 

a local scale but is based on a small number of national samples and predicted values. 

This may affect the accuracy of the soil modeling within SWAT and the sensitivity of 

soil associations and soil series is investigated further in this section. 

 

Some of the soil data SWAT required does not come directly from LandIS but was 

calculated using LandIS values and equations taken from the TERRACE project 
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(White et al., 2002). A spreadsheet was therefore developed which can be used for 

this and other projects, listing SWAT data requirements and the relevant LandIS data 

parameters needed (Table 5.3.1). 
 

Table 5.3.1: SWAT soil data requirements 
SWAT Soils Description Source LandIS Property Needed
Soil Name Soil Association LandIS SERIES_NAME
Number of layers Number of layers LandIS LAYER_DESIGN
Hydrological group Soil hydrological group (A, B, C,D) LandIS HOST, BFI, SPR
Rooting depth Maximum rooting depth of soil profile LandIS DROCK

Anion exclusion factor
Fraction of porosity (void space) from which 
anons are excluded Default value 0.50

Potential crack volume

Potential or maximim crack volume of the soil 
profile expressed as a fraction of the total soil 
volume Optional

For each layer
Depth from surface Depth from the soil surface to bottom of layer LandIS UPPER_DEPTH, LOWER_DEPTH
Depth of obstacle to roots Maximum rooting depth of soil profile LandIS DROCK, DGLEY, DIMP_DP
Bulk density Moist bulk density LandIS BULK_DENSITY
Available water content Available water capacity of the soil layer LandIS AWC, THV5, THV1500
Saturated hydraulic conductivity Saturated hydraulic conductivity LandIS KSAT_SV
% organic carbon Organic carbon content LandIS CARBON
% clay Clay content LandIS CLAY
% silt Silt content LandIS SILT
% sand Sand content LandIS SAND_TOTAL
% rock Rock fragment content LandIS
Albedo Moist soil albedo Calculated MATRIX_COLOUR/VALUE
Erodobilty factor USLE equation soil erodibility (k) factor Calculated CARBON, CLAY, SILT, SAND_TOTAL

 

Soil albedo is a function of soil colour and angle of incidence of the solar radiation, 

and depends on the inherent colour of the parent material, organic matter content and 

weathering conditions. The following equation has been used to calculate soil albedo 

(NRCS, 2005). 

 

Albedo = (0.07 x colour value) – 0.12 

 

The erodibility factor can be calculated using the Universal Soil Loss Equation 

(USLE). The one used in this research and in SWAT is an alternative equation by 

Williams (1995): 

 

 
 

Where fcsand is a factor that gives low soil erodibility factors for soils with high coarse-

sand contents and high values for soils with little sand, fcl-si is a factor that gives low 

soil erodibility factors for soils with high clay to silt ratios, forgc is a factor that reduces 
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soil erodibility for soils with high organic carbon content, and fhisand is a factor that 

reduces soil erodibility for soils with extremely high sand contents. The factors are 

calculated: 

 

 
 

Where ms is the percent sand content (0.05-2.00 mm diameter particles), msilt is the 

percent silt content (0.002-0.05 mm diameter particles), mc is the percent clay content 

(< 0.002 mm diameter particles), and orgC is the percent organic carbon content of 

the layer (%). 

 

Soil Series 

 

Soil profile characteristics are used to define soils at four levels in a hierarchical 

system, general characteristics being used at the highest level to give broad 

separations and more specific ones at the lower levels to give increasingly precise 

subdivisions. Soil associations are made up of a number of soil series but are named 

after the dominant soil series. For example Wick 2 is made up of Wick, Wickmere, 

Sheringham and Aylsham series (see Table 5.3.2). As mentioned earlier the 

percentage of soil series which make up soil associations are defined at a national 

level and could therefore be different at a local level. However no local soil data are 

available.   
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Table 5.3.2: Soil Associations within the study area 

Soil Association Areas In SWAT (ha) Ancillary 
Subgroups

Proportions 
(%)

Proportions based on 
SWAT areas (ha)

813 Wallasea 75 87.05
814 Newchurch 25 29.02

551 Newport 76 2878.63
631 Redlodge 24 909.04
861 Isleham 31 453.54

1024 Adventurers 29 424.28
552 Ollerton 20 292.61

821 Blackwood 20 292.61
541 Wick 61 10763.89

541 Sheringham 28 4940.80
551 Newport 11 1941.03

541 Wick 38 11886.33
572 Wickmere 36 11260.74

541 Sheringham 16 5004.77
543 Aylsham 10 3127.98
871 Hanworth 40 815.58
831 Sustead 30 611.69

1024 Adventurers 30 611.69
711 Gresham 63 975.08

711 Prolleymoor 21 325.03
831 Sustead 16 247.64
711 Beccles 65 675.85
712 Ragdale 35 363.92
1022 Altcar 50 310.79

1024 Adventurers 30 186.47
1025 Mendham 20 124.32
643 Felthorpe 40 669.60

642 Lakenheath 27 451.98
821 Blackwood 33 552.42

Felthorpe 1674.01

Altcar 2 621.58

Beccles 1 1039.76

Gresham 1547.74

Hanworth 2038.96

Wick 2 31279.82

Wick 3 17645.72

Isleham 2 1463.04

Newport 4 3787.68

Wallasea 1 116.06

 
 
 
As can be seen from Table 5.3.2 each soil series within Wick 2 contributes a 

percentage to the total soil association, however each series has different 

characteristics. At the moment the soil database in SWAT is made up of the dominant 

soil series for each association found in the study area, thus the database doesn’t take 

into consideration the characteristics of the other soil series making up the association. 

Soils that are highly erodible or behave in a different hydrological fashion could 

therefore be missed from the model giving unreliable results. To assess this problem 

USLE calculations have been undertaken for each soil series within each sub -basin 

within the SWAT model (Appendix Seven).   

 

It can be seen from USLE calculations that soil series such as Sheringham have high a 

mean annual soil loss (3.46 t ha-1) when crops such as potatoes and sugar beet are 

grown on it.  The Sheringham series makes up approximately 28% of the Wick 3 

associations and 16% of the Wick 2 associations and therefore covers approximately 

9945 ha of the SWAT river basin. The difference between the Sheringham soil series 

and the Wick association are nominal (see Hodge et al., 1984). The only difference 
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being the percentage of stones in the soil and therefore it is thought that Sheringham, 

with no stones within it, will be more erodible than Wick.   

 

The Prolleymoor series that makes up 21% of the Gresham association also has a high 

mean annual soil loss (3.42 t ha-1) when potatoes or sugar beet are grown on it. When 

ground is left fallow, as may be the case with land allocated for set-aside, erosion 

rates can reach as high as 7 t ha-1. This can also be seen with the Newchurch series, 

which contributes 25% of the Wallesea association. All the HRU’s, which have been 

allocated to this soil association in the SWAT model, have been modelled as set-aside 

due to the wetness class of the association.  

 

By only modelling the soil associations the above soil series are not incorporated into 

the model, therefore model results could be underestimating soil erosion. The 

modelling of the soil subgroups within SWAT does however prove problematic. The 

SWAT ArcView interface requires a soil map linked to the soil database, to provide 

spatial information on the soil distribution within the river basin. These maps need to 

be prepared prior to running the interface. Unfortunately the only digital soil map 

available is that of the National Soil Map, which only displays soil associations. 

Neither is any quantitative information available on the spatial distribution of the soil 

subgroups within each soil association. A sensitivity analysis on the distribution of the 

soil associations and their subgroups on a small sub-basin within SWAT has been 

carried out. The model is based on the calibrated Bure and Ant model and the results 

are discussed in chapter Six. 

 

5.3.6 Management Files 

 

Quantifying the impact of land management and land use on water supply and quality 

is a primary focus of environmental modelling. SWAT allows very detailed 

management information to be incorporated into a simulation at the HRU level. The 

user may define the beginning and the ending of the growing season; specify timing, 

type and amount of fertiliser, pesticide and irrigation applications as well as timing 

and type of tillage operations. At the end of the growing season, the biomass may be 

removed from the HRU as yield or placed on the surface as residue. In addition to 
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these basic management practices, operations such as grazing, automated fertilisation 

and water applications are available. 

 

Crop Rotations 

 

Crop rotations are a system of regularly changing the crops grown on a piece of land. 

The crops are grown in a particular order to utilize and add to the nutrients in the soil 

and to prevent the build-up of insect and fungal pests. Including a legume crop, such 

as peas or beans, in the rotation helps build up nitrate in the soil, because the roots 

contain bacteria capable of fixing nitrogen from the air. With a few notable exceptions 

such as winter wheat and forage maize, most crops are best grown in rotation with 

other crops. However, there are no mandatory rotations, and no single rotation 

necessarily represents best practice. Individual farmers will deviate from them to 

allow for their own machinery / labour availability or personal preferences or because 

of market prices/subsidies and weather and soil moisture conditions in a given year.  

 

A rotation in SWAT refers to a change in management practices from one year to the 

next. There is no limit to the number of years of different management operations 

specified in a rotation. SWAT does not limit the land cover/crops grown within one 

year in the HRU. However, only one land cover can be growing at any one time. 

 

Originally typical rotations for the eastern region of the UK were used to vary crops 

grown from year to year within the SWAT model. These were taken from ADAS 

standard rotation information and based on soil type (Holman, 2004) (Table 5.3.3).  

 
Table 5.3.3: ADAS standard crop rotations (Holman, 2004) 

Soil Rotation Crops Soil Rotation Crops 
Primary pts/ww/sb/sbt/ww/wb Primary pts/ww/p/ww/sbt/ww 

Secondary sbt/ww/osr/wb Secondary ww/sb/osr 
Sandy 

Set-aside sbt/ww/sa 

Deep 
Silty 

Set-aside p/ww/sa/ww/sbt/ww 
Primary sbt/ww/p/ww Primary osr/ww/ww/wbn/ww/ww 

Secondary wbn/ww/osr/ww Secondary osr/ww/ww/wbn/ww/ww 
Peaty 

Set-aside pts/ww/sa/sbt/ww 

Clay 

Set-aside osr/ww/ww/sa/ww/wb 
Primary sbt/ww/p/ww Primary pts/ww/sb/sbt/ww/wb 

Secondary wbn/ww/osr/ww Secondary sbt/ww/osr/wb 
Organic 

Set-aside pts/ww/sa/sbt/ww 

Shallow 

Set-aside sbt/ww/sa 
Primary osr/ww/ww/wbn/ww/wb 

Secondary osr/ww/ww/sbt/ww/wb 
Other 

Mineral 
Set-aside osr/ww/ww/sa/ww/wb 

Key: osr = oilseed rape ww = winter wheat wb = winter 
barley sb = spring barley p = peas sa = set aside pts = 
potatoes sbt = sugar beet wbn = winter field beans           
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The use of these rotations in the SWAT model did not give a good representation of 

the crops known to have grown in the study area from EDL data. There was far too 

much winter wheat being represented in the model due to Wick 2 and Wick 3 soils 

(which cover the majority of the study area) being classified as ‘other mineral’ under 

ADAS standard rotations (Table 5.3.4).  

 
Table 5.3.4: ADAS Soil Texture Classes 

Predominant Soils ADAS Texture Class Area (ha) in SWAT 
Altcar Peaty 621.58 

Beccles Other Mineral 1039.76 
Felthrope Organic 1674.01 
Gresham Other Mineral 1547.74 
Hanworth Organic 2038.95 
Isleham Organic 1463.04 

Newport 4 Sandy 3787.67 
Wallesea Clayey 116.06 
Wick 2 Other Mineral 31279.82 
Wick 3 Other Mineral 17645.70 

 

To better represent EDL data Wick soils were reclassified as ‘sandy soils’ to help 

reduce the quantity of winter wheat being grown in the river basin and to increase the 

area of other crops such as potatoes, spring barley and sugar beet. The Wick soils 

were chosen as they are usually sandy at depth, and therefore could easily fall into 

either the ‘sandy’ or ‘other mineral’ category.  

 

Rotations were also slightly adjusted to increase or decrease the amount of certain 

crops within the SWAT model. Set- aside rotations were not used within the model, 

instead the 5500 ha which were counted as set-aside in the 2000 EDL data was 

primarily allocated to the wettest soils in the river basin as permanent set-aside, based 

on the soil wetness class (Table 5.3.5). The system of wetness class grades soils from 

Wetness class I, well drained to Wetness class VI, almost permanently waterlogged 

within 40cm depth (Hodge et al., 1984).  

 
Table 5.3.5: Soil Wetness Classes (Hodge et al., 1984) 

Soil Wetness Class 
Beccles III 

Hanworth III to V 
Wallesea IV 
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Maize was not incorporated in the ADAS rotations but is a known crop in the study 

area, being represented by 282 ha in the EDL data. Maize is recognized as having a 

higher risk of soil erosion and run-off than most other crops. The late drilling of maize 

means that the land is not ‘covered’ with a growing crop until late into June which 

results in the ground being more vulnerable than winter cereal crops to an intense 

summer thunderstorm that can lead to flash flooding. With late harvesting it is also 

necessary for machinery to access the land when it is generally wet and close to field 

capacity, causing an increased vulnerability to compaction in the soil. Compaction in 

the soil reduces permeability, increasing the risk or erosion and run-off. As maize is 

best suited to sandy soils, it was allocated to Newport soil series within the SWAT 

model. 

 

Therefore, to give a good representation of EDL data within the SWAT model (Fig 

5.3.7), 13 rotations have been created based on the ADAS standard rotation 

information, taking into account the soil type (Table 5.3.6). These were based on 

averaged data for 3 sets of EDL data covering 1994, 1997 and 2000, as these years 

fell within the study time period.  

 
Adjusted crop rotations in the Bure and Ant compared to averaged EDL data set (1994, 1997 and 2000)
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Figure 5.3.7: Comparison of modelled and actual crop areas 
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Table 5.3.6: Adjusted crop rotations 
Other Mineral Sandy Organic Peaty 

osr/ww/wb/wbn/ww/wb pts/ww/sb/sbt/ww/wb sbt/ww/sb/ww wbn/ww/p/ww 
osr/ww/sbt/wbn/ww/wb pts/ww/wb/wbn/ww/wb sbt/ww/p/ww  

 wbn/ww/sb/sbt/ww/wb   
sbt/ww/sbt/wb 
sbt/ww/p/wb 

Maize 
sbt/ww/osr/wb 

 

sbt/ww/sb/wb 

  

 
Information on dates of planting along with harvest dates was not available for the 

study area. Indicative crop calendar dates (Holman et al., 2004) were therefore used in 

creating the management files for the SWAT model (Table 5.3.7). 

 

Fertiliser Schedule 
 

The fertiliser operation in SWAT applies fertiliser or manure to the soil. Information 

required in the fertiliser operation includes the timing of the operation (month and 

day), the type of fertiliser/manure applied, the amount of fertiliser/manure applied and 

the depth distribution of fertiliser application. SWAT assumes surface run-off 

interacts with the top 10mm of soil. Nutrients contained in this surface layer are 

available for transport to the main channel in surface run-off, therefore it is important 

to obtain the correct data for the fertiliser or manure application operation. 

 

Fertiliser information has been gathered from a number of sources. Application dates 

have been taken from published reviews (Hough, 1990, Knott et al., 1994, Bunting et 

al., 1978, Beukema and Van der Zaag, 1990 and Whitehead, 1995). Fertiliser type and 

application rates have been taken from best practices guidelines (MAFF, 2000). As 

well as looking at recommended fertiliser application rates part of the study area falls 

under Nitrate Vulnerable Zones (NVZ) (Figure 5.3.8). The area coloured in blue 

shows that the area south of Belaugh within the Bure river basin was designated as a 

NVZ in 1996; the areas in red were designated as NVZ’s in 2002 (DEFRA, 2002a). 

These areas are designated as NVZ’s due to the risk of eutrophication. Under the 

guidelines for land in NVZ’s nitrogen fertiliser application cannot exceed crop 

requirements and organic manures have a whole farm limit of 210 kg ha-1 and 250 kg 

ha-1 for arable and grassland areas respectively. Nitrogen fertilisers and manures 
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cannot be applied on arable land between 1st September and 1st February (DEFRA, 

2002a). Table 5.3.7 shows fertiliser application rates and dates for varying crops.  

 

 
Figure 5.3.8: Nitrate vulnerable zones within the study area (DEFRA, 2002a) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 Not to scale 
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Table 5.3.7: Crop management dates for SWAT (planting, harvest, fertiliser application) 

Crop Operation Type Amount (kg ha-1) Other Mineral Sandy Organic Peaty
Fertiliser P 65 Aug-12 Aug-12
Tillage Plough Aug-25 Aug-25
Plant Aug-31 Aug-31

Fertiliser N 34.5% 40 Feb-23 Feb-23
Fertiliser N 34.5% 80 Mar-22 Mar-22
Fertiliser N 34.5% 80 Apr-23 Apr-23
Irrigation N/A N/A

Harvest/Kill Jul-30 Jul-30
Fertiliser P 100 Aug-31 Aug-31 Aug-31 Aug-31
Tillage Plough Sep-30 Sep-30 Sep-30 Sep-30
Plant Oct-15 Oct-15 Oct-15 Oct-15

Fertiliser N 34.5% 40 Mar-13 Mar-13 Mar-13 Mar-13
Fertiliser N 34.5% 80 Apr-27 Apr-27 Apr-27 Apr-27
Fertiliser N 34.5% 40 May-25 May-25 May-25 May-25
Irrigation N/A May-07 N/A May-07

Harvest/Kill Aug-20 Aug-20 Aug-20 Aug-20
Fertiliser P 100 Aug-29 Aug-29
Tillage Plough Sep-25 Sep-25
Plant Oct-01 Oct-01

Fertiliser N 34.5% 40 Mar-05 Mar-05
Fertiliser N 34.5% 100 Apr-24 Apr-24
Irrigation N/A N/A

Harvest/Kill Jul-31 Jul-31
Fertiliser K20/P205 50 Sep-28 Sep-28 Sep-28
Tillage Oct-20 Oct-20 Oct-20
Plant Oct-31 Oct-31 Oct-31

Irrigation N/A N/A N/A
Harvest/Kill Sep-01 Sep-01 Sep-01

Fertiliser P 60 Oct-10 Oct-10 Oct-10
Tillage Plough Oct-20 Oct-20 Oct-20
Plant Mar-31 Mar-31 Mar-31

Fertiliser N 34.5% 40 Apr-11 Apr-11 Apr-11
Fertiliser N 34.5% 30 May-03 May-03 May-03
Fertiliser N 34.5% 30 May-19 May-19 May-19
Irrigation May-30 May-21 May-30

Harvest/Kill Nov-03 Dec-01 Nov-25
Fertiliser P 100 Feb-10
Tillage Plough Feb-19
Plant Apr-01

Fertiliser N 34.5% 75 Apr-01
Fertiliser N 34.5% 75 Apr-18
Irrigation May-04

Harvest/Kill Sep-13
Fertiliser P 60 Oct-20 Oct-20
Tillage Plough Oct-28 Oct-28
Plant Feb-20 Feb-20

Fertiliser N 34.5% 50 Feb-20 Feb-20
Tillage Ring Roll Feb-29 Feb-29

Fertiliser N 34.5% 50 Apr-05 Apr-05
Irrigation May-05 May-17

Harvest/Kill Aug-08 Aug-08
Fertiliser P 30 Sep-20 Sep-20 Sep-20
Tillage Plough Sep-26 Sep-26 Sep-26
Plant Mar-14 Mar-19 Mar-26

Irrigation May-12 May-18 May-12
Harvest/Kill Aug-01 Aug-06 Aug-13

Fertiliser P 45 Nov-01
Tillage Plough Nov-10
Plant Apr-24

Fertiliser N 34.5% 25 Apr-25
Fertiliser N 34.5% 45 May-26
Irrigation Jun-04

Harvest/Kill Oct-26

G
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Irrigation May-04
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Irrigation Schedule 
 
 
Irrigation in an HRU can be scheduled by the user or automatically applied by SWAT. 

In addition to specifying the time and application amount, the user must specify the 

source of irrigation.  For a given irrigation event, SWAT determines the amount of 

water available in the source. The amount of water available is compared to the 

amount of water specified in the irrigation operation. If the amount available is less 

than the amount specified, SWAT will only apply the available water.  

 

Water applied to an HRU is used to fill the soil layers to field capacity beginning with 

the soil surface layer and working downward until all the water applied is used up or 

the bottom of the profile is reached. If the amount of water specified in an irrigation 

operation exceeds the amount needed to fill the soil layers up to field capacity water 

content, the excess water is returned to the source. 

 

It was hoped that irrigation could be applied automatically by SWAT because 

inputting irrigation dates and amount for crops such as potatoes could be very time 

consuming. However, it was not possible to use the auto irrigation, as when attempted, 

irrigation would only occur within the first year of the crop rotation. Therefore 

irrigation had to be scheduled manually. 

 

A programme called CropWat (FAO, 1992) has been utilised to produce irrigation 

schedules for each crop, which can be transferred to the SWAT management files. 

CropWat requires monthly climate data (temperatures, humidity, wind speed and 

sunshine), crop files with planting dates, and monthly rainfall data. Data used for 

SWAT were transferred to CropWat. Climate data were taken from BADC data for 

Coltishall, as this is the only climate gauge in the river basin. Monthly rainfall was 

taken from the Aylsham rain gauge as this gauge had data nearest the annual areal 

average as described in section 5.3.2. From this irrigation was modelled for all years 

within the study period.  

 

Default soil types were used within the model for light and medium soils. Irrigation 

scheduling criteria were set to irrigate when 100% of readily available soil moisture 

depletion occurred. Application depth was set to refill 100% of readily available soil 
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moisture. An example of the model output can be seen in Appendix Eight. Irrigation 

application dates and net irrigation (mm) were used to schedule irrigation application 

within the SWAT management files for each crop within the HRU. 

 

It was thought that using CropWat would also yield an advantage over SWAT. When 

applying irrigation SWAT fills the whole soil profile with water, therefore returning 

the soil back to field capacity each time water is applied. This does not reflect 

common UK practice and results in the soil being at field capacity for varying times 

of the year. For crops such as potatoes irrigation depth should only be between 30 – 

50mm depending on the type of soil (FAO, 1989). The hydrology of the system is 

therefore affected by having the soil at field capacity at the wrong times of the year. 

However a similar problem occurs within CropWat where the model application depth 

is set to refill 100% of readily available soil moisture, returning the soil to field 

capacity. This problem therefore needs to be addressed when using the irrigation 

function within SWAT in future; and/or a different irrigation model should be used. 

 

5.3.7 Abstraction Data 

 

Water management practices can be one of the most complicated portions of data 

input for the model because water management affects the hydrologic balance. Within 

SWAT water abstraction can be modelled through consumptive water use. This is a 

management tool that removes water from the river basin. Water removed for 

consumptive use is considered to be lost from the system. SWAT allows water to be 

removed from the shallow aquifer, the deep aquifer, the reach or the pond within any 

sub basin in the river basin. Consumptive water use is allowed to vary from month to 

month. For each month in the year, an average daily volume of water removed from 

the source can be specified.  

 

Within the Bure and Ant river basin there are 626 licensed abstraction points. These 

points have been derived from the Environment Agency’s database of licensed 

abstraction points from 1990 – 2003. Abstraction licences provide information on the 

original effective start date of the licence (not always completed in newer licences), 

start and end dates of versions of the licence, and lapsed, expired or revoked dates for 

those licences which are no longer current. These dates have been used to determine 
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when the licences were in existence during the period after 1990. The maximum daily 

authorised abstraction quantity is supplied in cubic metres, and is the maximum for 

the licence as a whole. This field is complete for all current licences, but has not 

necessarily been completed on older revoked licences. 

 

Grid references for abstraction points are given as NGRs. A single abstraction point 

will have one grid reference, a reach on a watercourse or well point system will have 

2 grid references, and an area (water may be taken at any point within an area marked 

on a map) will have 4 grid references. 

 

ArcView has been used to help allocate each abstraction point to a sub-basin within 

the SWAT model through the given NGRs. SWAT only allows an average daily 

volume of water to be removed from each sub-basin. Therefore, the licensed 

abstraction quantity for each abstraction point within an individual sub-basin has been 

totalled to give one value per sub-basin (Appendix Nine).  

 

Work carried out by Marcehal (2004) in the East Anglia region (rivers Bure, Wensum 

and Tud) indicated that the actual amount of water abstracted is approximately only 

80% of licensed volumes. As a result of this only 80% of the authorised abstraction 

quantity has been applied to the SWAT model. 

 

5.3.8 Discharge Data 

 

SWAT directly simulates the loading of water, sediment and other constituents from 

land areas in the river basin. To simulate the loading of water and other pollutants 

from sources not associated with land area (e.g. sewage treatment works), SWAT 

allows point source information to be read in at any point along the channel network. 

 

There are 320 point sources of discharge in the Bure and Ant river basin (Appendix 

Ten). Information on point sources of discharges were obtained from the EA. Where 

mean daily flows were not given they were estimated to be 50% of the maximum 

consented daily flow. Where available, phosphorus inputs were estimated in the same 

way. 



Jodie Whitehead  Ph.D. Thesis 

Chapter Six  - 124 - 

Chapter Six  Bure and Ant Model Calibration and Validation 

 

6.0 Model Calibration and Validation 

 

River basin models contain many parameters, some of which cannot be measured. In 

order to utilise any predictive river basin model for estimating the effectiveness of 

future potential management practices, the model must be first calibrated to measured 

data and then should be tested (without further parameter adjustment) against an 

independent set of measured data. This testing of a model on an independent data set 

is commonly referred to as model validation.  It is standard hydrological modelling 

practice to divide available time series data into two sets (Klemes, 1986). One set is 

used for calibration and the remaining data are used for validation.  

 

Model calibration determines the best, or at least a reasonable parameter set, while 

validation ensures that the calibrated parameter set performs reasonably well under an 

independent data set. Provided the model can perform well for this independent set of 

data then it is considered robust and can be used with some confidence for future 

predictions under different management scenarios.  

 

6.0.1 Calibration and Validation Parameters 

 

Evapotranspiration, infiltration and surface run-off are important components of the 

water balance for correct representation of nutrient transport and loss. 

Evapotranspiration is a function of crop growth, therefore only a proper simulation of 

crop growth will ensure realistic modelling of evapotranspiration and nutrients within 

a river basin. 

 

Similarly, leaching of nutrients through the soil profile depends on the quantity of 

water entering and moving through the soil profile in terms of percolation or 

infiltration. Hence infiltration has to be modelled properly to ensure reasonably 

accurate simulation of nutrient leaching. 

 

Appropriate modelling of surface run-off is a prerequisite for modelling nutrient run-

off. Apart from a match of predicted and observed stream flow and acceptable 
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performance in hydrological modelling, a correct partitioning of water in these three 

phases is required before nutrient modelling is attempted. With these requirements in 

mind SWAT is calibrated in three stages: 

 

• Water balance and stream flow 

• Sediment 

• Nutrients 

 

It is known from previous studies that hydrological models are unlikely to perform 

well if the calibration period is particularly dry or wet. Data from 1990 – 1994 have 

been used in the calibration of the Bure and Ant model, as yearly totals were closely 

matched to annual average rainfall.  Data from 1994-1999 will be used in validation 

of the model. The two periods do overlap but it is common practice to discard the first 

year of model results as this period is considered as a ‘warm up’ period for the model. 

In this period the model is allowed to initialise and then approach reasonable starting 

values for model state variables and adjust any inaccurate initial conditions. For 

example, the warm up period allows the model to deposit sediment in the river 

network and fill the soil partially with soil water before simulation results are 

considered realistic. The table below shows the available data and periods of data 

used for the calibration and validation exercise within the Bure and Ant model. 

 
Table 6.0.1: Available data for model calibration and validation 

Parameter Site Dates Source Site Dates Source
Honing Lock 1991 - 1994 EA Honing Lock 1995 - 1999 EA

Ingworth 1991 - 1994 EA Ingworth 1995 - 1999 EA
Horstead Mill 1991 - 1994 EA Horstead Mill 1995 - 1999 EA

Wroxham Rail Bridge 1995 - 1996
Johnes 
(1996b) Honing Lock 1999 Johnes (1996b)

Scarrow Beck 1995 - 1996
Johnes 
(1996b)

Honing Lock 1991 - 1994 EA Honing Lock 1995 - 1999
Johnes (1996b) for 1995-1996, EA for 

rest

Scarrow Beck 1991 - 1994 EA Scarrow Beck 1995 - 1999
Johnes (1996b) for 1995-1996, EA for 

rest
Horstead Mill 1991 - 1994 EA Horstead Mill 1995 - 1999 EA

Wroxham Rail Bridge 1991 - 1994 EA Wroxham Rail Bridge 1995 - 1999
Johnes (1996b)for 1995-1996, EA for 

rest
Honing Lock 1991 - 1994 EA Honing Lock 1995 - 1999 Johnes (1996b) for 1999, EA for rest

Scarrow Beck 1991 - 1994 EA Scarrow Beck 1995 - 1996 Johnes (1996b)
Horstead Mill 1991 - 1994 EA Horstead Mill 1995 - 1999 EA

Wroxham Rail Bridge 1991 - 1994 EA Wroxham Rail Bridge 1995 - 1999
Johnes (1996b) for 1995-1996, EA for 

rest

Nitrate

Total phosphorus

Calibration Validation

Flow

Suspended sediment
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6.0.2 Model Performance Statistics 

 

Graphical comparisons of model performance can be made through time series plots 

of observed and simulated flows and state variables (observed versus simulated 

values). Time series plots are generally evaluated visually for agreement, or lack 

thereof, between the simulated and observed values. When observed data are adequate, 

or uncertainty estimates are available, confidence intervals can then be calculated and 

so considered in the model performance evaluation. A number of statistical tests can 

also be considered in model performance evaluation. Model predictive performances 

relative to available measured data can be evaluated for each constituent by 

calculating model performance statistics. The four numerical model performance 

measures used are the coefficient of determination (R2 coefficient), Nash-Sutcliffe 

simulation efficiency (ENS) (Nash and Sutcliffe, 1970), daily root mean square 

(DRMS) and percentage bias (PBIAS). 

 

The R2 coefficient (unit less) and ENS (unit less) simulation efficiency measure how 

well the trends in the measured data are reproduced by the simulation results over a 

specified time period and for a specified time set.  

 

The R2 coefficient for n time steps is calculated as: 

 

R2 =     [Σn
i=1(simulatedi – simulatedavg) (measuredi - measuredavg)]2 

Σn
i=1(simulatedi – simulatedavg)2 Σn

i=1(measuredi - measuredavg)2 

 

The range of values for R2 is 1.0 (best) to 0. The R2 coefficient measures the fraction 

of the variation in the measured data that is replicated in the simulation model results. 

A value of 0.0 for R2 means that none of the variance in the measured data in 

replicated by the model predictions. On the other hand, a value of 1.0 indicates that all 

of the variance in the measured data is replicated by the model predictions. Henriksen 

et al. (2003) suggests that a R2 value > 0.85 is excellent for a hydrological model, 

values between 0.65 and 0.85 are very good, 0.50 – 0.65 are good, 0.20 – 0.50 are 

poor and < 0.20 are very poor. 
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The ENS simulation efficiency for n time steps is calculated as: 

 

ENS = 1-       Σn
i=1 (measuredi - simulatedi)2 

    Σn
i=1 [measuredi - 1/nΣn

i=1 measuredi] 2 

 

ENS values range from 1.0 (best) to negative infinity. ENS is a more stringent test of 

performance than R2. ENS measures how well the simulated results predict the 

measured data relative to simply predicting the quantity of interest by using the 

average of the measured data over the period of comparison. A value of 0.0 for ENS 

means that the model predictions are just as accurate as using the measured data 

average, to predict the measured data. ENS values less than 0.0 indicate the measured 

data average is a better predictor of the measured data than the model predictions. A 

value greater than 0.0 indicates the model is a better predictor of the measured data 

than the measured data average. 

 

DRMS (m3 s-1) simply computes the standard deviation of the model prediction error; 

a smaller value indicates a better model performance. It is calculated using the 

following equation: 

 

DRMS = √ 1/n Σn
i (qsim

t - (qobs
t)2) 

 

 
 
The final statistic PBIAS (%) can be calculated using the following equation.  

 

PBIAS = Σn
i (qobs

t - (qsim
t)2/ Σn

i (qobs
t x 100%) 

 

PBIAS measures the average tendency of the simulated flows to be larger or smaller 

than their observed counterparts; the optimal value is 0; positive values indicate a 

model bias toward underestimation. 

 

The model calibration criteria can be further based on recommended error percentages 

for annual water yields. The Montana Department of Environmental Quality (2005) 

has generalised information related to model calibration criteria (Table 6.0.2). This 
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criteria has been based upon a number of research papers including; Thomann and 

Muller, 1982; James and Burges, 1982; Donigian, 1982; ASTM, 1984.  

 
Table 6.0.2: Acceptable model calibration hydrology criteria (Montana Department of 

Environmental Quality, 2005) 

Errors (Simulated-Observed) Recommended Criteria 

Error in total volume 10% 

Error in 50% of lowest flows 10% 

Error in 10% highest flows 15% 

Seasonal volume error (summer) 30% 

Seasonal volume error (autumn) 30% 

Seasonal volume error (winter) 30% 

Seasonal volume error (spring) 30% 

 

6.1 Hydrological Calibration 

 

In addition to simulating measured daily flows, model calibration for hydrology 

considered base flow predictions. Total river flow is composed of base flow and storm 

flow. To compare model predicted base flow with measured base flow, estimates of 

base flow volumes for both simulated and measured flow data are required. A number 

of methods have been developed to separate base flow from total stream flow 

(Boorman et al., 1995; Gustard et al., 1980 & Arnold et al., 1995a). Two methods 

have been used to estimate base flow; these are Base flow Index (BFI) from the soil 

HOST groups (Boorman et al., 1995) and the Turning Points Method (Gustard et al., 

1980). Table 6.1.1 shows the results of base flow separation using the two methods at 

Horstead Mill, Ingworth and Honing Lock. Figure 6.1.1 shows the separation of base 

flow from total flow at Ingworth. The turning points method has been used in the 

calibration to determine whether SWAT was modelling groundwater correctly. 

 
Table 6.1.1: Base flow separation results for the Rivers Bure and Ant 

Gauge BFI (HOST) IH Turning Points 

Ingworth 83% 84% 

Horstead Mill 83% 79% 

Honing Lock 86% 84% 
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Baseflow Seperation, Ingworth (1996 - 1998)
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Figure 6.1.1: Base flow separation at Ingworth using the turning points method (1996 – 1998) 

 

There are 8 parameters, which can be adjusted within SWAT when calibrating the 

water balance within the model (Table 6.1.2). The sensitivity of most of these 

parameters has been investigated in a number of studies. The curve number, soil water 

capacity, soil evaporation compensation, saturated hydraulic conductivity and base 

flow alpha factor have all been evaluated by Arnold et al. (2000) in their sensitivity 

analysis of SWAT. These were also found to be very sensitive in SWAT studies 

performed by Spruill et al. (2000), Santhi et al. (2001) and Jha et al. (2003a). The 

groundwater re-evaporation coefficient, minimum depth of water in soil for base flow 

to occur and minimum depth of water in shallow aquifer for re-evaporation to occur 

were chosen on the basis of previous SWAT calibration studies (Spruill et al., 2000, 

Santhi et al., 2001 and Jha et al., 2003a).  
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Table 6.1.2: Recommend SWAT water balance calibration parameters 

Parameter Notation Description 
Base flow alpha factor ALPHA_BF The base flow recession constant is a direct index 

of groundwater flow response to changes in 
recharge in days. A change in Alpha will affect 
the shape of the hydrograph but will not affect the 
annual water balance. 

Available water capacity AWC Available water capacity has an inverse 
relationship with % of rainfall appearing as 
various water balance components. An increase in 
AWC value will decrease base flow, surface run-
off and hence stream flow 

Soil evaporation compensation ESCO A change in the value of ESCO will disturb all the 
water balance components. With an increased 
ESCO value an increased proportion of rainfall 
will appear as base flow 

Groundwater re-evaporation 
coefficient 

GWREVAP As GWREVAP approaches 0 movement of water 
from the shallow aquifer is restricted 

Minimum depth of water in soil 
for base flow to occur 

GWQMN High GWQMN values will result in a 
considerable portion of rainfall appearing as base 
flow being retarded. The retarded portion will be 
stored in the soil  

Minimum depth of water in 
shallow aquifer for re-
evaporation to occur 

REVAPMN Movement of water from the shallow aquifer to 
the root zone or to plants is allowed only if the 
depth of water in the shallow aquifer is equal to 
REVAPMN 

Saturated hydraulic conductivity KSAT An increase in KSAT value will cause an increase 
in stream flow. The relationship between KSAT and 
stream flow is direct 

Curve Number CN Influences the amount of surface run-off 
calculated for each rainfall event. An increase in 
CN will increase run-off 

 

6.1.1 Annual Flow Summaries 

 

As no daily time series data are available at the outlet of the river basin being 

modelled, calibration has been undertaken at three gauged sites within the river basin 

(Ingworth, Horstead Mill and Honing Lock) Table 6.1.3 shows annual summary 

statistics for the calibration period, at Ingworth. Exact agreement is unlikely to be 

reached because of uncertainty involved in estimating which crops are grown from 

year to year along with soil association distribution and rainfall. This will affect the 

amount of water required for evapotranspiration and the amount of water left to 

contribute to stream flow.  
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Table 6.1.3: Annual SWAT summary statistics for the calibration period at Ingworth (River 

Bure) 

Year Observed 

flow (mm) 

Predicted 

flow (mm) 

Pred/Obs 

(mm) 

Precipitation 

(mm) 

PET (mm) ET (mm) 

1991 41.63 47.39 1.14 426.10 297.05 129.05 

1992 44.72 48.03 1.07 486.60 371.17 115.42 

1993 56.73 56.86 1.00 577.20 366.11 211.09 

1994 73.92 57.32 0.75 547.70 371.32 176.38 

 

Table 6.1.4 shows that the model is able to accurately predict the overall contributions 

of groundwater flow to total flow at Ingworth. However, it needs to be remembered 

that this is only at an annual level. 

 
Table 6.1.4: Observed and predicted groundwater flow contributions to total flow 

 Groundwater Flow Total Stream Flow 
% of total stream flow 

from groundwater 

Year 
Separated 

(mm) 

Predicted 

(mm) 

Observed 

(mm) 

Predicted 

(mm) 
Separated Predicted 

1991 37.11 39.78 41.63 47.39 89.14 83.94 

1992 38.74 38.70 44.72 48.03 86.63 80.57 

1993 47.07 43.47 56.73 56.86 82.97 76.45 

1994 62.52 44.72 73.92 57.32 84.58 78.02 

85.83 79.75 
Total 185.44 166.67 217.00 209.60 

Average Values 

 

6.1.2 Daily time series 

 

Figures 6.1.2, 6.1.3 and 6.1.4 show the observed and predicted daily flows at 

Ingworth, Horstead Mill and Honing Lock. The correlation between observed and 

predicted daily flow is relatively good as can be seen in Table 6.1.5.  
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Table 6.1.5: Calibrated model performance statistics   

 Ingworth Horstead Mill Honing Lock 
Statistical 

test Units Optimal values Base 
flow 

Total 
flow 

Base 
flow 

Total 
flow 

Base 
flow 

Total 
flow 

R2 Unit less 1 0.64 0.57 0.7 0.65 0.77 0.58 
ENS Unit less 1 0.57 0.51 0.68 0.64 0.61 0.54 

DRMS m3 s-1 
Smaller value 

indicates a better 
model performance 

0.21 0.27 0.39 0.42 0.04 0.08 

PBIAS % 

0 (+ values = bias 
to underestimate & 
- values = bias to 

overestimate) 

-10.11 -5.68 4.42 3.49 10.39 4.87 

 

It has been shown that groundwater flows contribute approximately 80% of total 

water at all sites. It can be concluded that the overall prediction of flow pattern is 

acceptable, although summer low flows are over predicted, especially at Ingworth on 

the River Bure, which is represented by the negative PBIAS value both for base and 

total flow figures. The positive PBIAS figures for Horstead Mill and Honing Lock is a 

result of the under estimation of peak flows within the model as can be seen in 

Figures 6.1.3 and 6.1.4. R2 values fall into the ‘good’ and ‘very good’ categories as 

defined by Henriksen et al. (2003). 

Total Flow Comparison at Ingworth (Calibration 1991 - 1994)
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Figure 6.1.2: Calibrated predicted and observed flow comparison at Ingworth (River Bure 1991-

1994) 
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Total Flow Comparison at Horstead Mill (Calibration 1991 - 1994)
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Figure 6.1.3: Calibrated predicted and observed flow comparison at Horstead Mill (River Bure 

1991 – 1994) 

 

Total Flow Comparison at Honing Lock (Calibration 1991-1994)
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Figure 6.1.4: Calibrated predicted and observed flow comparison at Honing Lock (River Ant 

1991 – 1994) 

 

Table 6.1.6 shows the acceptable hydrological calibration criteria in terms of 

percentage errors for the three calibration sites as recommended in various published 

texts. The seasons have been defined as: 
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Summer June, July, August 

Autumn September, October, November 

Winter  December, January, February 

Spring  March, April, May 
 

Table 6.1.6: Acceptable hydrological calibration criteria in terms of percentage errors 

Errors (Simulated-Observed) Recommended 

Criteria 

Ingworth Horstead 

Mill 

Honing 

Lock 

Error in total volume 10% 3.87% 6.72% 4.64% 

Error in 50% lowest flows 10% 1.00% 5.90% 7.78% 

Error in 10% highest flows 15% 2.30% 6.70% 1.66% 

Seasonal volume error (summer) 30% 3.29% 13.21% 9.72% 

Seasonal volume error (autumn) 30% 6.79% 0.53% 2.29% 

Seasonal volume error (winter) 30% 1.01% 5.76% 2.21% 

Seasonal volume error (spring) 30% 15.18% 8.28% 3.88% 

 

It can be seen from the above table that for all the calibration locations with the Bure 

and Ant SWAT model the percentage errors are low. The sites all fall well below the 

hydrological calibration criteria recommended in various published texts, with the 

highest percentage error occurring in spring and summer total flow values. This is 

also mirrored in the higher percentage errors for the 50% lowest flows.  

 

6.2 Model Performance Indicators 

 

When looking at river flows it is important to look at other model performance 

indicators before calibrating sediment loading and water quality parameters. Crop 

growth, evapotranspiration and soil moisture data can all be extracted from the SWAT 

results files. All of these can affect the water balance within the model, for example 

soil moisture will affect surface run-off.  

 

Figure 6.2.1 gives examples of crop growth profiles for four dominant crops in the 

Bure and Ant watershed: winter wheat, winter barley, spring barley and sugar beet, 

covering 13642 ha, 9821 ha, 5548 ha and 10435 ha respectively.  The two lines show 

the development of leaf-area index (LAI) (in blue) and plant biomass (in pink) during 

the growing season. The graphs have been used to check that the plants are 
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developing correctly in the model. After planting, dormancy occurs before the crops 

begin to grow without being subjected to any stresses caused by a lack of nutrients.  

Plants may also be stressed in SWAT by lack of water or by temperatures outside of 

the optimal growing range. Published peak LAI’s are reported by Hough (1990) to lie 

between 3-8 for all the above crops. All crops with the exception of sugar beet fall 

into the lower end of this range. All autumn planted crops show a period of dormancy.  

Leaf area index (LAI) decreases once plants reach senescence, and biomass falls 

somewhat later at harvest. It can be seen that all plants are growing in the expected 

manner.   

 
Vegetation Growth - Winter Barley

0

1000

2000

3000

4000

5000

6000

7000

8000

01
/10

/19
93

21
/10

/19
93

10
/11

/19
93

30
/11

/19
93

20
/12

/19
93

09
/01

/19
94

29
/01

/19
94

18
/02

/19
94

10
/03

/19
94

30
/03

/19
94

19
/04

/19
94

09
/05

/19
94

29
/05

/19
94

18
/06

/19
94

08
/07

/19
94

28
/07

/19
94

Date

B
io

m
as

 (t
 h

a-1
)

0

0.5

1

1.5

2

2.5

3

3.5

4

LA
I BIOMt/ha

LAI

Vegetation Growth - Winter Wheat
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Vegetation Growth - Spring Barley
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Vegetation Growth - Sugar Beet
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Figure 6.2.1: Modelled plant growth for major crops in the study area 

 

The correct modelling of plant growth is essential to achieve accurate 

evapotranspiration, as evapotranspiration rate is strongly influenced by a number of 

vegetative surface characteristics (Penman, 1956). Evapotranspiration is the primary 

mechanism by which water is removed from a watershed. Roughly 62% of the 

precipitation that falls on the continents is evapotranspired. Evapotranspiration 

exceeds run-off in most river basins and on all continents except Antarctica (Dingman, 

1994). The difference between precipitation and evapotranspiration is the water 

available for human use and management. An accurate estimation of 

evapotranspiration is critical in the assessment of water resources and the impact of 
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climate and land use change on those resources. Figure 6.2.2 shows SWAT predicted 

potential evapotranspiration values compared to two published sources. A good match 

can be seen between SWAT and the MORECS data. SWAT predictions are higher 

then those provided by Smith (1976). This is to be expected due to changes in climate 

since the publishing of this data in the 1970’s. 

Average Annual Predicted PET Comparison at Ingworth (River Bure)
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Figure 6.2.2: Average annual predicted PET comparison at Ingworth (River Bure) 

 

If crops are growing correctly and soils have been correctly parameterised then a 

correct representation of soil moisture development during the year is expected.  

Figure 6.2.3 shows modelled soil moisture content for the Hanworth soil series in sub-

basin 29 of the SWAT model (graphs for other soil series can be seen in Appendix 

Eleven).  
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Soil Moisture - Sub basin 29: Hanworth (1991 - 92)
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Figure 6.2.3: Comparison between predicted and published soil water content for the Hanworth 

soil series (1991 – 1992) 

 

Figure 6.2.3 shows the permanent wilting point of the soil (blue line). At this point the 

plants growing in it will wilt and not recover. This point is however never reached in 

any of the soils used within the SWAT model. Therefore, none of the crops growing 

will die due to water stress. 

 

The field capacity of the soil is also shown within Figure 6.2.3 (green line). This is the 

water present in a soil that has been saturated and allowed to drain until all drainage 

has ceased. Smith (1976) suggests that in the study area the soil should end field 

capacity around the middle of March to the end of April (first time period shown in 

red in Fig. 6.2.3) and return to field capacity (when rainfall exceeds transpiration and 

the soil gradually re-wets) between December and January (second time period shown 

in red in Fig. 6.2.3). SWAT is predicting return to field capacity towards the end of 

the published time period. This may be due to drier summers than those reported by 

Smith (1976). This late return to field capacity should not greatly affect soil water 

recharge as spring and autumn are the times for greatest recharge; however it is 

affecting crops planted in the winter. A period where there is no increase in either 

crop LAI or biomass can be seen for winter wheat and barley (Figure 6.2.1). This does 

SMD = 95 mm 
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not affect peak LAI values as discussed previously and field capacity is also being 

modelled reasonably correctly within SWAT.  

 

In the summer there is not enough rainfall to meet the plant’s demand for water and a 

soil water deficit develops. This is the dryness of the soil in terms of water required to 

return the soil to field capacity. In the study area it should be between 95 – 123mm 

(Smith, 1976). The model in this case is showing 95mm (Fig. 6.2.3). It can be 

concluded that the model is predicting soil moisture very well.  

 

Although SWAT is predicting soil moisture well the problems with the depth of 

irrigation as discussed in Chapter Five is apparent in the soil moisture outputs from 

SWAT highlighted in Figure 6.2.4. It can be seen from the graph during the year the 

soil moisture content increases sharply, returning to near field capacity before the 

correct date. This has little impact on the overall soil moisture content as soil moisture 

is only at field capacity for short periods of time and does not affect either LAI or 

plant biomass as can be seen in Figure 6.2.1. All other parameters such as 

evapotranspiration, base flow and total river flows are also behaving in the expected 

way as discussed previously in this chapter. 

Soil Moisture - Sub basin 6: Wick 3 (1995 - 96)
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Figure 6.2.4: The effect of irrigation depth on soil water content within SWAT for Wick 3 soil 

series (1995 – 1996) 
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6.3 Sediment Calibration 

 

Correct representation of sediment yield is required as one of the major mechanisms 

for loss of phosphorus from fields to rivers as material sorbed to sediment particles. 

Once the ratio of surface run-off to base flow contribution to stream flow has been 

calibrated, the sediment contribution (loadings from HRUs/sub basins) can be 

calibrated. There are two sources of sediment in SWAT: loadings from HRUs/sub 

basins and channel degradation/deposition. There are no data to assess the channel 

degradation/deposition loadings from sub basins. Calibration has been undertaken 

using 6 parameters (Table 6.3.1). It has then been assumed that the remaining 

difference between actual and observed is due to channel degradation/deposition.  

 
Table 6.3.1: Recommended SWAT sediment calibration parameters 

Parameter Notation Description 

USLE crop 

management factor 

USLE_P The support practice factor is defined as the ratio of soil loss 
with a specific support practice to the corresponding loss 
with up-and-down slope culture. Support practices include 
contour tillage, strip cropping on the contour, and terrace 
systems. An increase in USLE_P will increase soil loss. 

USLE slope length SLSUBBSN This is the USLE topographic factor. An increase in slope 
length will increase sediment yield.  

Slope of HRU’s SLOPE ArcView measures the average slope steepness. This can be 
increased or decreased by the user to either increase or 
decrease sediment yield. 

Crop practice factor USLE_C Value of USLE_C factor for water erosion applicable to the 
land cover/plant. A decrease in USLE_C to account for local 
conditions will decrease sediment yield. 

Crop residue factor RSDCO The plant residue decomposition coefficient is the fraction of 
residue that will decompose in a day assuming optimal 
moisture, temperature, C:N ratio, and C:P ratio. If 
appropriate for the plant a decrease in RSDCO will reduce 
sediment yield. 

Bio-mixing efficiency BIOMIX Biological mixing is the redistribution of soil constituents as 
a result of the activity of biota in the soil (e.g. earthworms, 
etc.). A decrease in BIOMIX will decrease sediment yield. 

 

No EA data existed for the study period. Observed data from Johnes (1996b) was used 

for calibration and validation purposes. The lack of available observed sediment data 

meant that calibration could only be undertaken for a one year period at two locations 

(Scarrow Beck: Figure 6.3.2 and Wroxham Rail Bridge: Figure 6.3.3). The calibrated 

parameters were then applied to the remaining sub-basins within the SWAT model. A 

third sub-basin (Honing Lock) was then used to validate the calibrated sediment 

parameters.  
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Suspended Sediment (SS) Comparsion at Scarrow Beck (calibration 1995 -1996)
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Figure 6.3.2: Sediment calibration at Scarrow Beck (1995 -1996) 

 

Suspended Sediment (SS) Comparison at Wroxham Rail Bridge (calibration 1995 - 1996)
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Figure 6.3.3: Sediment calibration at Wroxham Rail Bridge (1995 – 1996) 
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6.4 Nutrient Calibration 

 

The nutrients of concern in SWAT are nitrate, soluble phosphorus, organic nitrogen 

and organic phosphorus. For calibration purposes comparisons can be made between 

EA nitrate measurements and SWAT predicted nitrate measurements. There are two 

general forms of phosphorus in the main model output files. These are called mineral 

phosphorus and organic phosphorus in SWAT model documentation and output. 

Therefore SWAT simulated total phosphorus (mineral and organic phosphorus) and 

monitored EA total phosphorus are assumed equivalent for calibration. Table 6.4.1 

shows SWAT calibration parameters for nutrients. 

 
Table 6.4.1: Recommend SWAT nutrient calibration parameters 

Parameter Notation Description 

Concentration of nitrogen 
and organic nitrogen in 
soils 

SOL_NO3 and 
SOL_ORGN 

Initial NO3 and organic nitrogen concentration in the 
soil layer. This can increase or decreased to realistic 
levels. 

Fertilizer application rates FRT_LY1 Fraction of fertilizer applied to top 10mm of soil. The 
remaining fraction is applied to the 1st soil layer 
below 10mm. An increase in fertilizer application rate 
will increase nutrient loading. 

Crop residue coefficient RSDCO The plant residue decomposition coefficient is the 
fraction of residue that will decompose in a day 
assuming optimal moisture, temperature, C:N ratio, 
and C:P ratio. If appropriate for the plant an increase 
in RSDCO can increase nutrient loading. 

Bio-mixing efficiency BIOMIX Biological mixing is the redistribution of soil 
constituents as a result of the activity of biota in the 
soil (e.g. earthworms, etc.). A decrease in BIOMIX 
will increase nutrient load. 

Nitrogen percolation 
coefficient  

NPERCO NPERCO controls the amount of nitrate removed 
from the surface layer in runoff relative to the amount 
removed via percolation. 

Concentration of soluble 
and organic phosphorus in 
soils 

SOL_MINP and 
SOL_ORGP 

Initial mineral and organic phosphorus concentration 
in the soil layer. This can be increased or decreased to 
realistic levels. 

Phosphorus percolation 
coefficient 

PPERCO The phosphorus percolation coefficient is the ratio of 
the soluble phosphorus concentration in the surface 10 
mm of soil to the concentration of phosphorus in 
percolate. An increase in PPERCO will increase 
phosphorus loading. 

Phosphorus soil 
partitioning coefficient 

PHOSKD The phosphorus soil partitioning coefficient is the 
ratio of the soluble phosphorus concentration in the 
surface 10 mm of soil to the concentration of soluble 
phosphorus in surface runoff. An increase in 
PHOSKD will increase soluble phosphorus loading. 

 

Nutrient calibration was undertaken for four sites using EA monthly data as shown in 

Figures 6.4.1, 6.4.2, 6.4.3 and 6.4.4. 
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Figure 6.4.1: Nutrient calibration at Horstead Mill 

 

Figure 6.4.2: Nutrient calibration at Wroxham Rail Bridge 

 

Figure 6.4.3: Nutrient calibration at Scarrow Beck 

 

Figure 6.4.4: Nutrient calibration at Honing Lock 
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Table 6.4.2 shows the performance statistics for nutrient calibration. DRMS values for 

TP are very low at all the calibration sites, suggesting the model is performing well 

for TP, but have a tendency to overestimate TP concentrations, reflected in the 

negative PBIAS values. PBIAS values for N are positive and therefore the model is 

underestimating N concentrations at all the calibration sites. Overall the model is 

predicting nutrient concentrations well, with both nutrient parameters falling into the 

‘good’ category (0.50 – 0.65) for R2 values under Henriksen et al. (2003) categories 

of goodness of fit for a given model.  

 
Table 6.4.2: Performance statistics for nutrient calibration 

 Horstead Mill Wroxham Scarrow Beck Honing Lock 
Statistical 

test Units Optimal values N TP N TP N TP N TP 

R2 Unit less 1 0.51 0.56 0.51 0.58 0.50 0.52 0.50 0.55 
ENS Unit less 1 0.67 0.65 0.67 0.62 0.52 0.59 0.53 0.71 

DRMS mg l-1 

Smaller value 
indicates a better 

model 
performance 

2.30 0.08 2.43 0.13 2.96 0.05 2.12 0.04 

PBIAS % 

0 (+ values = bias 
to underestimate 
& - values = bias 
to overestimate) 

2.41 -3.13 3.87 -7.67 9.01 -9.52 3.59 2.80 

 

6.5 Model Validation 

 

Data from 1994 – 1999 have been used to validate the Bure and Ant SWAT model. 

The results for flow validation can be seen in the table and figures below.  Under the 

Henriksen et al. (2003) categories of goodness of fit for a given model the R2 values 

for Ingworth, Horstead Mill and Honing Lock base flow fall into the ‘good’ category 

(0.50 – 0.65). The total flow at Ingworth and Horstead Mill are in the ‘very good’ 

category (0.65 – 0.85), where as total flow at Honing Lock falls in the ‘poor’ category 

(0.20 – 0.50).  
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Table 6.5.1: Validation model performance statistics 
 Ingworth Horstead Mill Honing Lock 

Statistical 
test Units Optimal values Base 

flow 
Total 
flow 

Base 
flow 

Total 
flow 

Base 
flow 

Total 
flow 

R2 Unit less 1 0.61 0.72 0.61 0.73 0.61 0.43 
ENS Unit less 1 0.47 0.68 0.57 0.69 0.57 0.37 

DRMS m3 s-1 
Smaller value 

indicates a better 
model performance 

0.21 0.32 0.38 0.58 0.05 0.09 

PBIAS % 

0 (+ values = bias 
to underestimate & 
- values = bias to 

overestimate) 

-2.85 -2.86 -3.34 -4.92 2.53 6.79 

 

Total Flow Comparison at Ingworth (Validation 1995 - 1999)
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Figure 6.5.1: Flow validation at Ingworth (1995 – 1999) 
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Total Flow Comparison at Horstead Mill (Validation 1995 - 1999)
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Figure 6.5.2: Flow validation at Horstead Mill (1995 – 1996) 
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Figure 6.5.3: Flow validation at Honing Lock (1995 – 1999) 

 

Sediment validation was only undertaken at one site: Honing Lock and only for a one 

year period due to lack of observed data. Figure 6.5.2 shows sediment validation 

results. Predicted data were compared against observed data provided by Johnes 

(1996b). It can be seen from the graph below, sediment validation at Honing Lock is 

on the whole poor. This is a consequence of the poor hydrological validation at this 

site, only achieving an ENS of 0.37 for total flow during the validation period and a 
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positive PBIAS of 6.79 due to the underestimation of peak flows by SWAT. The 

under prediction of peak flows at Honing Lock can be accounted for by the poor 

rainfall data set used in this section of the model. A rain gauge at South Repps 

(located at the top of the River Ant basin) was used, as this was the gauge, which fell 

within the River Ant basin. Unfortunately a number of day’s data were missing and 

were therefore infilled using the BADC programme. This is the only site where daily 

sediment data are available; unfortunately it is also the only set of suspended sediment 

data, which falls within the validation period. Validation at other sites to check the 

calibration parameters is not possible. 

Suspended Sediment Comparison at Honing Lock (Validation 1999)
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Figure 6.5.4: Sediment validation at Honing Lock (1999) 

 

The validation of nutrients was undertaken at the same four sites as for calibration, 

using both EA monthly data and Johnes (1996b) weekly values. Figures 6.5.5, 6.5.6, 

and 6.5.7 and 6.5.8 show validation results for all sites. 
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Figure 6.5.5: Nutrient validation at Horstead Mill 

 

Figure 6.5.6: Nutrient validation at Wroxham Rail Bridge  

 

Figure 6.5.7: Nutrient validation at Scarrow Beck 

 

Figure 6.5.8: Nutrient validation at Honing Lock 
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Table 6.5.2 shows the performance statistics for nutrient calibration. Like the 

calibration results the DRMS values for TP are very low at all the calibration sites, 

suggesting the model is performing well for TP, but has a tendency to overestimate 

TP concentrations, reflected in the negative PBIAS values. PBIAS values for N are 

positive and therefore the model is underestimating N concentrations at all the 

calibration sites. Both R2 and ENS values have slightly improved in the validation 

period this corresponds with the general improvement seen in the hydrological 

validation performance statistics. At Honing Lock TP values for R2 and ENS have 

decreased from 0.55 and 0.71 to 0.52 and 0.54 respectively. These values reflect the 

poor validation for total flow at Honing Lock. 

 
Table 6.5.2: Performance statistics for nutrient validation 

 Horstead Mill Wroxham Scarrow Beck Honing Lock 
Statistical 

test Units Optimal values N TP N TP N TP N TP 

R2 Unit less 1 0.53 0.58 0.51 0.58 0.54 0.56 0.53 0.52 
ENS Unit less 1 0.68 0.69 0.67 0.66 0.55 0.60 0.57 0.54 

DRMS mg l-1 

Smaller value 
indicates a better 

model 
performance 

1.95 0.98 2.03 0.83 1.76 1.15 2.07 0.94 

PBIAS % 

0 (+ values = bias 
to underestimate 
& - values = bias 
to overestimate) 

2.33 -3.73 2.65 -9.07 4.22 -6.58 4.13 -2.56 

 

6.6 Model Calibration and Validation Discussion 

 

An overall weakness of the SWAT model is the use of equations that have parameters 

that are not directly measured. For example, the curve number equation, although 

used often to estimate run-off volumes, is highly uncertain due to the use of a 

parameter (i.e. the curve number) that had not been determined empirically for the UK 

but rather for the USA using different land uses. In addition, the MUSLE, which is 

used for soil erosion simulation, is also uncertain because of the number of parameters 

in the equation that are set from qualitative information (e.g. soil type and ground 

cover). Efforts have been made to incorporate more process-based equations; there is 

still room for improvement in some of the basic processes modelled by SWAT. Some 

limitations of the SWAT model have been noted in the following section where the 
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main aim is to discuss the limitations of the input and calibration data for the SWAT 

model. 

 

6.6.1 Soils Investigation  

 

In Chapter Five the use of the National Soil map in the SWAT model was discussed. 

The map includes the soil associations and does not incorporate the soil series, which 

make up the association. Soils that are highly erodible could be missed from the 

model giving unreliable results. To investigate this, USLE calculations were 

undertaken for each soil series within each sub-basin. Results showed that soils such 

as Sheringham, which make up approximately 28% of the Wick 3 series have a high 

mean annual soil loss, but due to the current modelling of soil associations with 

SWAT are not represented in the model.  

 

To investigate soil erodibility further a sensitivity analysis has been carried out for the 

distribution of the soil associations and their sub-groups on a small sub-basin within 

SWAT. The sub-basin was set up within SWAT using calibrated parameters from the 

Bure and Ant SWAT model. It has been modelled with three different soil scenarios 

(Table 6.6.1); each soil scenario was simulated in SWAT with 3 different land cover 

types (winter wheat, maize and pasture). The Sheringham soil series was modelled; 

along with the three different land cover types to verify whether SWAT is responding 

in an appropriate way to different soil and land covers (the Sheringham association is 

not found within the study area, it is only an ancillary soil to the Wick association).  

 
Table 6.6.1: Soil investigation scenarios 

Scenario Soil 

One Wick series covering whole sub-basin 

Two 
Wick ancillary. Sub-basin split into 4 HRU’s: Wick (38% of subasin), 

Wickmere (36%), Sheringham (16%), Aylsham (10%) 

Three Sheringham series covering whole sub-basin 

 

Figure 6.6.1 shows that as expected when maize is used as the land cover type it will 

result in a higher sediment yield, as maize is recognised as having a higher risk of soil 

erosion and run-off than most other crops (DEFRA, 2005). Sediment yield is highest 
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for Sheringham soil for all three-cover types. This is also as expected as the 

Sheringham soil has the highest USLE mean annual soil loss (3.46 t ha-1). SWAT is 

responding in a realistic way to different soil and land cover combinations. 

Average Annual Sediment Yield
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Figure 6.6.1: Average annual sediment yields for varying soil and land cover types 

 

The difference between sediment yields for the three soil scenarios when modelled 

with maize is quite significant. The difference between the three soils when used as 

pasture is relatively small.  

 

Figure 6.6.2 shows that the difference in sediment yields for Wick 2 and the Wick 

ancillary soil scenarios when modelled with winter wheat is very small. Only in 1991 

is the sediment yield significantly larger for the Wick ancillary scenario. A difference 

between the two Wick soil scenarios was expected as the Wick ancillary scenario 

incorporates the Sheringham soil series. The difference between the two soils in terms 

of sediment yield is relatively low and the use of the National soil map and Soil 

associations has a limited influence on SWAT sediment yield results. Research 

carried out by Di Luzio et al. (2005) also showed that although land use and land 

cover maps had a significant effect on sediment yield prediction; soil maps had an 

insignificant influence.  
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Sediment Yield for Winter Wheat
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Figure 6.6.2: Sediment yield for winter wheat 
 

6.6.2 Hydrology 

 

Calibration and validation results show that SWAT is reasonably able to predict total 

and base flow within the Bure and Ant watersheds, with all percentage errors falling 

below published criteria. The Nash and Sutcliffe efficiencies for all three calibration 

sites are also comparable with other UK SWAT models. Kannan (2004) achieved ENS 

values of 61.20% and 59.57% whilst White et al. (2004) achieved an ENS of 53% for 

the Wensum watershed (adjacent to the River Bure watershed). 

 

In comparison to studies carried out in other countries the ENS values attained in the 

UK are relatively low. Jha et al. (2003b) obtained an ENS value of 93% in Raccoon 

watershed in Iowa, USA. In Spain Conan et al. (2003) obtained a value of 72% whilst 

in Sardinia a value of 83% was achieved (Cau, et al., 2003). The most obvious 

difference in these SWAT models to those built in the UK is the size of the 

watersheds being modelled. The Bure and Ant model covers approximately 612 km2, 

the Roccoon model in Iowa covered 9,500 km2, the Guadiamar watershed in Spain 

covers 1,500 km2 and the Sardinia model is 24,089 km2. These results illustrate a 

possible limitation in the SWAT model when modelling small watersheds. However, 
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within the above mentioned studies no real attention has been made to the internal 

working of the model.  

 

Due to the small size of the Bure and Ant catchment the response of the watershed to 

precipitation events is more sensitive and the timing of events is crucial for model 

performance. Consequently, errors that may be ‘averaged out’ on larger basins would 

be quite apparent on small basins as the input data and parameters have been set on a 

large scale. This is due to the fact that parameters had to be adjusted on a basin wide 

basis due to small number of gauged sites in the two watersheds. This is especially so 

in the Ant watershed where there is only one gauged site (Honing Lock) near the 

headwaters of the watershed.  

 

The highest percentage errors were attained in the spring and summer months, which 

represent the lowest flows in the year. The daily time series graph for Ingworth shows 

that SWAT is over predicting the low spring and summer flows (Fig 6.6.3). This error 

accumulates in SWAT, increasing in sub basins further down watershed (Fig 6.6.4). 

Base flow comparison at Ingworth (Calibration 1991 - 1994)
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Figure 6.6.3: Base flow at Ingworth (1991 – 1994) 
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Base Flow comparison at Horstead Mill (Calibration 1991 - 1994)
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Figure 6.6.4: Base flow at Horstead Mill (1991 – 1994) 

 

It is possible to reduce the spring and summer flows predicted by SWAT by 

increasing the SWAT GWQMN value within the ground water files. By increasing 

this value a higher portion of rainfall appearing as base flow will be retarded and 

stored in the soil. Although this will reduce the spring and summer base flow it will 

reduce base flow through out the rest of the year. It will also increase the amount of 

water being stored in the soil. 

 

The amount of water being stored in the soil has been shown to be realistic as 

described in section 6.2. Figure 6.6.4 also shows that in the winter months SWAT is 

generally under predicting base flow, decreasing base flow further to improve the 

spring and summer flows will increase this under prediction. Increasing the soil water 

being stored and decreasing base flow through increasing the GWQMN is not an 

option. 

 

To solve this problem the input data need to be looked at. Spring and summer low 

flows within the Bure and Ant watersheds are predominately made up of point source 

discharges such as flows from STW’s.  These have been incorporated into the model 

through Environment Agency licensed discharge values. When compared to Anglian 

Water discharge values for three STW in the Bure and Ant watersheds it was found 
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that the EA licensed values were lower than actual recorded discharge values for the 

three sites observed by Anglian Water (Fig 6.6.5). Maximum recorded values by 

Anglian Water are also substantially higher then those consented by the EA, 

particularly at Belaugh STW.  

Comparison between actual STW discharge flows and consented EA flows
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Figure 6.6.5: Comparison between actual STW discharge flows and EA consented flows 

 

Anglian Water data show that discharge values vary throughout the year (Fig 6.6.6). 

Lower discharge flows can be seen in the summer months, when SWAT is over 

predicting summer flows. Higher flows are occurring in the winter months, where 

SWAT is under predicting base flow. EA consented flow data are given as just one 

value for the whole year. This has been input to SWAT as an annual point source 

discharge value. SWAT is not predicting the variability, which is shown in the actual 

flow data.  It is possible to input monthly and daily point source discharge values into 

SWAT however no long-term data from Anglian Water are available, therefore annual 

EA consented values have had to be used. 
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Monthly Flow ay Aylsham STW as a Percentage of Total Annual Flow
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Figure 6.6.6: Daily flow at Aylsham STW 

 

Although STW discharge may go some way to explaining the discrepancy between 

separated base flows and predicted values, the variation between monthly STW 

discharges is only 2 Ml day-1. In comparison the total discrepancy between separated 

and predicted base flow is 5 Ml day-1. The remaining discrepancy may be due to the 

uncertainties in crop and soil distribution and irrigation application as these all affect 

contributions to base flow. 

 

The Environment Agency has also provided the abstraction data used in SWAT. This 

has been input to SWAT through the consumptive water use (WUS) file. This 

removes water at the sub-basin level from the reach, shallow aquifer or deep aquifer. 

Within each sub-basin there are a number of abstraction points recorded by the EA; 

these have had to be lumped together as SWAT only allows one abstraction point to 

be modelled. It will not take into account change in abstraction values over time.  

 

Figure 6.6.3 shows the base flow at Ingworth. It can be seen in winter 1993 – 1994 

that there is a significant decrease in SWAT base flow values compared to separated 

observed base flow values. This carries on into the validation period (Fig 6.6.7) and is 

especially apparent in the winters of 1995 – 1996 and 1998 – 1999.  
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Comparison of Base flow values at Ingworth (Validation 1995 - 1999)
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Figure 6.6.7: Base flow validation values at Ingworth (1995 – 1999) 

 

Table 6.6.2 shows the number of abstraction licences revoked in 1993. A total of 

21920 m3 day-1 was not removed from the system from 1993 onwards. This is 

approximately 5% of the total volume of water, which is abstracted from the model. It 

is not possible to vary abstraction over time in SWAT, therefore it is not possible to 

achieve accurate base flow values and this is represented in the ENS value and higher 

percentage errors for seasonal variability. At the end of both the calibration and 

validation period (years 1994 and 1999), base flow decreases dramatically throughout 

the whole year, which can not be sufficiently explained by changes in abstraction.  

 

It is suggested that this is a function of percolation to the deep aquifer. Movement to 

the deep aquifer occurs only if the movement of water stored in the shallow aquifer 

exceeds the threshold value specified by the user (REVAPMN). The calibrated 

REVAPMN threshold was set to 1mm; recommended values can lie between 0 and 

500mm. The value is sufficient for the majority of the calibration and validation 

period; the years 1994 and 1999 are both wet years with total rainfall falling above the 

annual average of 520.6 mm yr-1 (587 mm yr-1 and 616.7 mm yr-1 respectively). By 

having a low REVAPMN threshold value during wet periods excess water is 

percolated into the deep aquifer where it is stored instead of contributing to base flow. 

By increasing the REVAPMN value this will adversely affect the base flow 
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calibration for years with average and below average rainfall, where base flow is 

already being underestimated in the winter months. 

 
Table 6.6.2: EA abstraction licence revoked in 1993 

Sub-
basin Revoke date Amount (m3 day-1) Site name 

1 01/04/1993 1320.00 BORE AT BESSINGHAM 
1 01/08/1993 1800.00 WELLPOINTS AT EAST BECKHAM 
1 01/08/1993 1200.00 TRIB W/C OF SCARROW BECK 
3 01/07/1993 8.00 BORE,WOOD FARM,EDGEFIELD 
4 01/05/1993 2.30 BORE AT DAIRY FARM,HEYDON 
4 01/06/1993 13.20 WELL,MOOR HALL FARM,BRISTON 
4 01/06/1993 1.10 WELL AT HEYDON 
4 01/04/1993 215.00 R BURE AT SAXTHORPE 
4 01/07/1993 660.00 R BURE,BINTRY FM,ITTERINGHAM 
4 01/07/1993 215.00 RIVER BURE AT CORPUSTY 
6 01/06/1993 13.00 BORE,SEAMAN'S FARM,GUESTWICK 
8 01/09/1993 1450.00 BORE,CHURCH FARM,OULTON 
9 01/04/1993 19.90 RESERVOIR AT COLBY 
9 03/04/1993 900.00 BORE,HELSDON FARM,HANWORTH 
9 04/04/1993 1455.18 BORE,HELSDON FARM,HANWORTH 
9 04/04/1993 1455.18 RESERVOIR NO 1,ROUGHTON 
9 04/04/1993 1455.18 RESERVOIR NO 2,ROUGHTON 

12 01/06/1993 2012.00 BORE,OAKS FARM,FELMINGHAM 
12 01/04/1993 636.00 RES AT SUFFIELD 
12 01/04/1993 636.00 SUFFIELD BECK AT SUFFIELD 

14 01/04/1993 1500.00 
BORE AT GRANGE BUILDINGS 
D'HAM 

14 01/04/1993 1905.00 BORE AT MANOR FARM DILHAM 
17 01/04/1993 32.00 AGRIC BORE,HALL FARM,OXNEAD 
17 01/04/1993 636.00 IRRIG BORE,HALL FARM,OXNEAD 
17 01/04/1993 636.00 WELL AT HALL FARM,OXNEAD 
19 01/11/1993 1744.00 GRAVEL PIT – HEVINGHAM 

  Total 21920.04   
 

Although recommended calibration methods were followed some of the calibration 

parameters were found to make minimal change in model output. Recommended 

variables for calibration of temporal patterns of stream flow are hydraulic 

conductivity and base flow alpha factor. Changing the hydraulic conductivity caused 

monthly averages to increase or decrease by comparable amounts for all months. The 

most effective parameters were those to do with groundwater flow (groundwater re-

evaporation coefficient, minimum depth of water in soil for base flow to occur and 

minimum depth of water in shallow aquifer for re-evaporation).  
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6.6.3 Sediment 

 

Sediment erosion from each HRU is simulated using the Modified Universal Soil 

Loss Equation (MUSLE) (Williams and Berndt, 1977). This equation replaces the 

traditional Universal Soil Loss Equation (USLE) rainfall factor with a run-off factor. 

The MUSLE is solved for each HRU and final sediment yields are routed down the 

main channel using a stream power equation (Neitsch et al., 2001). This routing 

method assumes the maximum amount of sediment that can be transported in a given 

reach is a function of the peak channel velocity (Arnold et al., 1995b). 

 

Sediment erosion and transport modelling is highly uncertain and accurate simulation 

of sediment processes on the land surface, is difficult to capture due to the 

heterogeneous nature of a watershed and the relatively unrefined equations used to 

explain certain processes (e.g. MUSLE). As a result, it is typically the case that a 

model that performs acceptably well for hydrology may still have limitations in fully 

capturing sediment loads. This is the case with the Bure and Ant SWAT model. 

 

Due to lack of data, calibration was concentrated at two sites on the River Bure 

(Scarrow Beck and Wroxham) and validation was carried out on one site on the River 

Ant (Honing Lock). Scarrow Beck is close to the headwaters of the River Bure and is 

a small sub-basin. SWAT is predicting an almost constant sediment concentration, 

picking up none of the variability that is shown in the observed data. Further down 

stream at Wroxham Rail Bridge where the sub-basin drains a larger area the 

suspended sediment concentrations predicted by SWAT match the observed data 

slightly better.  SWAT especially picks up well the lower sediment values in the 

summer months, but over predicts sediment in the winter months. However, SWAT 

does not pick up any of the variability in sediment values for the validation site at 

Honing Lock, as a result of poor surface flow representation. 

 

The variation in results between calibration/validation sites may be due to the sub-

basin size and location within the modelled watershed. Binger et al. (1997) found that 

sediment yield varied significantly with changes in sub-basin size and location. These 

effects were attributed to increasing levels of aggregation on average sub-basin slope 

and on the proportion of the sub-basin delineated as cropland. FitzHugh and Mackay 
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(2000) also demonstrate that sediment generation is attributed not only to land cover 

and soil but also to the area of a sub-basin. They show a non-linear relationship 

between sediment generation and the size of the sub-basin. If this is the case then run-

off should respond in a similar way as hydrological data is also aggregated at the 

HRU and then sub-basin level. In his work Binger et al. (1997) also showed that run-

off is not sensitive to sub-basin or HRU size. It can be said that the aggregation effect 

observed is partly due to model structure and hence the sub-models for run-off and 

sediment yield respond differently to the same change in spatial representation. 

 

Monthly and bi-monthly observed data were used to calibrate the SWAT model. The 

observed data used in validation is daily data from Johnes (1996b), which accounts 

for the increased variability in observed data compared to the calibration sites. By 

using daily data to validate the sediment loads in SWAT it can be seen that SWAT 

cannot capture sediment erosion during individual storm events. The MUSLE 

algorithm is designed to simulate erosion occurring due to the run-off produced 

during storm events (Williams and Berndt, 1977). Arnold et al. (1998) stated that 

‘SWAT does not simulate detailed event based flood and sediment routing’. They felt 

the model was best developed to evaluate management impacts on long-term erosion 

and sedimentation (Arnold et al., 1998). It would be inaccurate to apply the model in 

an attempt to evaluate particular storm based events. It also demonstrates that daily 

observed sediment loads can not reliably be used to calibrate and validate a SWAT 

model.  

 

A greater seasonal variability may be picked up with SWAT suspended sediment 

values if all sources of sediment within the Bure and Ant watersheds were captured 

within the model.   Sediment within the Bure and Ant watershed can be generated by 

three main sources; land erosion, bank erosion from tides and boating activities and 

finally from STW’s. Although not a source of sediment the re-suspension of sediment 

due to boats and tidal influence in the rivers greatly impacts suspended sediment 

concentrations within the Bure and Ant watersheds.  

 

SWAT is able to model surface run-off through the use of the SCS curve number 

method. Sediment generation from each HRU is then calculated using MUSLE. 

Although it is possible to model bank erosion within SWAT through the channel 
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erodibility factor no measurements are available to estimate the parameter accurately, 

so it has been set to 0.5. A value of 0.0 indicates a non-erosive channel while a value 

of 1.0 indicates no resistance to erosion. Although the erodibility factor is considered 

within SWAT the sensitivity of the parameter is questionable as the sediment routing 

routine, which has relatively simplistic equations (Arnold et al., 1998), does not 

consider important sediment transport characteristics such as bottom shear stress. This 

determines whether erosion or deposition will occur, given flow velocities and 

resulting shears.  

 

It is possible to model sediment loads from STW’s. As for effluent, sediment 

discharge from STWs can be modelled as a point source at either a daily, monthly or 

annual level. It is very difficult to obtain comprehensive sediment data on locations, 

consented and/or actual discharges from sewage treatment works in the Broads 

catchments (White et al., 2005). These data have not been incorporated into the model. 

 

Within the Bure and Ant model the only source of sediment is from land. Land use 

significantly affects the magnitude of sediment loss through its influence on the 

degree of the protection afforded by the vegetation cover. The relationship between 

sediment yield and annual surface run-off can be seen in Figure 6.6.8 for the major 

soil association in the study area (Wick). It can be seen that agriculture is the land 

cover type that produces the highest sediment rates and that SWAT is predicting run-

off sources of sediment well. Sediment representation within SWAT could be 

improved if more data were available.  
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Relationship of sediment yield to annual surface run-off for four land use types (1991-1995)
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Figure 6.6.8: Relationship between modelled sediment yield and annual run-off (1991 – 1995) 

 

6.6.4 Nutrients 

 

Overall calibration for nutrients was reasonable, calibration of nitrate within the 

model was good at all sites, problems did occur with total phosphorus. The modelled 

phosphorus concentrations demonstrated much more variability than seen in the 

monitored data. Phosphorus moves in a much more dynamic event based way than 

nitrate and such variability is to be expected at a daily level. 

 

Total phosphorus calibration was undertaken using Environment Agency monthly 

measured data; validation was partly done using weekly and daily data. It can be seen 

from the graph below that SWAT is able to predict total phosphorus reasonably well 

when looking at long term trends in comparison to monthly observed data. The 

models performance is ideal for evaluating management impacts on long-term erosion 

and water quality within the Bure and Ant watersheds. 
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Total Phosphorus Calibration at Wroxham Rail Bridge (1991 - 1994)
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Figure 6.6.9: Long term phosphorus trends at Wroxham Rail Bridge 
 

When considering phosphorus dynamics on a daily basis SWAT is not able to predict 

total phosphorus concentrations with great accuracy (Fig 6.6.10). 

Comparison between SWAT and daily observed TP concentrations at Honing Lock
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Figure 6.6.10: Comparison between SWAT and daily observed total phosphorus concentrations 

at Honing Lock 

 

SWAT overestimates peaks and the timing of peaks when compared to daily observed 

total phosphorus concentrations. SWAT is also predicting many days with the same 
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total phosphorus values, giving an almost smooth line for long time periods. Johnes 

(1996b) daily data clearly shows that total phosphorus concentrations are very 

dynamic, changing on a daily basis. SWAT is unable to predict such variability for 

two main reasons. It was discussed previously that SWAT is unable to predict event 

based storm, sediment or water quality values. Limited data were available for actual 

STW phosphorus discharge rates. Only one consented value was provided by the EA 

and 2 published average values were available. Only constant STW phosphorus could 

be input into SWAT as point source discharges resulting in the almost smooth line 

seen in Figure 6.6.10.  Therefore although daily data area available for calibration 

SWAT performs better when comparing predicted total phosphorus values to either 

monthly or weekly observed data. 

 

The Environment Agency only measure water quality parameters on a monthly basis. 

With this time resolution high discharge events are under estimated and therefore the 

flux of sediment and nutrients are also underestimated (Fig 6.6.11).  This is especially 

so in the Broads, as the flat landscape means that the rivers have a very low channel 

gradient. In combination with low rates of discharge this means that the rivers are 

slow flowing, with high sediment trapping efficiency. Much of the nutrient load 

exported from diffuse sources in Norfolk; in particular particulate phosphorus is 

trapped in the bed sediments of the rivers during base flow conditions. This trapped 

sediment is not static and during storm flow, is re-suspended and transported 

downstream to the tidal reaches where diurnal tides keep much of the particulate 

nutrient load in suspension. This means that in the fresh water river basins in the 

Norfolk region, current water quality monitoring schemes operating on a monthly 

basis will be systematically underestimating nutrient loads, especially phosphorus 

which is largely exported in particulate form from agricultural sources.  
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Comparison between daily and monthly recorded phosphorus concentrations at Honing Lock
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Figure 6.6.11: Comparison between daily and monthly recorded phosphorus concentrations at 

Honing Lock 

 

The implications of under estimating nutrient loads can be seen in Figure 6.6.11. 

Severa-Martinez (2005) defined an ecological failure criterion for Hickling Broad. In 

terms of total phosphorus a maximum ecological threshold limit of 0.1 – 0.25 mg l-1 

was suggested; total phosphorus concentrations above these values will have an 

adverse effect on Hickling Broad. The lower TP threshold (0.1 mg l-1) also represents 

the EA river water quality target for the study area under the General Quality 

Assessment Scheme (EA, 2004). The upper and lower threshold limit have been 

plotted in Figure 6.6.11, from the graph it can be seen that if only EA monthly data 

are considered that the lower threshold limited is only breached once in 1999, 

therefore no adverse affects on Hickling Broad would be expected. If Johnes (1996b) 

weekly and daily data are considered, then the lower threshold limit is breached 61 

times i.e. 17% of time and the upper threshold is breached twice in 1999. If SWAT 

data are then looked at both thresholds are breached 20% of the time, having an 

adverse effect on Hickling Broad, which would be underestimated or missed if only 

monthly data were considered. Work carried out by Leecaster and Weisberg (2001) 

* 
 

* 
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also observed percentage changes in events in which standards were exceeded 

depending on sampling frequency. It was found that sampling at three times per week 

resulted in the observation of 55% of the events in which standards were exceeded. 

This frequency dropped to 25% and 5% for weekly and monthly sampling 

respectively.  

 

Johnes (1996b) and SWAT data show that it is at higher flows that higher phosphorus 

concentrations are likely. EA data are predominantly collected at lower flows as can 

be seen in Figure 6.6.11.  Work carried out by USGS (2001) suggests that the best 

overall monitoring strategy for accurate and precise load and trend estimations of 

sediment and nutrients consists of 50% base flow samples and 50% storm samples.  

At Honing Lock the average base flow is 0.25 m3 s-1 and the average peak flow is 0.35 

m3 s-1. From Figure 6.6.12 it can be seen that, for the year considered only 3 EA 

samples are taken at peak flows, this is only 25% of the time for monthly samples.  

Based on monthly samples the ability to ensure adequate sampling of all river stages 

is severely limited. Zhang (1998) stated that for river basins less than 1000km2 (which 

all the river basins in the study area are) storm event sampling should be carried out 

wherever possible as this reduces the random possibility of sampling high flow by 

constant frequency sampling. By increasing sampling frequency to either bi-monthly 

or weekly the percentage of samples taken at high flows would increase to cover the 

majority of peak flows but would perhaps still miss extreme peak flows as can be seen 

by Johnes (1996b) data ranges. 
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Comparison between daily and monthly recorded phosphorus concentrations for different flow rates 
at Honing Lock
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Figure 6.6.12: Comparison between daily and monthly recorded phosphorus concentrations for 

different flow rates at Honing Lock 

 

Figure 6.6.13 and the above discussion show that the fewer number of samples the 

greater the error in sample results and that with an increased sample size a more 

representative data set may be achieved. Currently the EA are only taking monthly 

samples, a total of 12 samples a year are taken. A more suitable sampling frequency 

can be calculated using a simple statistical formula. 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 6.6.13: Hydro chemical response characteristics of flow, SS and nutrients in UK Rivers 
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Sample size can be calculated using the following formula:  

 

S = (z/e)2 

 

Where:  s  the sample size 

z  degree of confidence (95% confidence is most frequently used 

and accepted). When using a ‘z’ table the value of ‘z’ should be 

1.96 for 95% confidence. 

e accepted error measured as a proportion of the standard 

deviation (accuracy).  

 

A sample size to aim for in order to be 95% confident in the result, with an error of 

30% of the population standard deviation (SWAT results show a standard deviation of 

0.07 in total phosphorus results for all sites, an accepted error of 0.021 (30%)) results 

in the following calculation:  

 

s = (1.96 / 0.3)2 

 

Therefore s = 42.68 

 

In other words, 43 samples a year would need to be taken to meet the criteria. This 

results in a weekly sampling programme. This value will increase if a lower standard 

error is required. 

 

It can be seen from Figure 6.6.11 and 6.6.12 SWAT is able to predict total phosphorus 

concentrations at varying flows well when compared to the daily and weekly data of 

Johnes (1996b), even though SWAT was calibrated on monthly EA nutrient data. It is 

not able to predict daily concentrations with great accuracy as discussed previously in 

this chapter when calibrated on monthly data. Therefore for SWAT modelling weekly 

samples are sufficient for calibration and validation purposes. If more detailed 

knowledge of nutrient dynamics is required in the future then it would be advisable to 

undertake weekly, daily, sub-daily samples or event-based samples as discussed 

above.                                                         
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On the basis of the nutrient calibration results it was concluded that SWAT has a 

shortcoming in nutrient calibration due to the sensitivity of the model to many 

parameters. Changing the sensitive parameters for phosphorus was affecting the 

calibrated nitrate levels. This is because the same parameters (crop residue coefficient 

and bio-mixing efficiency) can be used to calibrate both phosphorus and nitrate within 

the model.  

 

The calibration and validation procedure undertaken indicates limitations in the 

predictive capability of the model, especially for sediment. There are many possible 

sources of these errors, which have been discussed: lack of input data, over 

simplification of various factors in the model equations, non-optimal calibration 

parameters and errors in observed output data. Based on current available data, the 

model demonstrates its utility as a tool to understand processes in the watershed and 

as a basis for effective management in the Bure, Ant and Upper Thurne watersheds. 
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Chapter Seven Upper Thurne SWAT Model 

 

7.0 Upper Thurne Model Build 

 

The same methodology used in the Bure and Ant SWAT model build was followed to 

build the Upper Thurne model. Crop rotations established from EDL data and ADAS 

standard rotations within the Bure and Ant model have again been used to ensure a 

good representation of EDL data within the SWAT model (Fig 7.0.1). The use of the 

Bure and Ant crop rotations has meant the easy transfer of management files between 

the two SWAT models.  

Adjusted Crop Rotations in the Upper Thurne Compared to EDL 2000 Data Set
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Figure 7.0.1: Comparison of modelled and actual crop areas within the Upper Thurne 

 

As no flow or sediment data are available for the calibration of the Thurne model 

calibrated base flow parameters from the Bure and Ant model have also been 

transferred to the Thurne model along with calibrated sediment parameters (Table 

7.0.1).  
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Table 7.0.1: SWAT Bure and Ant calibrated parameters used in the Upper Thurne model build 

Parameter SWAT Value Ranges Calibrated Value 

ALPHA_BF 0.1 – 0.3 for a slow response watershed
0.9 – 1.0 for a fast response watershed 0.10 

GWQMN 0 – 5000 
Set by user 10 

GW_REVAP 0.02 – 0.2 0.2 

REVAPMN 0 – 500 
Set by user 1.0 

RCHRG_DP 0.0 – 1.0 0.7 

GWHT 0 – 25 
Set by user 1.0 

BIOMIX 0.00 – 1.00 
Default 0.2 0.01 

FRT_LY1 Default 0.00 0.001 

SLSUBRSN Varies for each HRU 20% reduction in value set 
by SWAT 

SLOPE Varies for each HRU 10m reduction in slope 
length value set by SWAT 

CN Varies for each land cover 10% increase in value set 
by SWAT 

 

7.1 Land Drainage Pump Modelling 

 

The role of the pump and dyke system in the Thurne river basin is to keep the broad 

land drained so it may be used as permanent agricultural land. Originally sluice gates 

were placed on the dykes so that when the flap sluice at its outfall was tide locked, 

water could be temporarily stored. This would reduce the risk of the dyke banks being 

breached following periods of heavy run-off, with consequent flooding of the 

adjoining marshes (George, 1992). Sluice gates have now been replaced by electric 

pumps but still serve the same purpose to temporarily store water. 

 

It is not possible to model pumps within SWAT as there is no function for this. 

Therefore a conceptual model of the Upper Thurne broads and the Internal Drainage 

Board drainage system (Fig 7.1.1) has been produced to assess the best way of 

modelling the pumps within SWAT. From the diagram and Figure 7.1.2 it can be seen 

that each pump has an IDB drain upstream of it, while the pump is not in operation 

water is stored in the upstream dykes. Once the pump is in operation water is pumped 

into a broad or the River Thurne. Two possible solutions can be seen; either to model 
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the pumps as a point source discharge into the system at the top of the river basin, or 

to model the pumps and their up stream dykes as reservoirs. By modelling the pumps 

as point source discharges this will not represent the temporary storing of water in the 

dykes or the change in flow into the broads, which occurs with the turning on and off 

of the pumps, as only a constant flow can be added. Both of these factors affect water 

quality, especially the sediment load reaching the Broads within the Upper Thurne 

system. The transfer of water from the Stubb Mill pump to Brograve cannot be 

sufficiently modelled with either solution; therefore it has been treated as a separate 

input to the system. 

 
 

Figure 7.1.1: Conceptual model of the Upper Thurne IDB drainage system 
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Figure 7.1.2: Upper Thurne IDB pump drainage areas 

 

The land drainage pumps in the Upper Thurne river basin have therefore been 

modelled though the reservoir functions within SWAT. Reservoirs within SWAT are 

located on the main river channel network and receive water from all sub-basins 

upstream of the water body. They modify the movement of water in the channel 

network by lowering the peak flow. As the reservoirs slow down the flow of water, 

sediment will fall from suspension, removing nutrient and chemicals adsorbed to the 

soil particles. The volume of outflow from modelled reservoirs may be calculated 

using one of four different methods; measured daily outflow, measured monthly 

outflow, average annual release rate for uncontrolled reservoirs; controlled outflow 

with target release.  

 

Sparse electrical consumption data from 1977 – 2001 are available for 5 pumps within 

the Upper Thurne watershed. From these data monthly mean discharge rates have 

been calculated as m3 day-1 for the period from 1977 – 2001 using the following 

conversion factors for each pump: 
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Table 7.1.1: Upper Thurne Pump conversion factors (Holman, 1994) 
Pump Conversion Factor  m3 kWh 

Catfield 153 

Stubb Mill 83 

Eastfield 66 

Brograve 44 

Horsey Mill 48 

 

Each pump has therefore been modelled as a controlled outflow reservoir within 

SWAT. Calculated maximum and minimum average monthly discharge rates have 

been used to set monthly target release rates for each controlled reservoir. Figures 

7.1.3, 7.1.4, 7.1.5, 7.1.6 and 7.1.8 show modelled pump rates. Although an exact flow 

pattern is not achieved due to actual pump rate variability a good comparison between 

annual pump rates has been seen (Table 7.1.2). 
 

Table 7.1.2: Annual average observed and predicted pump flows in the Upper Thurne 

Pump Average annual pump 

flow (104 m3 yr-1) 

Modelled average annual pump 

flow (104 m3 yr-1) 

Catfield 520 470 

Stubb Mill 953 978 

Eastfield 2155 2310 

Brograve 1572 1800 

Horsey Mill 1711 1511 
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Pump Discharge at Brograve (1991 - 1995)
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Pump Discharge at Eastfield (1991 - 1995)
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Figure 7.1.3: Observed and predicted   Figure 7.1.4: Observed and predicted pump  

pump comparison at Brograve   comparison at Eastfield  

 
Pump Discharge at Stubb Mill (1991 - 1995)
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Pump Discharge at Horsey (1991 - 1995)
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Figure 7.1.5: Observed and predicted  Figure 7.1.6: Observed and predicted pump 

pump comparison at Stubb Mill   comparison at Horsey 
 

Pump Discharge at Catfield (1991 - 1995)
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Figure 7.1.8: Observed and predicted pump comparison at Catfield 

 

It can be seen from the above figures that SWAT is only able to represent Catfield 

pump with some degree of accuracy (Fig 7.1.8) matching both the timing and 

magnitude of peak flows reasonably well. It is thought that this may have occurred 

due to the delineation of the sub-basins within SWAT. SWAT delineates the river 

basin into topographic sub-basins (Fig 7.1.9). However, the sub-basins, which feed 

into the drainage pumps, are not topographic as they have been man-made and 

boundaries are placed around the edges of fields. Therefore the pump sub-basins, 
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which have been modelled in SWAT, are different in size and shape to those of the 

actual pump sub-basins and are therefore affecting the amount of run-off each sub-

basin will receive (Fig 7.1.9). The Catfield pump catchment is the only one, which is 

actually topographically defined due to the small size of the catchment. SWAT is 

therefore able to model reasonably well the flow pattern of this pump. 

 

 
Figure 7.1.9: Comparison between IDB and SWAT pump catchment areas  
 

7.2 Hickling Broad Modelling 

 

Hickling Broad has been represented in SWAT as a pond file; a simple empirical 

model is used to predict the trophic status of the ponds. When calculating nutrient 

transformation in a pond file, SWAT assumes the system is completely mixed. In a 

completely mixed system, as nutrients and sediments enter the water body they are 

instantaneously distributed throughout the volume. The assumption of a completely 

mixed system ignores lake stratification and the intensification of phytoplankton in 

the epilimnion (upper waters of a thermally stratified lake subject to wind action).  

 

Nutrient transformations simulated in ponds are limited to the removal of nutrients by 

settling. Transformations between nutrient pools (e.g. NO3 ↔ NO2 ↔ NH4) are 

ignored. The settling rate in SWAT is input as m year-1. For natural lakes, measured 
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phosphorus settling velocities most frequently fall in the range of 5 to 20m year-1 

although values over 200m year-1 have been reported (Chapra, 1997). Panuska and 

Robertson (1999) noted that the range in apparent settling velocity values for man 

made reservoirs tends to be significantly greater than for natural lakes. Higgins and 

Kim (1981) reported phosphorus apparent settling velocity values from -90 to 269m 

year-1 for 18 reservoirs in Tennessee with a median value of 42.2m year-1. A negative 

settling rate indicates that the lake/reservoir sediments are a source of nutrients; a 

positive settling rate indicates that the reservoir sediments are a sink for nutrients.  

 

Within the Broads region it has been widely reported that both the Broads and river 

sediments are sources of nutrients (Johnes 1996b, Moss et al. 1989, Stephen et al. 

1997). Within the SWAT pond file the nutrient settling velocity for both phosphorus 

and nitrate has been set to -1m year-1 after recommended apparent settling velocity 

values (Table 7.2.1) from Panuska and Robertson (1999).  

 
Table 7.2.1: Recommended settling velocity values for nutrients (Panuska and Robertson, 1999) 

Nutrient Dynamics 
Range in settling velocity 

values (m year-1) 

Shallow water bodies with high net internal nutrient flux v ≤ 0 

Water bodies with moderate net internal nutrient flux 1 < v < 5 

Water bodies with minimal net internal nutrient flux 5 < v < 16 

Water bodies with high net internal nutrient removal  v > 16 

 

A number of other parameters can be input to SWAT within the pond file (Table 

7.2.2). Data for these parameters have been predominantly obtained from long term 

averaged EA data for Hickling Broad. However the extent of eutrophication 

modelling within SWAT is limited to phosphorus inputs; this is due to the difficulty 

of controlling the exchange of nitrogen and carbon between the atmosphere and water 

and fixation of atmospheric nitrogen by some blue-green algae.  This process over 

stimulates the growth of algae, causing unsightly scum and unpleasant odours, and 

robbing the water of dissolved oxygen vital to other aquatic life. Some blue-green 

algal species are also known to produce chemicals that can be toxic to wild and 

domestic animals, and also to man.  

 



Jodie Whitehead  Ph.D. Thesis 

Chapter Seven  - 177 - 

Reports show that the River Bure and its Broads are becoming dominated by blue-

green algae during the summer months (Madgwick, 1999). It is thought that the 

demand for water from new commercial and housing developments in the catchments 

of the Broadland rivers has led to a reduction in the flow rates during the summer 

months. Consequently there has been a rise in the concentration of pollutants carried 

by these rivers, and a reduction in the rate at which broads associated with them are 

flushed by 'new' water derived from the catchment. The reduced flushing rate, 

together with the large nutrient load carried by the rivers, already results in blooms of 

blue green algae in some of the broads.  

 

This would suggest that flow rates in the Broadland rivers are, from the ecological 

point-of-view, already less than they should be during the summer months, and 

historical evidence strongly supports this hypothesis (George, 1992). The effects of 

climate change will almost certainly exacerbate the problem of low fluvial flows in 

the rivers. In this respect, there is increasing evidence that this phenomenon will lead 

to summers in Eastern England becoming both warmer and drier over the coming 

decades. In the circumstances, it would seem that unless remedial action is taken, 

fluvial flow rates in the Broadland rivers during the summer could, in future be even 

lower than they are today. This in turn could have very damaging effects on the 

region's biodiversity and future well being. Unfortunately as future water demands are 

not known for the area and the fact that SWAT eutrophication modelling is limited to 

phosphorus inputs this phenomenon cannot be investigated further.  
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Table 7.2.2: Nutrient parameter values for SWAT  

Parameter Value Source 

Fraction of sub-basin area that drains into pond 0.3 Calculated by SWAT 

Surface area of pond 141.1 ha George (1992) 

Volume of water stored in the pond 183.4 104 m3 George (1992) 

Initial sediment concentration 36.70 mg l-1 EA average (1978 – 2005) 

Phosphorus settling rate -1 m yr-1 Panuska and Robertson (1999) 

Nitrogen settling rate -1 m yr-1 Panuska and Robertson (1999) 

Chlorophyll a production 1.00 µg l-1 SWAT default 

Secci-disk depth 0.537 m EA average (1978 – 2005) 

Beginning month of mid –year nutrient settling 

season 
February 

Ascertained from EA average 

(1978 – 2005) 

Ending month of mid-year settling season 
July 

Ascertained from EA average 

(1978 – 2005) 

 

Figures 7.2.1 and 7.2.2 show SWAT predicted total phosphorus and total oxidised 

nitrogen values for Hickling Broad.  

Comparison between SWAT and observed total phosphorous values in Hickling Broad 
(1991 - 1994)
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Figure 7.2.1: Observed and predicted total phosphorus in Hickling Broad (1991 – 1994) 
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Comparison between SWAT and observed TON values in Hickling Broad (1991 - 1994)
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Figure 7.2.2: Observed and predicted nitrate values in Hickling Broad (1991 – 1994) 

 

No long-term nitrate values are available for Hickling Broad. Therefore observed and 

modelled comparisons have been based on total oxidised nitrogen values. Long-term 

values for TON are available from the EA; NO3 and NO2 values have been summed 

from the SWAT output files to achieve comparable TON values.  

 

From the TON graph it can be seen that SWAT does not predict the higher TON 

values and there are long periods of observed data showing constant TON values. 

This is because sample results are below confident detectable limits and have 

therefore been reported as ‘<’ values by the EA. Consequently an exact match 

between observed and modelled TON values cannot be obtained due to the limitations 

of the observed data. 

 

7.3 Calibration and Validation 

 

No observed flow or sediment data are available in the Upper Thurne, therefore 

calibration and validation has only been undertaken for nutrients. The EA takes water 

quality samples at three sites in the Upper Thurne catchment; unfortunately only two 

of these sites have suitable data for calibration purposes. These are Martham Ferry 

and Heigham Sound.  
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Calibrated land based nutrient parameters were taken from the Bure and Ant model 

and used within the Thurne model (section 7.0), none of these parameters were 

subsequently changed during the calibration procedure for the Thurne model.  Instead 

calibration for these sites was done through changing the input parameters for the 

reservoir files further upstream as this controls the flow pattern of the Thurne model. 

Table 7.3.1 gives a summary of these parameters. Starting values were calculated 

from the limited observed nutrient data at each pump, where no values were available 

calibration started at 1.00.   

 
Table 7.3.1: Reservoir parameters used for nutrient calibration parameters in the Thurne Model 

Catfield Eastfield Horsey Mere Somerton Stubb Mill Brograve Parameter 

(mg l-1) Start Cal. Start Cal. Start Cal. Start Cal. Start Cal. Start Cal. 

ORGP 0.149 0.143 0.037 0.037 0.096 0.088 0.58 0.64 0.048 0.048 0.08 0.096 

SOLP 0.029 0.029 0.007 0.007 0.016 0.008 0.012 0.007 0.008 0.008 0.008 0.016 

ORGN 1.00 1.00 1.00 0.00 1.00 0.00 1.00 1.00 0.00 0.00 1.00 0.00 

NO3 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.670 

NH3 0.3 0.30 1.00 1.00 1.00 1.00 0.38 1.00 0.504 0.504 0.344 0.344 

NO2 1.00 1.00 1.725 1.725 0.670 0.669 1.00 1.00 1.00 0.680 1.00 0.00 

 

As with the Bure and Ant SWAT model, calibration was undertaken for the period 

1991 – 1994. Figures 7.3.1 and 7.3.2 show the results of calibration at the two sites. 

As with Hickling Broad no observed nitrate data were available so calibration has 

been undertaken with TON values.  
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 Figure 7.3.1: Nutrient calibration at Heigham Sound 
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Figure 7.3.2: Nutrient calibration at Martham Ferry 
 

Calibration results show that there is no variation between individual year’s nutrient 

patterns, especially at Heigham Sound. This is further emphasised with validation 

results (Fig 7.3.3 and 7.3.4).  At Heigham Sound there is no daily variation of nutrient 

concentrations, this can also be seen for TP concentrations at Martham Ferry but not 

to the same extent. It is thought that this is a result of the SWAT modelling of the 

pumps in the Upper Thurne river basin.  
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Figure 7.3.3: Nutrient validation at Heigham Sound 

 

Figure 7.3.4: Nutrient validation at Martham Ferry 
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Pump discharge obviously influences the volume of water in the river and dyke 

system of the Upper Thurne. As only monthly discharge data were available, the 

reservoir files used to characterise the pumps within SWAT have only been set up to 

simulate monthly target release rates. Therefore there is no daily variation of pump 

discharge; the pumps will discharge the same volume of water for each day within a 

set month.  

 

However, both the calibration and validation graphs show that SWAT is able to 

simulate nutrient concentrations with some degree of accuracy. As discussed before 

these data are misleading as observed data have only been recorded on a monthly or 

bi-monthly basis, and are consequently not representing the daily variation of nutrient 

concentrations within the system. Due to this, the modelling of the pumps within the 

Upper Thurne system and the lack of flow data to calibrate SWAT, the model can not 

be used to simulate results at a daily level with any degree of confidence. The Upper 

Thurne SWAT model should therefore only be used to simulate annual or monthly 

results when looking at future scenarios.  
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Chapter Eight Future Scenarios 

 

8.0  Future Scenarios 

 

Scenarios are neither predictions nor forecasts of future conditions. Rather they 

describe alternative plausible futures that conform to sets of circumstances or 

constraints within which they occur (Hammond, 1996). The true purpose of scenarios 

is to illuminate uncertainty, as they help in determining the plausible futures (Fisher, 

1996). The construction of scenarios will include climate, socio-economic and land 

use processes.  

 

As previously discussed in chapter two, climate changes affect the hydrological cycle, 

thus modifying the transformation and transport characteristics of nutrients. At the 

current stage of knowledge, large-scale global circulation models (GCM) are probably 

the best available tools to estimate these changes (Bouraoui et al., 2002). Within the 

UK the UK Climate Impacts Programme (UKCIP) provides scenarios that show how 

climate might change and co-ordinates research on dealing with the future climate. 

The UKCIP02 climate change scenarios present four different descriptions of how 

climate may change based on four different emission scenarios. The scenarios provide 

alternative views of the future, and together show a broad range of changes that may 

occur in the future. The scenarios were commissioned and funded by the Department 

of Environment, Food and Rural Affairs (DEFRA) for UKCIP, and developed by the 

Tyndall Centre for Climate Change Research at the University of East Anglia and the 

Hadley Centre for Climate Prediction and Research at the Meteorological Office. 

 

The scenarios have been developed using the latest global climate model from the 

Hadley Centre for Climate Prediction and Research at the Meteorological Office, 

HadCM3 is a coupled atmosphere-ocean general circulation model (AOGCM) 

developed at the Hadley Centre and described by Gordon et al., (2000) and Pope et al., 

(2000). Unlike earlier AOGCMs at the Hadley Centre and elsewhere (including 

HadCM2), HadCM3 does not need flux adjustment (additional "artificial" heat and 

freshwater fluxes at the ocean surface) to produce a good simulation. The higher 

ocean resolution of HadCM3 is a major factor in this. HadCM3 has been run for over 

a thousand years, showing little drift in its surface climate.  
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To model future climate and land use scenarios in SWAT a number of parameters will 

have to be changed. To simulate possible future climate scenarios new weather files 

will need to be created. This will include changing rainfall, temperature, relative 

humidity, wind, potential evapotranspiration and radiation inputs to the model. This 

will allow the impact of climate change on the hydrology of the system to be assessed, 

and to see how these changes will affect nutrient transport and loading on the system.    

 

In order to model future land use change a further set of parameters will need to be 

adjusted. These all fall within the management files of the SWAT model and include 

type of crop, area of crop, crop rotations, amount and timing of irrigation as well as 

crop sowing and harvesting dates. Management files need to be changed not only to 

represent future changes in land use but also to represent the impact future climate 

might have on crop growth and how changes in irrigation might affect the soil 

moisture.  

 

8.1 Climate Change and Land Use Scenarios 

 

Future socio-economic and land use scenarios by Morris (2003) together with the 

RegIS project in East Anglia, which also includes future climate scenarios, have been 

reviewed. RegIS was developed as an impact study for the UK climate Impact 

Programme (Holman and Rounsevell, 2001).  The principal aim of RegIS was the 

development of a robust and transparent methodology for stakeholder-led, regional 

assessment of climate change impacts and cross-sectoral interactions between the 

major sectors driving landscape change. The methodology was developed in the North 

West and East Anglia, and is believed to be transportable to other regions of the UK, 

thereby providing a framework for further assessments and studies. The RegIS project 

represents the first attempt at quantitatively modelling the cross-sectoral impacts of 

climate change within an integrated framework at a regional scale within the UK. 

 

The methodological framework for this study was funded by DETR. In RegIS, the 

UKCIP02 climate scenarios have been used, and the national socio-economic 

scenarios provided by UKCIP have been developed to provide the regional socio-

economic data necessary for the integrated RegIS methodology. UKCIP also provided 

resources and expertise to access the other extensive data sets required by the study 
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and to transform them into the formats needed to run the models on a regional 

framework. It was a basic objective of the programme to enable use of common data 

sets. Therefore, it is proposed to use these known and approved data sets which are 

easily accessible within the SWAT modelling as future scenarios, as it combines 

known future climate scenarios with future socio-economic scenarios, covering the 

study area within one of its test regions; East Anglia.  Future climate and socio 

economic scenarios used within RegIS can be seen in Table 8.1.1.  

 
Table 8.1.1: RegIS scenarios 

Climate 

Scenario 

Pressure on Environment Socio – Economic 

Scenario 

Pressure on Environment 

UKCIP02 

2050s high 

Temperature increases by 2.3 
oC. Rainfall increases by 2%. 
Rainfall increases can be seen 
in the winter, autumn and 
spring but a decrease in 
summer rainfall is predicted. 
PET increases by 29%.  

Regional Enterprise  

(RE) 

Highest socio-economic 
pressure – an extreme case 
of a society that does not 
respond to the threat of 
climate change over the 
next 50 years i.e. an 
‘adverse case’ analysis. 

UKCIP02 

2050s low 

Temperature increases by 0.9 
oC. Rainfall increases by 1%. 
Rainfall increases can be seen 
in the winter, autumn and 
spring but a decrease in 
summer. PET increases by 
14% 

Global Sustainability 

(GS) 

Lowest pressure - ‘better 
case’ analysis with respect 
to pressures upon 
environmental systems and 
associated impacts. 

 

Within RegIS the UKCIP02 high and low climate scenarios are from output by the 

HadCM3 GCM (Hulme and Jenkins, 1998). Changes in mean annual temperature of 

+0.9 and +2.3 °C are projected for the Low and High scenarios for the 2050s, 

respectively in East Anglia. Seasonal changes in temperature are similar to the annual 

projections. Annual precipitation changes of +1 and +2 % are projected. Seasonal 

differences in precipitation changes are much greater than for temperature, with 

increases generally projected in winter, autumn and spring and decreases in summer. 

Annual potential evapotranspiration increases by +14 and +29 % in East Anglia.  

 

The Regional Enterprise socio- economic scenario is characterised by the emphasis on 

private consumption but with decisions made at national and regional level. This will 

reflect local priorities and interests. Market values will dominate, with crops being 

produced for the domestic market, primarily through supermarkets. Global 

sustainability is characterised by more pronounced social and ecological values, 
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which are evident in global institutions and trading systems. There is collective action 

to address social and environmental issues. Growth is slower but more equitably 

distributed compared with other socio-economic scenarios.   

 

The high climate change scenario combined with the Regional Enterprise (RE) socio-

economic scenario is likely to impose the highest socio-economic pressure upon the 

agricultural sector. As the socio-economic scenarios contain no element of the climate 

change scenarios, this provides an extreme case of a society that does not respond to 

the threat of climate change over the next 50 years i.e. an ‘adverse case’ scenario 

(Holman and Rounsevell, 2001). The lowest climate change scenario is combined 

with the Global Sustainability (GS) socio-economic scenario which brings with it the 

lowest pressure upon the agricultural sector i.e. a ‘better case’ analysis with respect to 

pressures upon environmental systems and associated impacts. 

 

8.1.1 Available Data 

 

Future climate data and land use data have been derived from three sources. The 

RegIS project has provided the future land use data. Land use data were provided for 

5 km2 grid squares, within each grid square the cropping area in hectares for each crop 

was given for each future scenario (Table 8.1.2). These data were utilised to provide 

crop types and cropping area for the future scenarios within the SWAT management 

files.  Comparisons between future cropping areas and current modelled SWAT 

cropping areas are discussed in section 8.2.  
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Table 8.1.2: Example of selected RegIS grid squares for use in SWAT management files (high RE 

scenario) 
Easting Northing Forest (ha) Winter Wheat (ha) Winter Barley (ha) Spring Barley (ha) Oats (ha) Potatoes (ha) Sugar Beet (ha)

610000 335000 411 216 396 197 219 25 336
610000 330000 154 242 412 185 195 48 360
605000 330000 221 261 416 182 207 42 366
605000 325000 20 477 594 237 275 39 527
615000 330000 79 290 470 197 214 63 411
610000 325000 124 286 490 214 230 55 425
630000 325000 207 241 338 122 145 47 298
630000 330000 126 217 330 121 137 45 283
625000 325000 269 253 413 169 191 45 358
630000 320000 118 292 431 153 180 51 369
615000 320000 459 190 350 160 182 23 293
620000 320000 116 269 420 168 199 46 363
630000 315000 291 87 133 50 56 16 114
620000 315000 272 133 253 118 135 11 209
635000 320000 188 82 115 41 43 18 100
630000 310000 152 277 444 171 200 43 375
635000 315000 95 223 266 79 92 33 197
615000 325000 469 207 346 153 163 40 303
625000 330000 49 246 420 183 197 50 365
625000 320000 57 306 490 186 226 52 420
615000 335000 152 264 450 199 211 53 393
620000 325000 30 319 505 201 238 57 440
620000 330000 181 306 507 215 231 64 441

630000 310000 152 277 444 171 200 43 375
630000 315000 291 87 133 50 56 16 114
630000 320000 118 292 431 153 180 51 369
630000 325000 207 241 338 122 145 47 298
635000 310000 121 347 476 160 190 53 376
635000 315000 95 223 266 79 92 33 197
635000 320000 188 82 115 41 43 18 100
635000 325000 29 256 360 132 139 59 315
640000 310000 28 269 291 74 93 38 200
640000 315000 21 157 183 52 64 24 136
640000 320000 22 7 7 2 2 2 5
640000 325000 34 1 1 0 0 0 0
645000 310000 55 333 404 118 145 50 308
645000 315000 80 265 366 115 153 43 293
645000 320000 32 0 0 0 0 0 0
650000 310000 1 139 165 41 63 19 119
650000 315000 0 27 39 13 16 5 33

RegIS grid cells for the Bure and Ant SWAT model (high RE scenario)

RegIS grid cells for the Thurne SWAT model (high RE scenario)

 
 

Daily weather data were provided by the MONARCH  (Modelling Natural Resource 

Responses to Climate Change) data series. The data are from the ADAS daily climate 

scenario dataset developed using the LARS model and the UKCIP02 scenarios for the 

DEFRA funded cc0368 project. The principal aim of the MONARCH study was to 

evaluate the direct impacts of climate change on the natural conservation resources of 

Britain and Ireland through an integrated methodology linking established impact 

models to a broad-scale bioclimatic classification (Harrison et al, 2001). 

 

The data series consists of daily baseline (1961 – 1999) and climate change scenarios 

on a 5 km2 grid with UKCIP02 and HadCM3 projections for 2020 and 2050 Low and 

High emissions. These are based on the LARS-WG stochastic weather generator 

(Semenov et al., 1998). LARS-WG provides daily data on maximum and minimum 

temperature, precipitation, radiation and potential evaporation. For each weather 



Jodie Whitehead  Ph.D. Thesis 

Chapter Eight  - 188 - 

variable LARS-WG specifies daily probability distribution and statistical relationships 

between the variables. The data provides 50 years of baseline and climate change 

scenarios. However data were generated independently for each grid and there is no 

correspondence between years in neighbouring grids. Therefore climate data from the 

MONARCH grid cells, which contained the ten BADC rain gauges, used in the model 

build process (Chapter Five) were abstracted (Table 8.1.3).  

 
Table 8.1.3: MONARCH grid cells corresponding with BADC rain gauges used within the SWAT 

model 

Rain Gauge MONARCH Grid Cell 

Aylsham Bankfield House E6175N3275 

Barton E6375N3225 

Coltishall E6275N3375 

Hemsby E6475N3175 

Hickling E6425N3225 

Hindolveston Hope House E6025N3275 

Melton Constable E6025N3325 

South Repps E6275N3375 

Wolterton Park E6175N3325 

Woodgate House E6175N3275 

 

For baseline and future conditions rainfall ratios between the cells containing rain 

gauges and the cell containing Aylsham Bankfield House gauge were calculated 

(Table 8.1.4). The Aylsham Bankfield House gauge was used as it was shown to have 

rainfall closest to the areal average for the study area as discussed in Chapter Five.  

The ratios were then used to scale daily rainfall for each grid cell used. Ratios were 

not calculated for other climate parameters such as temperature or potential 

evapotranspiration as only one gauge was available for the study area and utilised in 

the SWAT model (Coltishall). Figure 8.1.1 shows there is a good comparison between 

current calculated PET values and MONARCH baseline PET values, with both sets of 

data reaching the same peak PET value of 121 mm. 
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Comparsion between current modelled PET (Hargreaves method) and MONARCH baseline PET
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Figure 8.1.1: Comparison between current modelled PET (Hargreaves method) and MONARCH 

baseline PET  

 

Table 8.1.4: Calculated rainfall ratios from MONARCH data series for baseline and future 

scenarios within SWAT 

Month Aylsham monthly total (mm) Barton Coltishall Hemsby Hickling Hindolveston Melton South Repps Wolterton Woodgate House
January 52.10 0.98 1.02 0.98 0.96 0.82 0.85 1.14 0.93 1.00
February 39.29 1.03 0.97 0.95 0.98 0.90 0.88 1.10 0.96 1.00
March 42.86 0.99 1.05 1.01 0.90 0.92 0.80 1.01 0.89 1.00
April 47.20 0.96 1.07 1.07 0.96 0.83 0.93 1.04 1.02 1.00
May 46.91 1.06 1.10 1.07 1.00 0.84 0.88 1.03 0.89 1.00
June 48.72 1.07 0.99 1.03 1.16 0.86 0.88 0.95 1.00 1.00
July 46.48 0.90 0.90 0.91 0.96 0.81 0.65 0.98 0.80 1.00
August 62.12 1.10 1.06 1.27 0.94 1.02 0.95 1.33 1.24 1.00
September 49.70 1.01 1.14 1.14 0.90 0.91 0.81 1.00 0.99 1.00
October 52.68 1.04 0.94 0.93 1.03 0.89 0.81 0.88 0.97 1.00
November 66.83 1.02 1.10 0.92 1.15 0.98 0.89 1.12 1.12 1.00
December 54.74 0.94 1.01 1.00 1.02 0.93 0.96 1.01 0.93 1.00

Rain Gauge Ratio

 
 

The two original SWAT models for the study area were based on observed climate 

data for the calibration and validation period. It was however considered more 

appropriate to use the daily baseline data generated by MONARCH for comparisons 

between current and future scenarios to be made. This would ensure that comparisons 

were made between sets of modelled climate data rather then between observed and 

modelled data and therefore any errors would be consistent. Model runs were 

undertaken using the baseline data for the calibration and validation period and 

compared to results from runs with observed climate data. Figure 8.1.2 shows that the 

baseline rainfall is similar to observed BADC rainfall, although there is a tendency to 

over predict. Figure 8.1.3 mirrors the rainfall data showing that although the flows are 
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similar the MONARCH rainfall data predicts higher flows. These are still however 

comparable to observed flows at Horstead Mill, this can be seen in Table 8.1.5 where 

there is no significant difference between the baseline and current modelled means 

flows at Horstead Mill when using the student t test.  

 
Table 8.1.5: Results of a Student t test comparing the difference between baseline and current 

modelled mean flows at Horstead Mill 

Statistic Baseline Current 
Mean 5.77 4.43 

Standard deviation 41.23 3.87 
Variance 32.12 15.01 

Observations 15 11 
Degrees of freedom 24 

Tcal 0.12 
Ttab 2.064 

Significance at 5% level NO 
 

Comparison between BADC rainfall data (Aylsham) and MONARCH Baseline data (E6175N3275)
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Figure 8.1.2: Comparison between BADC rainfall (Aylsham) and MONARCH Baseline data 

(E6175N3275) 
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Flow Duration Curve (Horstead Mill) 
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Figure 8.1.3: Flow duration comparison between model runs with SWAT BADC climate data 

and MONARCH baseline climate data for Horstead Mill (1991 – 1999) 

 

Crop planting and harvesting dates were provided by the ACCELERATES project. 

The ACCELERATES project seeks to examine the relationship between agricultural 

land use responses to environmental change drivers and environmental protection. It 

is funded by the Directorate General for Research of the Commission of the European 

Communities, within the Fifth Framework Programme under the Energy, 

Environment and Sustainable Development Sub-Programme and is available at 

http://www.geo.ucl.ac.be/accelerates/. These data were incorporated into SWAT as 

the increased temperatures from the 2050 high and low climate scenarios will allow 

crops to be sown at earlier dates and will allow crops to develop faster and therefore 

be harvested earlier. Autumn sowing of winter crops such as winter wheat and barley 

will be delayed because of too much autumn growth and therefore the potential 

increase of frost damage over the winter months. Figure 8.1.4 shows that climate 

change has very little effect on the planned number of workable days as, although 

evaporation and rainfall are greater, large rainfall events, which change the soil state 

from workable to non-workable, occur on the same days in the baseline and climate 

change scenarios (Audsley et al., 2001).  
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The occurrence of wet days for current and 2050 high rainfall
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Figure 8.1.4: The occurrence of wet days for current and 2050 high rainfall at Aylsham Bankfield 

House 

 

8.2 Changes to SWAT model  

 

All the changes to the calibrated and validated SWAT model occurred in the weather 

and management files. New weather files were created for the Baseline, 2050 low and 

2050 high scenarios. Available data from the MONARCH data series only consist of 

daily minimum and maximum temperatures, daily precipitation, daily solar radiation 

and potential evapotranspiration. Relative humidity and wind speed for the baseline 

and future scenarios were not included in the model as SWAT only requires these 

parameters if the Penman-Monteith equation is going to be used to calculate 

evapotranspiration. As evapotranspiration values are provided for baseline and future 

scenarios in the MONARCH data series evapotranspiration values were once again 

read into the SWAT model.  

 

Within the management files new crop rotations were created based on the RegIS data 

for the 2050 high RE and the 2050 low GS scenarios. The same method (as described 

in Chapter Five) was utilised to distribute the crops within the study area. Figure 8.2.1 

shows the area covered by each crop for the Bure and Ant SWAT model as well as 

the Thurne model. It can be seen from the graphs that a greater variety of crops are 
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represented in the 2050 low GS scenario, however for both sites crop patterns are 

similar for each scenario. The 2050 low GS scenario is dominated by winter wheat, in 

comparison the 2050 high RE scenario is dominated by winter barley. Less forested 

area is present in the 2050 high RE scenario for both areas, within both the future 

scenarios the overall forested area has increased compared to EDL 2000 data. There is 

also an increased amount of potatoes and the introduction of oats in both the future 

scenarios. A reduction of winter crops can be seen between the future 2050 scenarios 

and the 2000 EDL data. This is due to the corresponding increase of spring crops such 

as sugar beet and potatoes in the future scenarios.  

 

Neither oats nor linseed is present in the original 2000 EDL data used in the calibrated 

and validated SWAT model. There is also the noticeable omission of set-aside in the 

two future scenarios. Within the EDL 2000 data both modelled areas have a 

considerable amount of set aside; however set aside only occurs in the Bure and Ant 

2050 Low GS scenario.  

Comparison between crop areas for current (EDL data) and 2050 high RE and low GS scenarios

0

2000

4000

6000

8000

10000

12000

14000

16000

Forest Winter
Wheat

Winter
Barley

Spring
Barley

 Oats Potatoes Sugar
Beet

Peas Oilseed
Rape

Linseed Winter
Field

Beans 

Maize Set Aside

Crop

A
re

a 
(h

a)

SWAT Low GS RegIS Low GS SWAT High RE RegIS High RE SWAT current EDL observed  
Figure 8.2.1: Crop areas for the 2050 High RE and 2050 Low GS scenarios taken from RegIS 

data compared to current EDL crop areas utilised in the SWAT model for the Bure and Ant 

catchments 
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Comparison between crop areas for current (EDL data) and 2050 high RE and low GS scenarios
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Figure 8.2.2: Crop areas for the 2050 High RE and 2050 Low GS scenarios taken from RegIS 

data compared to current EDL crop areas utilised in the SWAT model for the Thurne catchment 

 

Rotations were based on those previously created for the calibration and validation of 

the SWAT model, which were originally derived from ADAS standard crop rotations 

as described in Chapter Five. As there is an increased amount of sugar beet and 

potatoes and the inclusion of oats and linseed the rotations had to be adjusted 

accordingly. This was achieved by replacing rotations originally including peas and 

winter field beans to include sugar beet and potatoes instead. Where rotations were 

originally adjusted from ‘other mineral’ to ‘sandy’ ADAS rotations to reduce the 

amount of winter wheat (Chapter Five), these re-adjusted back to ‘other mineral’ 

rotations to account for the decreased variation of crops within the future scenarios. 

 

It was not feasible to include every possible crop that can be grown in the UK and that 

might be grown in the future. The major crops were selected in order to provide, as far 

as possible, the full range of crop types. Crop planting and harvesting dates were 

taken from the ACCELERATES project which provided the latest possible sowing 

dates for each crop and harvest dates which were set to be a fortnight after maturity 

Table 8.2.1 shows the original planting and harvesting dates compared to the new 

future scenario dates. 
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Table 8.2.1: Crop planting and harvest dates for future scenarios 

 Original SWAT model 2050 Low GS 2050 High RE 

Crop Sow Harvest Sow Harvest Sow Harvest 

Winter Wheat 15th Oct 20th Aug 10th Dec 4th Aug 9th Dec 2nd Aug 

Maize 24th Apr 26th Oct 6th May 29th Sept 6th May 26th Sept 

Oilseed Rape 31st Aug 30th Jul 14th Sept 7th Jul 14th Sept 6th Jul 

Potatoes 1st Apr 13th Sept 4th Apr 14th Sept 3rd Apr 13th Sept 

Winter Barley 1st Oct 31st Jul 2nd Dec 29th Jul 30th Nov 28th Jul 

Spring Barley 20th Feb 8th Aug 23rd Jan 16th Jul 14th Jan 10th Jul 

 

Figures 8.2.3 and 8.2.4 show vegetation growth for the dominant crops under the low 

GS and high RE future scenarios. It can be seen that published peak LAI are reported 

by Hough (1990) to lie between 3-8 for all the above crops, all of the modelled crops 

fall within this range. Leaf area index (LAI) decreases once plants reach senescence, 

and biomass falls somewhat later after maturity, approximately 2 weeks before 

harvest. It can therefore be seen that all plants are growing in the expected manner 

under the future scenarios.   

Winter Wheat growth for the 2050 low GS scenario
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Figure 8.2.3: Winter Wheat growth for the 2050 low GS scenario  
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Winter Barley Growth for the 2050 high RE scenario 
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Figure 8.2.4: Winter barley growth for the 2050 high RE scenario 

 

Using climatic data from the MONARCH data series CropWat was used to produce 

irrigation schedules for each irrigated crop. These were then transferred to the SWAT 

management files. Consequently irrigation timings and amounts were changed within 

the model. It can be seen from Table 8.2.2 that as expected there is an increase in 

irrigation volumes for all the crops with the future scenarios except spring barley 

where there is a decrease in irrigation volume. This is due to the earlier harvest date, 

as with the original SWAT model the majority of the total irrigation volume was 

applied in the month of July.  

 
Table 8.2.2: CropWat irrigation amounts for future scenarios and use within SWAT based on 

light soils 

Crop 

Original SWAT model total 

annual average irrigation 

(mm yr-1) 

2050 Low GS total 

annual average 

irrigation (mm yr-1) 

2050 High RE total 

annual average 

irrigation (mm yr-1) 

Sugar Beet 373.5 691.7 732.4 

Maize 250.7 464.0 475.8 

Spring Barley 152.7 67.7 70.2 

Winter Wheat 100.0 525.6 539.0 

Potatoes 308.3 566.5 601.4 
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Water for irrigation in England and Wales constitutes a small proportion of total 

abstraction nationally, but it is a consumptive use, peaking in summer months in dry 

years when water resources are scarcest. In many catchments the volume of water 

licensed for abstraction is now considered environmentally unsustainable (Knox et al., 

2000 & EA, 2001). The high irrigation volumes predicted by CropWat under the 

future scenarios (Table 8.2.2) coupled with the low summer flows seen in Fig 8.3.1 

suggest that current agricultural practices are not sustainable under future scenario 

conditions. Therefore future scenario modelling within SWAT has been undertaken 

assuming unlimited water supplies although it is recognised that this not sustainable in 

the future.  

 

8.2.1 Model Runs 
 
To assess the impact of future climate and socio-economic scenarios upon the Bure, 

Ant and Thurne watersheds a total of 5 model runs have been undertaken for each 

modelled river basin (Table 8.2.3). Management files from the calibrated and 

validated SWAT model were run with the baseline weather files to compare results 

between the baseline climate and observed climate data for the period 1990 – 1999. 

This was to ensure that the baseline climate data represented actual observed data 

with some degree of accuracy.  These original management files were also run with 

the two future climate scenarios to assess the impact of climate change upon the study 

area. The last two runs incorporated both future land use and climate to assess the 

effect of combined land use and climate change on the study area. 

 
Table 8.2.3: Future scenario model runs for SWAT 

Land Use/Climate Change Baseline 2050 high 2050 low 

Original model a a a 
Global Sustainability   a 
Regional Enterprise  a  

 

A model run time of 20 years was calculated based on the hydraulic conductivity of 

the soil. The movement of water was calculated based on a Ksat of 3m day-1 for a 

sandy loam/fine sand soil as suggested by Smedema and Rycroft (1988) and a 

maximum watershed distance of 21048.61m based on the largest sub-basin within the 
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SWAT model, the distance which soil water will have to travel before reaching the 

watercourse. Therefore it would take 7016.2 days for groundwater to reach the 

watercourse, which is approximately 20 years. By running the model for this time 

period it will allow the affect of recharge and nutrient loads from groundwater to be 

assessed.  

 

8.3 Results of Future Climate Model Runs (no land use change) 

 

As discussed in Chapter Six only monthly or annual SWAT flows could reliably be 

looked at for future scenarios due to the problems of modelling the land drainage 

pumps within the Thurne river basin. Figure 8.3.1 shows daily flows within the Bure 

and Ant model for the baseline and 2050’s high and low climate scenarios. 

SWAT daily average flows (Bure and Ant) for the baseline and 2050's high and low climate scenarios
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Figure 8.3.1: SWAT daily flows (Bure and Ant) for the baseline and 2050’s high and low climate 

scenarios 

 

As can be seen from the above graph higher winter flows can be expected for both the 

future climate scenarios. The 2050’s low scenario follows a similar annual pattern to 

that of the baseline scenario. The 2050’s high scenario is very peaky, but flows are 

also a lot higher for this scenario. In June and July monthly 2050’s low scenario flows 

are lower than the baseline scenario. Low summer flows can also be seen with the 
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2050’s high scenario, although these are slightly higher than those shown by the 

baseline and low scenario.   

 

Figure 8.3.2 shows the comparison between TP concentrations for the baseline and 

2050’s high and low climate scenarios. The graph shows that the high scenario results 

in the highest TP concentrations. All scenarios follow the same annual pattern, with 

lower TP concentrations occurring in the summer months. It is during the summer 

months that there is the smallest difference between the three scenarios. All of the 

scenarios breach the lower threshold limit (0.1 mg l-1) for ecological failure as 

suggested by Severa-Martinez (2005) and the EA water quality target (0.1 mg l-1) (EA, 

2006), but none of the scenarios reach the upper threshold limit of 0.25 mg l-1. 

Comparison between average monthly SWAT TP values (Bure and Ant) for the baseline and 2050's 
high and low future scenarios 
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Figure 8.3.2: Comparison between average monthly TP concentrations (Bure and Ant) for 

baseline and 2050’s high and low scenarios 

 

Figure 8.3.3 shows monthly nitrate concentrations for all three scenarios. The annual 

nitrate pattern follows the same pattern as flow and TP concentrations with high 

winter values and low summer values. Once again the highest nitrate concentrations 

can be seen with the 2050’s high scenario. Both the baseline and 2050’s low scenario 

have comparable summer concentrations. The high scenario nitrate concentrations do 

not follow the exactly same annual pattern as the baseline and low scenario. Nitrate 

concentrations only reach the summer low values seen in the other two scenarios in 
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August. In comparison the summer low values plateau out between June and 

September. None of the scenarios breach the EA water quality target of 20 mg l-1 (EA, 

2006). 
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Figure 8.3.3: Comparison between SWAT nitrate concentrations (Bure and Ant) for baseline and 

2050’s high and low climate scenario 

 

The following 8 Figures (8.3.4 – 8.3.11) show the spatial results of SWAT model runs 

with current land use and future climate scenarios for both the Bure and Ant and 

Thurne SWAT models in terms of loadings to each of the systems. 
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Figure 8.3.4: SWAT results for the Thurne model with current land use and current climate 



Jodie Whitehead  Ph.D. Thesis 

Chapter Eight  - 202 - 

 
Figure 8.3.5: SWAT results for the Thurne model with current land use and baseline climate scenario 
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Figure 8.3.6: SWAT results for the Thurne model with current land use and low climate scenario 
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Figure 8.3.7: SWAT results for the Thurne model with current land use and high climate scenario 
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Figure 8.3.8: SWAT results for the Bure & Ant model with current land use and current climate 
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Figure 8.3.9: SWAT results for the Bure & Ant model with current land use and baseline climate scenario 
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Figure 8.3.10: SWAT results for the Bure & Ant model with current land use and low climate scenario 



Jodie Whitehead  Ph.D. Thesis 

Chapter Eight  - 208 - 

 
Figure 8.3.11: SWAT results for the Bure & Ant model with current land use and high climate scenario 
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By considering the spatial distribution of input and output loadings to the two SWAT 

models a number of patterns can be seen. Under observed and baseline rainfall there is 

lower P output for both the catchment systems when compared to the 2050’s high and 

low climate scenarios. This occurs even though all the climate scenarios are receiving 

the same P input for both the modelled systems. N outputs behave in a similar way, 

with more sub basins showing the higher N outputs.  

 

For both the future climate scenarios the increased rainfall results in increased re-

charge values. Where infiltration values increase there is an increase in N loadings to 

the catchment systems, suggesting the main source of N yields in the study area is 

through groundwater. Where there are lower infiltration values there is higher run-off 

values resulting in higher P and sediment yields within the study area. 

 

Recharge with SWAT is governed by groundwater and soil parameters. Groundwater 

parameters are the recharge coefficient (GW_REVAP) and the threshold water level 

in the shallow aquifer for percolation to occur (REVAPMN) both of these parameters 

are used within calibration and can therefore not be used to explain causes of high 

recharge values within the two catchment systems. The main soil parameter, which 

can affect recharge, is the saturated hydraulic conductivity (Ksat) which has been taken 

from the LandIS database. Within Figure 8.3.7 in can be seen that sub-basin 9 has a 

high recharge value (140 – 196 mm) and sub-basin 2 a lower value (71 – 140 mm). 

The soil in sub basin 9 is predominantly the Wick association which has a Ksat value 

of 82 mm hr-1 where as the Gresham association in sub basin 2 only has a Ksat value of 

55 mm hr-1, therefore soil water moves more slowly through the soil affecting the 

recharge of the sub basin.   

 

The spatial distribution for each output parameter does vary depending on the climate 

input, as this is the only factor, which is being changed. Similar patterns can be seen 

throughout the results. Higher recharge areas occur in the south of the Thurne model 

through all of the scenarios, and within the Bure and Ant model higher recharge 

values occur within the centre of the catchment. However a spatial relationship 

between rainfall and run-off cannot be clearly seen. This may be caused by the lack of 

spatial relationship between the MONARCH grid cells used in the baseline and future 

scenarios, even though data were scaled based on one gauge in the study area. The 
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results of the scaling procedure gave ratios, which were very close for all the 

MONARCH grid cells used, and consequently a fairly uniform rainfall throughout the 

two catchment systems.  

 

Within the Bure and Ant system it can be seen that where high sediment outputs occur 

there are also high P yields as a result of high run-off. This can especially be seen in 

Figure 8.3.11, where sub basins 21 and 22 both have high P output, even though some 

of the sub basins have low P input. These sub basins all also have high sediment 

losses and run off values. This pattern can also be seen clearly within the Thurne 

system. Areas of high run-off and sediment yields can be attributed to the topography 

of the sub-basin, for example sub-basins 21 and 22 (Fig 8.3.11) have longer slope 

length (72 m and 111 m respectively) and higher average slope values (0.43 m m-1 

and 0.55 m m-1 respectively) over the whole sub-basin. The slope length and average 

slope parameters in SWAT are topographical factors derived from the DEM, which 

affect the ratio of soil loss per sub-basin. In comparison sub basin 16 (Fig 8.3.11) 

where the slope length is 42 m and the average slope is 0.02 m m-1, shows less run-off 

and sediment output from the sub-basin.  

 

Sediment erosion is also linked with the run-off curve number within SWAT. The 

curve number is a function of the soil’s permeability, land use and antecedent soil 

water conditions. Within sub basins 21 and 22 (Fig 8.3.11) the run-off curve number 

is 76 as the soil has a moderate infiltration rate and is moderately well drained, small 

grained crops (winter wheat and barley) are being grown in the sub-basin in a straight 

row with good cover. In comparison in sub basin 16 (Fig 8.3.11) the run-off curve 

number is 67 as the soil has low run-off potential with a high infiltration rate, peas are 

being grown in the sub basin in a straight row with good cover, resulting in lower 

sediment yields from the sub basin.  

 

The results from SWAT show that the 2050 high climate scenario has the greatest 

impact on both the systems, with increased N, P and sediment output along with high 

recharge and high run-off. This can be seen more clearly in Tables 8.3.1 and 8.3.2. 
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Table 8.3.1: Average SWAT outputs for current and future climate scenarios under current land 

use model for the whole of the Bure and Ant system 

Climate 
Scenario 

Rainfall 
(mm) 

Run-off 
(mm) 

Sediment 
(kg ha-1) N (kg ha-1) P (kg ha-1) Recharge 

(mm) 
Flow  

(m3 s-1) 
Current 519 12.37 0.05 0.59 0.10 123.75 1.69 
Baseline 520 15.65 0.09 0.62 0.13 126.45 1.71 

Low 586 19.54 0.09 1.01 0.15 142.88 1.88 
High 616 23.48 0.22 1.11 0.20 162.34 2.00 

 
Table 8.3.2: Average SWAT outputs for current and future climate scenarios under current land 

use model for the whole of the Thurne system 

Climate 
Scenario 

Rainfall 
(mm) 

Run-off 
(mm) 

Sediment 
(kg ha-1) N (kg ha-1) P (kg ha-1) Recharge 

(mm) 
Flow 

(m3 s-1) 
Current 502 7.40 0.06 1.34 0.83 138.26 0.96 
Baseline 504 7.41 0.07 1.36 0.86 139.59 0.96 

Low 613 13.11 0.10 1.52 1.02 153.28 1.06 
High 627 17.06 0.22 1.61 1.18 163.05 1.16 

 

The above tables show that overall the Thurne system has greater nutrient output 

values then the Bure and Ant system. This difference is greatest for P loadings with 

the low and high scenarios being greater by 15% and 17% respectively. The higher N 

values found in the Thurne catchment can be attributed to the high recharge values 

occurring in the Thurne system.  

 

By looking at nutrient loadings within the catchment it can be seen that in order to 

reduce nutrient loads then run-off and sediment erosion need to be reduced. 

Undertaking soil conservation practices within the catchment systems such as the use 

of cover crops and conservation tillage may reduce run-off. The uptake of N by plants 

also needs to be increased to reduce the amount of N leaching through the soil. By 

using conservation tillage it maybe possible to keep nitrogen fertilisers in the upper 

layers of the soil where they will be available for plant uptake. The use of cover crops 

will reduce soil erosion over the winter months and increase N uptake during the 

winter months. It will also reduce the occurrence of nutrient ‘flushing’ in the spring 

months by the first big storm after fertiliser application. Erosion control practices will 

be discussed further in section 8.4. 
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8.3.1 Results of Future Land Use and Climate Model Runs 

 

Figures 8.3.12 – 8.3.15 show the spatial results of SWAT model runs with future land 

use and future climate scenarios for both the Bure and Ant and Thurne SWAT models 

in terms of loadings to each of the system. Within the two catchment systems it can be 

seen that the high RE scenario results in high run-off, sediment, and nutrient yields.  

This is a result of the high rainfall scenario and the change in land use to a system, 

which is dominated by spring crops. This combination results in higher run-off curve 

values (from 0.67 in sub basin 16; Figure 8.3.11, to 86 in sub basin 16 Figure 8.3.15) 

as the soil is left bare during the winter months.  

 

Recharge has also increased with the selected land management scenarios, although 

the increase is not so great when compared to the affect of the climate scenarios. 

Between the base line scenario and the high climate scenario recharge increased by 36 

mm, in comparison between the high climate scenario and the high climate coupled 

with the RE scenario this increase is only 6 mm (Table 8.3.3). This suggests that 

recharge is affected by climate change more than a change in land use.  

 

As with the climate change scenarios where high run-off occurs this results in higher 

sediment and P loads. In terms of P input to the catchment this has reduced compared 

to SWAT current land use as there is a decreased amount of winter cereals in the two 

catchment systems, both winter wheat and winter barley have an application of 100 kg 

ha-1 during the autumn before the crops are planted compared to only 60 kg ha-1 for 

sugar beet which has increased in area for the two future land use scenarios.  
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Figure 8.3.12: SWAT results for the Thurne model with GS land use and low climate scenario 
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Figure 8.3.13: SWAT results for the Thurne model with RE land use and high climate scenario 
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Figure 8.3.14: SWAT results for the Bure and Ant model with GS land use and low climate scenario 
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Figure 8.3.15: SWAT results for the Bure and Ant model with RE land use and high climate scenario 
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Table 8.3.3 shows that the GS land scenario actually improves the situation of the 

systems when coupled with the low climate scenario within both catchment systems. 

This may be due to a number of factors, a greater proportion of the two catchments 

are forested within this scenario. The Thurne catchment has a difference of 458 ha in 

forested area between the GS and RE scenarios. The GS scenario also results in a 

greater variety of crops being grown in the two systems compared to the baseline and 

RE scenario. This greater variety means that there is a better cover of crops resulting 

in lower run-off and sediment yields and improved uptake of nutrients.    
 

Table 8.3.3: Average SWAT outputs for current and future climate scenarios under current and 

future land us for the whole of the Bure and Ant system 

Climate 
Scenario 

Rainfall 
(mm) 

Run-off 
(mm) 

Sediment 
(kg ha-1) N (kg ha-1) P (kg ha-1) Recharge 

(mm) 
Flow  

(m3 s-1) 
Current 519 12.37 0.05 0.59 0.10 123.75 1.69 
Baseline 520 15.65 0.09 0.62 0.13 126.45 1.71 

Low 586 19.54 0.09 1.01 0.15 142.88 1.88 
High 616 23.48 0.22 1.11 0.20 162.34 2.00 

Low GS 586 15.53 0.09 0.55 0.12 134.88 1.73 
High RE 616 26.79 0.25 1.15 0.23 168.34 2.01 

 
Table 8.3.4: Average SWAT outputs for current and future climate scenarios under current and 

future land us for the whole of the Thurne system 

Climate 
Scenario 

Rainfall 
(mm) 

Run-off 
(mm) 

Sediment 
(kg ha-1) N (kg ha-1) P (kg ha-1) Recharge 

(mm) 
Flow  

(m3 s-1) 
Current 502 7.40 0.06 1.34 0.83 138.26 0.96 
Baseline 504 7.41 0.07 1.36 0.86 139.59 0.96 

Low 613 13.11 0.10 1.52 1.02 153.28 1.06 
High 627 17.06 0.22 1.61 1.18 163.05 1.16 

Low GS 613 12.08 0.04 1.28 0.82 153.06 0.98 
High RE 627 19.30 0.25 1.78 1.21 169.11 1.17 

 

8.4 Management Solutions 

 

From the climate change and socio-economic scenarios that have been simulated in 

SWAT, key source areas of nutrient loadings can be identified. Management scenarios 

can be applied to these source areas either at the river basin, or sub-basin scale, which 

will help to reduce nutrient loadings. 
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Management scenarios are based on different agricultural practices, which can be 

used to reduce nutrient loads to water. There are five main ways to manage nutrients, 

especially phosphorus. 

 

1. Manipulation of poultry diets to reduce the amount of nutrients excreted in 

manure 

2. Physical or chemical treatment of manure to separate some of the nutrients 

from the manure 

3. Application of manure based on crop nutrient requirements, using methods 

that reduce the risk of run-off to surface waters 

4. Effective soil erosion control practices on application sites including no-till 

agriculture, contour tillage, leaving crop residues on the soil surface after 

harvest and growing winter cover crops 

5. Use of vegetative buffer strips along stream and river banks to slow down 

run-off, capture sediments and increase infiltration and phosphorus uptake 

rates. 

 

However, only methods 3, 4 and 5 can be applied to SWAT management files and 

method 3 is already being incorporated in the SWAT models through the use of 

recommended fertiliser application rates Therefore, management scenarios are based 

on methods 4 and 5. 

  

There are a number of different methods of reducing soil erosion as mentioned above. 

Cover crops are grown to protect and improve the soil, not to harvest. Cover crops 

have the potential to improve soil tilth, control erosion and weeds and maintain water 

balance within the soil, which decreases leaching of nutrients. Cover crops retain and 

recycle plant nutrients (especially nitrogen) between crops, provide habitat for 

beneficial microorganisms and increase plant diversity. There are many ways to use 

cover crops in a production cycle. 

 

• As a main crop during the primary growing season. Used as a rotational crop, 

the cover will exclude production of a cash crop. 
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• As a companion crop, or living mulch, the cover is planted between the rows 

of cash crop. 

• As a ‘catch’ crop for nutrients, planted after harvest of the main crop or 

between the rows of the cash crop to reduce leaching of nutrients 

• As an off-season crop grown to protect the soil, usually during the winter 

when there is no main crop. This is the most common practice 

 

Vegetative buffer strips are vegetated areas along rivers and other sensitive areas such 

as wells where fertilisers and manures are not normally applied. The purpose of these 

strips is to form a physical barrier between the field and the surface water. Any run-

off coming from the field will be slowed down and intercepted by the vegetation. This 

will not only reduce the speed of movement of the run-off, but also capture some of 

the sediments and large organic particles in the run-off. It will also promote 

infiltration and increase nutrient uptake. In addition to nutrient removal, buffer strips 

can provide secondary benefits, such as river stabilisation or refuge for wildlife 

species. Table 8.4.1 shows the benefits of the erosion and run-off practices and 

suitability for use in SWAT (Devlin et al., 2002 and Mishra et al., 2003). 
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Table 8.4.1: Erosion control practices adapted from Devlin et al. (2002) and Mishra et al. (2003) 

Practice Description Benefit SWAT Suitability 

Conservation 
tillage 

Cropping system that maintains at least 
30% of the soil surface covered with 

residues after planting 
Helps reduce erosion 

Can be done through the use 
of SCS curve numbers. This 

is a function of the soil’s 
permeability, land use and 

antecedent soil water 
conditions 

Contour 
farming 

Planting crops in rows that follow the 
contours of the land, perpendicular to 

the slope of the land 

Reduces sheet and rill 
erosion 

X  
River basin is very flat 

Gradient 
terraces 

A terrace designed to divert run-off to 
a suitable outlet, such as a grass 

waterway 

Reduces speed of run-
off and hence amount of 
soil that is eroded from 

the field 

X 

Level 
terraces 

A terrace designed to store water until 
it can be passed through an 

underground outlet or seep into the soil 

Stops water movement 
and allows eroded soil 
particles to settle out 

X 

Grass 
waterways 

Sodded channel that provides an outlet 
for run-off 

Reduces potential of 
gully erosion X 

Contour strip 
cropping 

Alternating strips of close growing 
erosion resistant crops and erosion 

susceptible row crops, planted on the 
contour 

Straps eroded sediments 

Alternative crops can be 
grown through the use of 

HRU’s within a sub-basin. 
No control on where they 

are grown 

Vegetative 
filter strips 

Strips of permanent vegetation on the 
down hill perimeter of erosive crop 
field or between the field and water 

body 

Catches and filters 
sediments from surface 

run-off 

Alternative crops can be 
grown through the use of 

HRU’s within a sub-basin. 
No control on where they 

are grown 

Constructed 
wetlands 

Artificial wetland created down hill 
from crop fields 

Sediments are collected 
and soluble nutrients 

are assimilated by 
growing vegetation 

Alternative crops can be 
grown through the use of 

HRU’s within a sub-basin. 
No control on where they 

are grown 

Sediment 
control basin 

A short earth embankment constructed 
across the slope to form a sediment 

basin 

Traps run-off water and 
allows sediments to 

settle out 
X 

Critical area 
planning 

Planting permanent vegetative cover 
on highly erodible lands that cannot be 

stabilised by conservation practices 

Takes erodible land out 
of production 

Can either plant permanent 
vegetation on a sub-basin or 

HRU scale 

No tillage Direct seeding of the crop into 
previous residue without tillage 

Greatly reduces soil 
erosion and increases 
infiltration rates on 

most soils 

Can remove tillage practices 
from SWAT management 

files 

Cover crops Cover crops are grown to protect and 
improve the soil, not to harvest 

Protect and improve 
soil 

Can incorporate cover crops 
into crop rotation schemes 

 

From the above table in can be seen that not all the erosion run-off practices can be 

modelled in SWAT. Although the use of vegetative buffer strips can potentially be 

modelled in SWAT along with constructed wetlands and contour stripping there is no 

control on where these management solutions may be placed in an HRU or sub basin. 

Effective soil erosion practices such as critical area planting, no tillage and cover 

crops can however be modelled in SWAT with ease, and allow the user to control the 

placement of these measures within SWAT. Therefore these three erosion practices 

have been modelled for each of the future scenarios. This will allow the assessment of 
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effective soil erosion practices on the study area, to see whether or not they will 

reduce nutrient and sediment loading the study area. These practices have been 

applied to sub basins which fall into the highest two categories for nutrient outputs as 

seen in Figures 8.3.1 to 8.3.12. Grass was grown for the critical area planting 

management solution without any fertiliser application throughout the whole study 

area to give a ‘best’ case scenario. 

 

8.4.1 Management Solution Results 

 

Table 8.4.2 shows the results of the three management solutions for the Bure and Ant 

SWAT model under the different future scenarios for varying parameters. It can be 

seen in all cases that critical area planting (pasture) throughout the study area is the 

best management solution. In terms of total phosphorus concentrations, critical area 

planting results in 45% reduction in concentration for the baseline scenario, this 

increases to a 58% reduction for the High RE future scenario. Although a reduction in 

total phosphorus concentrations can be seen for all the future scenarios under critical 

area planting the difference between the four future scenarios is very small, only 

varying between 0.10 - 0.15 mg l-1.  

 

The reduction in total phosphorus concentrations can be attributed to reduced 

sediment loads to the two catchment systems as P is mainly transported attached to 

sediment either as organic or mineral phosphorus. The reduction in TP concentrations 

with the use of cover crops is small ranging from 7 mg l-1 for the baseline scenario 

compared to current management conditions and no change for the high RE scenario. 

This can be attributed to the lack of reduction to sediment concentrations under cover 

crop management. The cover crop management solution does not reduce sediment 

concentrations under any of the future scenarios, with values being very similar to 

those of the current management scenario. This maybe because grass was chosen for 

the cover crop and did not give enough ground cover during the period between crop 

harvest and new crop planting dates to reduce sediment erosion. If another crop such 

as rye was chosen this may decrease sediment erosion as the crop provides longer and 

better erosion control because of more winter growth and a fibrous root system. This 
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will reduce erosion, improve soil structure and reduce surface crusting and increase 

the water-holding capacity of the soil. 

A reduction in TON concentrations can also be seen, the largest reductions once again 

being seen under the baseline scenario and critical area planting, 24%. Percentage 

reductions are lower for the future scenarios, 23% low, 15% high, 17% low GS and 

24% high RE. The high RE scenario is the worst scenario for all the management 

solutions. This is especially so for the sediment concentrations and run-off results 

under all the management solutions except for critical area planting.  

 

If the land use in the study area was to stay under a predominantly agricultural regime 

then the combination of both cover crops and no tillage management practices gives 

the best results as they will decrease soil erosion through improved water permeability, 

bulk density and aggregate stability. Therefore run-off values decrease under their 

combination of management solutions, especially for the high RE scenarios. However 

run-off values can be greatly reduced under the critical area planting solution for all 

scenarios as the ground is covered for the whole year, with plants growing close 

together, therefore reducing run-off and sediment erosion and improving infiltration. 

Nutrient loads are also greatly reduced as no fertilisers or manures are applied.   
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Table 8.4.2: SWAT results for management practices in the Bure and Ant model 

    Average TP (mg l-1) Bure & Ant outlet 
Scenario Current Management Cover Cover & No Till No Till Pasture 
Base line 0.18 0.11 0.13 0.12 0.10 
Low 0.20 0.17 0.19 0.19 0.14 
High 0.27 0.27 0.23 0.23 0.15 
Low GS 0.19 0.18 0.20 0.20 0.14 
High Re 0.36 0.36 0.29 0.28 0.15 

    Average TON (mg l-1) Bure & Ant outlet 
Scenario Current Management Cover Cover & No Till No Till Pasture 
Base line 6.04 6.58 6.68 6.73 4.63 
Low 7.86 7.74 7.08 7.55 6.06 
High 7.68 7.62 7.66 7.89 6.56 
Low GS 7.28 7.20 7.05 7.12 6.06 
High Re 8.54 8.45 8.17 8.26 6.56 
    Average Flow (m3 s-1) Bure & Ant outlet 
Scenario Current Management Cover Cover & No Till No Till Pasture 
Base line 1.71 1.65 1.67 1.62 1.57 
Low 1.88 1.78 1.75 1.77 1.72 
High 2.00 1.93 1.86 1.92 1.83 
Low GS 1.73 1.70 1.65 1.60 1.56 
High Re 2.01 1.99 1.96 1.98 1.93 
    Average Run-off (mm) Bure & Ant outlet 
Scenario Current Management Cover Cover & No Till No Till Pasture 
Base line 15.65 14.52 8.02 14.33 1.20 
Low 19.54 17.53 10.43 17.00 1.50 
High 23.48 20.09 11.97 19.69 2.00 
Low GS 15.53 14.10 7.06 13.96 1.20 
High Re 26.79 22.14 12.13 20.13 4.00 
    Average Sediment (mg l-1) Bure & Ant outlet 
Scenario Current Management Cover Cover & No Till No Till Pasture 
Base line 19.04 19.05 18.71 18.73 16.04 
Low 26.68 26.41 22.02 25.95 14.84 
High 33.59 33.58 25.61 25.98 16.14 
Low GS 23.41 23.02 22.74 22.89 14.84 
High Re 53.74 53.65 30.15 30.07 16.14 

 

Within the Thurne model the effect of the management solutions have been 

considered on Hickling Broad. In terms of TP there is very little difference between 

the management solutions in any of the future scenarios, critical area planting does 

however achieve the lowest TP concentrations in the Broad. All of the management 

solutions reduce TP concentrations to below the lower TP threshold of 0.1 mgl-1 

(Severa-Martinez, 2005) and EA’s river water quality target  of 0.1 mgl-1 based on the 

General Quality Assessment Scheme (EA, 2004), which is not being achieved under 

the current modelled management regime. As with the other parameters, NO3 
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concentrations in Hickling Broad are reduced the most under critical area planting, by 

as much as 50% in the majority of future scenario cases and therefore do not breach 

the EA’s river water quality target of 20 mgl-1 based on the General Quality 

Assessment Scheme (EA, 2004). There is however no clear management solution if 

the land in the Thurne watershed remained in an agricultural regime for both TP and 

NO3. This is particularly so for TP concentrations which stay the same for all the 

management solutions except for critical area planting.  

 
Table 8.4.3: SWAT results for management practices in the Thurne model  

    Average TP (mg l-1) Hickling Broad 
Scenario Current Management Cover Cover & No Till No Till Pasture 
Base line 0.10 0.03 0.03 0.03 0.02 
Low 0.11 0.05 0.05 0.05 0.04 
High 0.12 0.06 0.06 0.06 0.05 
Low GS 0.11 0.04 0.04 0.04 0.03 
High Re 0.13 0.07 0.07 0.07 0.06 

    Average NO3 (mg l-1) Hickling Broad 
Scenario Current Management Cover Cover & No Till No Till Pasture 
Base line 0.85 0.80 0.49 0.54 0.54 
Low 0.98 0.51 0.76 0.77 0.49 
High 1.01 0.96 0.59 0.81 0.59 
Low GS 0.83 0.64 0.64 0.67 0.43 
High Re 1.32 0.96 0.79 0.83 0.60 

 

8.5 Implications for the Study Area 

 

There are a number of implications for the study area in terms of future climates. 

When compared to the current modelled situation in the two systems all of the future 

scenarios have an adverse effect. Overall the increase in rainfall in the study area 

leads to an increase in ground water recharge, run-off and river flows. Where there is 

high recharge in the two systems there is increased N yields being transported to the 

reaches via groundwater. This is demonstrated in the Thurne system where there are 

higher recharge values in the south of the system and consequently high N outputs.  

 

Results show that where there are higher USLE K values for the soil higher sediment 

yields occur. Higher sediment yields can be expected for the future scenarios. Spatial 

results show that higher P outputs are linked to areas of higher run-off and 

consequently higher sediment loading, no matter how low the P input to the system. 



Jodie Whitehead  Ph.D. Thesis 

Chapter Eight  - 225 - 

This is because the majority of P is transported from the two systems attached to 

sediment in either mineral or organic form. Therefore P fertilisers should only be 

applied to the systems, especially the Thurne, where there is a low run-off and 

sediment yield. The impact of phosphorus concentrations from the future scenarios on 

Hickling Broad can be seen in Figure 8.5.1. 

Total Phosphorus in Hickling Broad for Base line and Future Scenarios
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Figure 8.5.1: Total phosphorus in Hickling Broad for baseline and future scenarios  

 
It can be seen for all the climate scenarios that total phosphorus concentrations breach 

the lower threshold limit for phosphorus of 0.1 mg l-1 (Severa-Martinez, 2005) and 

EA river water quality target 0.1 mg l-1 under the General Quality Assessment 

Scheme (EA, 2004) in the summer months, this even occurs in baseline conditions. 

Under the RE high climate scenario this value is breached throughout the year 

therefore increasing the likelihood of ecological failure within the Broad.  

 

There is little difference between the major crops and the distribution of crops for the 

two socio-economic scenarios except for forested areas. The effect of the GS socio-

economic scenario is to increase all the other break crops at the expense of cereals, 

with a system still very much in favour of wheat. The effect of the RE socio-economic 

scenario is to eliminate all break crops other than sugar beet and potatoes while barley 

and oats increase and wheat reduces. Therefore the effect of the two scenarios is very 

different with the GS scenario decreasing the nutrient loads to the two catchment 
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systems below that of current conditions.  However both scenarios also show a 

substantial increase in potential demand for irrigation due to the increased area of 

sugar beet and potatoes; this is however assuming unlimited water supplies.  

 

George (1992) suggest that flow rates in the Broadland rivers are, from the ecological 

point-of-view, already less than they should be during the summer months. 

Consequently there has been a rise in the concentration of pollutants carried by these 

rivers, and a reduction in the rate at which broads associated with them are flushed by 

'new' water derived from the catchment. This has resulted in blue-green algae blooms 

within the Broads. Increased demand for water from irrigation needs coupled with low 

flows in the summer months for all scenarios (Fig 8.3.1) could exacerbate this 

problem further. However climate scenarios show increased nitrate and TP 

concentrations during the winter months where flow is not a problem. It is only with 

the 2050’s high climate scenario that there is a significant increase in nutrient 

concentrations, especially nitrate in the summer months (Figs 8.3.2 and 8.3.3). If 

water demand for irrigation and other industries was to increase then this could have 

very damaging effects on the region's biodiversity and future well-being. 

 

Results show that the RE socio economic scenario coupled with the high climate 

scenario has the greatest adverse affects on the study area with increased run-off, 

sediment yields and P and N loadings. However it is climate change that causes the 

greatest increase in all these parameters by changing the hydrological regime of the 

study area. A 34% increase in run-off, 60% increase in sediment loadings, 45% 

increase in N loadings and 35% increase in P loadings to the Bure and Ant catchment 

can be seen with the 2050 High climate scenario. Lower increases can be seen in the 

Thurne system with P and N loadings increasing by 28% and 16% respectively. 

However, the high increase in the Bure and Ant system will have an adverse affect on 

the Thurne system as Moss et al. (1989) suggests that as much as 40% of the nutrient 

loadings from the Bure and Ant watershed travels up into the Thurne system on the 

flood tide as far as Potter Heigham. It was not possible to model nutrients on the flood 

tide in SWAT as SWAT only represents one directional flow and therefore the impact 

of increased nutrient loads from the Bure and Ant system and their impact on the 

Thurne system could not be investigated.  
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The nutrient and sediment loading to the study area can be decreased in both the 

baseline and future scenarios through erosion control practices. Critical area planting 

is the most effective control measure investigated. The implication of this measure is 

however to take land out of agricultural use and revert it to grassland. This is 

particularly the case in the north of the Thurne system, the area upstream of Hickling 

Broad where run-off is high and groundwater recharge is low, resulting in higher 

sediment and consequently nutrient loads. Where areas of both systems are still used 

as agricultural land, erosion control measures are needed to reduce the effect of 

possible future climate and socio-economic scenarios. Measures should also be 

employed in the present situation if the risk of ecological failure to Hickling Broad 

and eutrophication problems in the two systems is to be managed.  

 

In summary the implications of possible future climate and socio-economic scenarios 

on the study area are:   

 

• Increase in rainfall and temperature through climate change increase the 

already high risk of ecological failure in Hickling Broad. 

 

• Increase in rainfall and temperature through climate change increase 

eutrophication problems for both the rivers and Broads within the Bure and 

Ant system. 

 

• Climate change will increase run-off, sediment erosion and river flows within 

the study area. 

 

• Agricultural practices on land with high run-off and high sediment erosion will 

increase nutrient loads reaching the watercourses. 

 

• An agricultural regime under the RE and high climate scenario is the worst-

case scenario for the study area in terms of increased nutrient loads reaching 

the watercourses. 
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• The best-case scenario would be to revert all the agricultural land to grassland, 

especially within the Thurne system. Where land is still used for agricultural 

erosion, control measures should be put in place. 

 

• Erosion control measures, particularly critical area planting in the north of the 

Thurne system, should also be employed in the present situation if the risk of 

ecological failure of Hickling Broad and eutrophication problems in the two 

systems is to be managed.  
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Chapter Nine  Summary and Conclusions 
 

9.0 General 

 

On a global scale lakes play only a minor role in the hydrological cycle. They 

however have special importance owing to their dominance in the landscape, value as 

a resource (water supply, hydropower, irrigation and amenity), value as natural 

ecosystems and centres of biodiversity. The Broads are shallow, eutrophic lakes, 

probably the result of medieval peat workings (Lambert & Jennings, 1960), 

concentrated in the Ant, Bure, Thurne and Yare river valleys. Increased nutrient 

loading to this fragile ecosystem from both point and diffuse sources of nutrients has 

resulted in 41 out of the 44 Broads being in a less favourable ecological condition.  

 

Sustainable management of the Broads is needed to achieve ‘good ecological 

potential’ under the Water Framework Directive (Directive 2000/60/EC). To achieve 

this in the Broads wiser management of the entire catchment as well as a cluster of 

local solutions is required (Moss, 2001) both under current climatic conditions and 

possible future climate and economic scenarios. The most economical and practical 

way of investigating potential solutions is through catchment scale modelling.  

 

9.1 Soil Water Assessment Tool 

 

The Soil Water Assessment Tool (SWAT) has been used in this research. A literature 

review showed that SWAT has become an important tool for river-basin scale studies 

and has been used extensively throughout the world as well as a number of studies 

within the UK. It was therefore judged that SWAT could be used to study the impact 

of future climate and land use scenarios and predict the impacts of these scenarios on 

flow and nutrient dynamics in the Broads. 

 

From a user’s point of view the use of SWAT has had several advantages. The model 

is freely available and it has interfaces with GIS and Windows for easy extraction of 

input parameters and analysis of results. Despite it strengths SWAT also has some 

weak points. It requires an extensive set of data to run. Knowledge in the subject area 

and a basic level of training are required to parameterise this model and to handle the 
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input and output files. These are however problems of all complex catchment models 

and are not unique to SWAT.  

 

An overall weakness of the SWAT model is the use of equations that have parameters 

that are not directly measured. For example, the curve number equation, although 

used often to estimate run-off volumes, is highly uncertain due to the use of a 

parameter (i.e. the curve number) that had not been determined empirically for use in 

the UK, but is rather derived for use in the USA. In addition, the MUSLE, which is 

used for soil erosion simulation, is also uncertain because of the number of parameters 

in the equation that are set from qualitative information (e.g. soil type and ground 

cover). 

 

9.1.1 Evaluation of the use of SWAT in the study area 

 

The use of SWAT in this research has been discussed in depth in the previous 

chapters. In this section a summary of the main evaluation points to do with the use of 

SWAT in the study area will be given. 

 

• SWAT results are comparable with other UK studies but not with larger 

catchment studies outside the UK. These results illustrate a possible limitation 

in the SWAT model when modelling small catchments. 

 

It is typically the case that a model that performs acceptably well for hydrology may 

still have limitations in fully capturing sediment loads. This is because the accurate 

simulation of sediment processes on the land surface is difficult to capture due to the 

heterogeneous nature of a catchment and the relatively unrefined equations used to 

explain certain processes (e.g. MUSLE).  

 

There were considerable differences between the results of calibration and validation 

of sediment within the SWAT model; this was attributed to varying factors.  

 

• It was found that sediment yield varied significantly with changes in sub-basin 

size and location. These effects were attributed to increasing levels of 
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aggregation on average sub-basin slope and on the proportion of the sub-basin 

delineated as cropland.  

• There are a number of reported sediment sources within the study area which 

have not been incorporated into SWAT. This is due to lack of sediment data 

and the fact that SWAT can only model sediment sources and loadings from 

HRUs/sub basins and channel degradation/deposition. 

 

Calibration and validation results and overall model performance were also greatly 

affected by shortcomings which arose in SWAT when inputting the data into the 

model.  

 

• SWAT auto irrigation function does not work, therefore CropWat was used to 

simulate irrigation schedules and amounts for all crops. It was noted that both 

CropWat and SWAT do not reflect common UK irrigation practice resulting in 

the soil being at field capacity for varying times of the year. This problem 

therefore needs to be addressed when modelling irrigation within SWAT in 

future.  

• The use of reservoirs to model the land drainage pumps were discussed in 

Chapter 7. The sub-basins, which feed into the drainage pumps, are not 

topographically defined. In SWAT the pump sub-basins are delineated 

topographically therefore they are different in size and shape to those of the 

actual pump sub-basins. This affects the amount of run-off each sub-basin will 

receive. SWAT was therefore only able to model reasonably well the flow 

pattern at one pump.  

• The calibration of the pump sub-basins in terms of nutrients highlighted the 

problem with using the reservoir function to represent the pumps given the 

sparse data set available. SWAT could not be used to simulate results at a 

daily level with any degree of confidence. However SWAT was able to predict 

nutrient levels in Hickling Broad well. 

 

Overall the use of SWAT within the study area indicated limitations in the predictive 

capability of the model, especially for sediment. There are many possible sources of 

these errors, which have been discussed throughout this thesis: lack of input data, over 
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simplification of various factors in the model equations, non optimal calibration 

parameters and errors in observed output data. However, based on the current 

available data, the model demonstrated its utility as a tool to understand processes in 

the watershed and as a basis for effective management in the Bure, Ant and Upper 

Thurne watersheds. 

 

9.1.2 Importance of input and calibration/validation data within SWAT 

 

SWAT is a comprehensive model that requires a diversity of information in order to 

run; therefore great care has been taken in selecting data for use in the model set up. 

The results from input and calibration/validation data investigations are discussed in 

Chapters 5 and 6. This section gives a brief review of the main problems and results.  

 

• Soil and crop type data are only available at a national level.  

• The soil database in SWAT is made up of the dominant soil series for each 

association found in the study area, thus the database does not take into 

consideration the characteristics of the other soil series making up the 

association. By only modelling the soil associations, soil series are not 

incorporated into the model; therefore model results could be underestimating 

soil erosion.  

• Sensitivity analysis of soil series and association data showed that SWAT 

responds in a realistic way to different soil and land cover combinations. It 

also showed that the difference between soils in terms of sediment yield is 

relatively low and therefore the use of the National soil map and soil 

associations has a limited influence on SWAT sediment yield results in this 

area of the UK. 

• To adequately represent EDL land cover and use within SWAT ADAS 

standard crop rotations had to be adjusted. The representation of the Wick 

series soil within the ADAS soil texture class had to be changed.   

 

The use of data sets with varying sampling frequency for calibration and validation 

affected the outcome of the calibration and validation results. Total phosphorus 

calibration was undertaken using Environment Agency monthly measured data; 
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however validation was partly done using weekly and daily data. When considering 

phosphorus dynamics on a daily basis SWAT is not able to predict total phosphorus 

concentrations with great accuracy. Johnes (1996b) daily data clearly show that total 

phosphorus concentrations within the study area are very dynamic, changing on a 

daily basis. SWAT is unable to predict such variability for two main reasons.  

 

1: SWAT is unable to predict individual event based sediment or water quality 

values.  

2: Limited data were available for actual STW phosphorus discharge rates. 

 

Consequently although daily data are available for calibration SWAT performs better 

when comparing predicted total phosphorus values to either monthly or weekly 

observed data. However SWAT can model flow or nutrient exceedance quite well. 

 

9.2 Future Scenarios 

 

Scenarios are neither predictions nor forecasts of future conditions. Rather they 

describe alternative plausible futures that conform to sets of circumstances or 

constraints within which they occur (Hammond, 1996). The true purpose of scenarios 

is to illuminate uncertainty, as they help in determining the plausible futures (Fisher, 

1996). 

 

This analysis has demonstrated that it is possible to integrate modelled future climate 

change data involving socio-economic scenarios considering future agricultural land 

use into SWAT within the study area. The model outputs are useful in terms of 

assessing the impact of varying nutrient loads and hydrological dynamics within the 

two modelled systems. It has shown that there are considerable challenges to doing so 

and also that there are considerable advantages.   

 

As it is not possible to predict the future, such studies are based on scenarios. In this 

study two climate scenarios and two socio-economic scenarios have been used based 

on the UKCIP02 climate scenarios. The results for the scenarios, which have been 

chosen to represent a plausible range of potential futures, clearly identify the issues of 

concern. Although the scenarios are termed 2050s there is nothing in the scenarios 
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which defines the date. Thus a 2050s Low climate scenario could be expected to give 

similar results to a 2020 High or a 2080 ‘Very Low’ scenario (Audsley et al., 2001). 

The use of a baseline scenario is used to enable the effects of climate and land use 

change to be identified. 

 

The results of the RegIS project show that with future socio-economic scenarios a 

reduction in nutrient loads within the East Anglia region can be expected (Audsley et 

al., 2001). This is in contrast to this research, where although climate scenarios show 

the greatest impact on the study area in terms of nutrient loading, socio-economic 

scenarios also result in an increase in nutrient loading to the system.  This is because 

RegIS output predicted that there would be increased flood risk in the East Anglian 

region, which makes extensive areas of land no longer suitable for arable agriculture. 

 

The consequences of this increased flood risk within the region mean that in the 

RegIS project areas of land either have no cropping where the flood risk is very high, 

or grass where the land is unsuitable for arable but remains suitable for pastoral 

agriculture. The density of arable crops in the East Anglian region implies that there 

are few changes to crop distribution between the current and the two future socio-

economic scenarios (RE and GS) except those due to increased flooding. Within 

SWAT it is not possible to model flooding therefore different densities of crops have 

been used within the study area to those seen in the RegIS system, as all current 

agricultural land has been modelled as arable or pastoral agricultural. This has 

resulted in different results to those predicted in RegIS. However when the area is 

modelled with a greater proportion of grassland, as can be seen with the management 

solution results, reduction in nutrient loads to system can be seen under the two socio-

economic scenarios. This is thus in agreement with RegIS.  

 

9.2.1 Implications for the Broads 

 

The Broads are a very complex system in terms of hydrology and nutrient loads and 

dynamics. The use of SWAT to represent this complex system has enabled this 

research to highlight a number of implications for the study area for both the current 

situation and in terms of future scenarios. This is especially so for current and future 
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watercourse monitoring programmes as well as land management practices and land 

use.   

 

The implications of this research in the context of the Water Framework Directive are 

far reaching. The Broads are unique in character and the distinctiveness of the area is 

the key to its future well-being. One of the main issues therefore is the need to protect 

the landscape character, and to conserve the Broads as a living, working landscape for 

future generations. The lakes are an essential part of the Broads, both of its landscape 

and its functioning. This research shows that in the longer-term, the over-riding issue 

is climate change. There are also more immediate issues of the protection of water 

resources and water quality which need to be addressed. Implementation of the Water 

Framework Directive will be important. In particular catchment management, as has 

been demonstrated in this work will be critical for the future of the Broads.  

 
The Broads are managed by the Broads Authority (BA) but the lake systems are 

affected by their wider surrounding catchments which do not fall under the BA’s 

remit. In order to carry the catchment management approach forward all agencies and 

bodies such as local farmers, the Broads Authority, the Environment Agency, English 

Nature and DEFRA need to work together to pool resources and information. This is 

starting to be accomplished, English Nature has started work in partnership with the 

Environment Agency, the Countryside Agency and the Rural Development Service in 

four pilot river catchment areas to find ways to reduce diffuse pollution to deliver the 

Water Framework Directive target of ‘good ecological quality’.  

 

The EA is the principal protector of the water environment in England and Wales. 

They are already responsible for a wide range of work required under the Water 

Framework Directive, but some of their activities will need to change. Results of this 

research indicate that water monitoring programmes must be reviewed and diffuse 

water pollution addressed by working with other relevant authorities.    

 
If agriculture is to continue to be an essential part of the Broads economy then 

changes in agricultural policy and farming practices must be achieved with maximum 

support from all relevant authorities so that agriculture’s impact on water quality is 

reduced.  English Nature and the EA need to be encouraged to make farmers aware of 
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the likelihood of longer term regulation, if management practices do not change in the 

near future. Many issues of diffuse pollution will require a significant promotional 

effort to farmers, if they are to be taken seriously. At local level, a mix of detailed 

technical advice and demonstration, flexible grant aid, and the potential threat of 

action via a regulatory approach is maybe an effective combination of policy 

instruments to tackle issues in priority areas, such as Hickling Broad.  

 

Current Situation 

 

The first Chapters of this thesis show that a considerable amount of work has already 

been done in the Broads and that there is already much known about the study area. A 

lot of work has been based on EA monitored data. EA sampling is either undertaken 

at a monthly or bi-monthly frequency. Published recommended sampling frequencies 

suggest that this is adequate, for small river basins (10000 km2 or less). A maximum 

of 24 samples per year are needed to assess river trends and for eutrophic lakes 12 

samples per year are required, including bi-monthly samples during the summer 

(UNEP/WHO, 1996). 

 

This research shows, along with work carried out by Johnes (1996b) that current 

water quality monitoring schemes operating on a monthly or bi-monthly basis 

systematically underestimate nutrient loads, especially phosphorus which is largely 

exported in particulate form from agricultural sources.  

 

Severa-Martinez (2005) defined an ecological failure criterion for Hickling Broad. In 

terms of total phosphorus a maximum ecological threshold limit of 0.1 – 0.25 mg l-1 

was suggested; total phosphorus concentrations above these values will have an 

adverse effect on Hickling Broad.  If only EA monthly data are considered then no 

adverse affects on Hickling Broad would be expected. However if SWAT results are 

used then both thresholds are breached 20% of the time, having an adverse effect on 

Hickling Broad. This would be underestimated or missed if only monthly data were 

considered.  

 

Johnes (1996b) data and SWAT results show that it is at higher flows that higher 

phosphorus concentrations are likely. EA data are predominantly collected at lower 



Jodie Whitehead  Ph.D. Thesis 

Chapter Nine  - 237 - 

flows as discussed in Chapter 6.  Work carried out by USGS (2001) suggests that the 

best overall monitoring strategy for accurate and precise load and trend estimations of 

sediment and nutrients consists of 50% base flow samples and 50% storm samples.  

Analysis of EA data showed that samples were nearly always taken at low flows. 

Therefore based on monthly samples the ability to ensure adequate sampling of all 

river stages is severely limited. 

 
SWAT results, simple statistical calculations and other studies therefore suggest that it 

would be advisable to undertake weekly, daily, sub-daily or event based sampling. 

This would give a more detailed knowledge of nutrient dynamics of this complex 

system and could be used to further calibrate and validate the SWAT model. 

 

Future Scenarios 

 

The results of future scenarios run with SWAT have been discussed in chapter 8, the 

following points summarise the findings: 

 

• An increase in rainfall and temperature through climate change increase 

eutrophication problems for both the rivers and Broads within the Bure and 

Ant system. This will increase the already high risk of ecological failure in 

Hickling Broad. 

• For both the future climate scenarios there are increases in rainfall, run-off, 

leaching and infiltration affecting the mobilisation of N. Where infiltration 

values increase there is an increase in N fluxes to the catchment systems, 

suggesting the main transfer route for N in the study area is through 

groundwater. 

• For the climate only scenarios the spatial distribution for each output 

parameter does vary depending on the climate input, as this is the only factor, 

which is being changed. A spatial relationship between rainfall and run-off 

cannot be clearly seen. This may be caused by the lack of spatial relationship 

between the MONARCH grid cells used in the baseline and future scenarios. 

• Spatial results do however show that higher P outputs are linked to areas of 

higher run-off and consequently higher sediment loading; no matter how low 
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the P inputs to the system. Therefore high P source areas can be identified and 

should be the focus for P reduction activities.  

• The effect of the two future socio-economic scenarios is very different with 

the GS scenario decreasing the nutrient loads to the two catchment systems 

below that of current conditions.   

• Both future socio-economic scenarios also show a substantial increase in 

potential demand for irrigation due to the increased area of sugar beet and 

potatoes; this is however assuming unlimited water supplies. 

• It is climate change that causes the greatest increases in nutrient, and sediment 

yield and changes in hydrological dynamics in the study area. To alleviate 

increased yields and increased river flow to the system erosion control 

measures can be employed.  

• Modelling results suggest that the only sustainable future scenario in terms of 

land management would be to revert all the agricultural land to grassland. 

However the feasibility of this in terms of agricultural economics is 

questionable and needs to be investigated further. 

 

Eutrophication problems in the study area, both now and in the future, need to be 

managed and reduced to reduce the risk of further ecological failure in the Broads. 

The use of SWAT within this research has shown that this is possible through 

managing the Broads, particularly the Thurne river basin as a whole catchment, by 

reducing nutrient loads to the system through erosion control practices. Eutrophication 

problems within the Broadland system need to be dealt with at their source, by 

reducing nutrient loads to the catchment and changing land use cover and practices 

instead of concentrating on restoring the Broads through on-site measures such as 

dredging and bio-manipulation. Once water quality has been improved on a catchment 

wide-basis restoration measures such as the use of bio-manipulation can be attempted 

in the Broads. 
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9.3 Conclusions 

 

In summary, the important conclusions that can be drawn from the results of this 

study are: 

 

1: Based on the current available data, the SWAT model demonstrated its utility 

as a tool to understand processes in the catchment and as a basis for effective 

management in the Bure, Ant and Thurne river basins. 

 

2: The use of UK soil associations instead of soil series within SWAT had little 

impact on predicted sediment yields. Therefore the use of the National soil map and 

soil associations instead of more detailed soil data has a limited influence on SWAT 

sediment yield results in this area of the UK. This finding also proves significant for 

other hydrological or related studies using the National soil map data sets.  

 

3: Investigation into the use of ADAS standard crop rotations showed that these 

may not represent crops grown when compared to census data such as EDL.  

 

4: On the basis of the nutrient calibration results it has been concluded that 

SWAT has a shortcoming in nutrient representation due to the sensitivity of the model 

to many parameters.  

 

5: The use of SWAT within such a hydrologically complex study area indicated 

limitations in the predictive capability of the model, especially for sediment. 

 

6: It is possible to integrate modelled future climate change data involving socio-

economic scenarios considering agricultural land use into SWAT within the study 

area. 

 

7: This research shows, along with work carried out by Johnes (1996b) that 

current water quality monitoring schemes operating on a monthly or bi-monthly basis 

systematically underestimate nutrient loads and the consequent risk of ecological 

failure of Hickling Broad. 
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8:  Increased rainfall and higher temperatures through climate change will 

increase nutrient and sediment loads and alter the hydrological dynamics of the study 

area, threatening the ecological condition of Hickling Broad. 

 

9: Due to increased water demand irrigation modelling using CropWat suggests 

that under future climate and economic scenarios current agricultural practices are not 

sustainable. 

 

10: Erosion control measures, particularly critical area planting in the north of the 

Thurne system, should be employed in the current situation and future scenarios if the 

risk of ecological failure to Hickling Broad is to be minimised  

 

9.4 Future Work 

 

Due to the fixed time limit set for this research the following ideas were not explored 

in full. Therefore this research could continue in the following directions: 

 

• The under estimation of sediment loading and the modelling of all sediment 

sources with the SWAT model needs to be investigated.  

• A better way to represent irrigation depth within SWAT needs to be addressed. 

• The increased flood risk within the study area and consequent removal of 

agricultural land from production should be investigated in SWAT. 

• Modelling other erosion control measures with the existing input variables and 

future scenarios is an interesting area for further research. 

• Investigation into a more rigorous water quality sampling regime which is 

suitable for the complex system of the Broads should be undertaken.   

• Research should also be undertaken to investigate whether there are other 

models possible for modelling of low lying pumped systems.  

• Leading on from this work a socio economic analysis investigating the 

feasibility of current agricultural practices under future scenario conditions 

should be considered. 
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Nitrogen and Phosphorus Concentrations at Ingworth, River Bure (1998) 
 

 
 
Nitrogen and Phosphorus Concentrations at Scarrow Beck, River Bure (1998) 
 

 
 
Nitrogen and Phosphorus Concentrations at Kings Beck, River Bure (1998) 
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Nitrogen and Phosphorus Concentrations at Aylsham, River Bure (1998) 
 

 
 
Nitrogen and Phosphorus Concentrations at Horstead Mill, River Bure (1998) 
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Nitrogen and Phosphorus Concentrations at Wroxham Rail Bridge, River Bure (1998) 
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Nitrogen and Phosphorus Concentrations at St Benets Abbey, River Bure (1998) 
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Nitrogen and Phosphorus Concentrations at Honing Lock, River Ant (1998) 
 

 
 
Nitrogen and Phosphorus Concentrations at Wayford Bridge, River Ant (1998) 
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Nitrogen and Phosphorus Concentrations at Hunsett Mill, River Ant (1998) 
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Nitrogen and Phosphorus Concentrations at Irstead Church, River Ant (1998) 
 

 
 
Nitrogen and Phosphorus Concentrations at How Hill, River Ant (1998) 
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Nitrogen and Phosphorus Concentrations at Martham Ferry, River Thurne (1998) 
 

 
 
Nitrogen and Phosphorus Concentrations at Potter Heigham, River Thurne (1998) 
 

 
 
Nitrogen and Phosphorus Concentrations at Ludham STW, River Thurne (1998) 
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APPENDIX TWO 
1990 Nutrient Loads for Horstead Mill and Honing Lock 
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Total Phosphorus Load at Honing Lock (1990)
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Total Phosphorus Loading at Horstead Mill (1990)
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APPENDIX THREE 
Monthly Mean Total Phosphorus and Total Oxidised Nitrogen 

Concentrations in the Upper Thurne Broads (1978 – 2001) 
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Monthly mean total phosphorus concentrations for the Upper Thurne Broads (1978 -
2001) 
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Monthly mean total oxidised nitrogen concentrations for the Upper Thurne Broads 
(1978 -2001) 
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APPENDIX FOUR 
Upper Thurne Internal Drainage Board Pump Discharge Rates  

(1977 – 2001) 
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Pump Discharge Rates
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APPENDIX FIVE 
SWAT Data Collection 
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Data Required 

Source Obtained Years 
Details 

Temporal Data 

Rainfall BADC YES 90 - 99 (for most 
gauges) 

Daily Rainfall for 16 gauges (drain 
files). Hourly rainfall for Hemsby 
and Coltishall (hrain files) 

Temp. (max, min, wet 
and dry bulb) BADC YES 90 - 2000 

Three stations. Max and Min in 
temp files. Wet and dry bulb in hwx 
files 

Solar radiation BADC YES 90 - 2000 Hourly and daily radiation for 1 site 
(Hemsby) 

Wind speed BADC YES 90 - 2000 Hourly mean for 2 sites (Hemsby 
and coltishall). Hwnd files 

Soil temp. BADC YES 90 - 2000 
Daily soil temperature for 2 sites 
(Hemsby and Melton Constable). 
Tsoil files. 

W
ea

th
er

 

Sunshine duration BADC YES 90 - 2000 Hourly sunshine for Coltishall (hsun 
files) 

Agrochemicals DEFRA NO - Hough 

Timing DEFRA YES - Hough 

Amount applied DEFRA YES - ADAS Best Practice 

La
nd

 M
an

ag
em

en
t 

Pr
ac

tic
es

 

Cropping regime ADAS YES - Standard rotations for the Eastern 
region only 

Ground water EA Yes -    

A
bs

tr
ac

tio
ns

 

Surface water EA Yes  -   

Sewage and domestic 
outfalls EA Yes -    

Industrial discharge EA Yes -    

Farming activities e.g. 
sheep dips EA NO -    

D
is

ch
ar

ge
s 

Fish farms EA NO -    

Spatial Data 

  DEM CEH YES - Problems with importing into 
ArcView 

  River network CEH YES - Problems with importing into 
ArcView 

  Land use CEH YES 1990 Needs to be combined with NUTs 
data and ward boundaries 

  Geology   NO     
Spatial variability NSRI YES - - 
Soil type NSRI YES - - So

il 

Properties NSRI YES - - 

Wards Digimap YES 1991 Needs to be combined with NUTs 
data and ward boundaries 

D
ig

ita
l 

B
ou

nd
ar

ie
s 

Catchment  Anglian 
Water YES - - 

Validation Data 

  Water quality data EA YES Vary to 2000 9 sites on the Bure, 6 on the Ant 
and 4 on the Thurne 

  Flow data EA YES 

Honing Lock 
(Ant) 1966 - 

present 
Horstead Mill 
(Bure) 1974 - 

present 

No flow data for the Thurne, but do 
have pump data 

 



Jodie Whitehead  Ph.D. Thesis 

Appendix Six  - 282 - 

 
 
 
 
 
 
 
 
 
 
 
 

APPENDIX SIX 
Areal Average Rainfall Calculations using Thiessen Polygons Method 
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Thiessen Polygons 
 

 
 
Areal Average Rainfall 
 

Rain Gauge Name ArcView Area Proportion of 
Catchment

Annual Rainfall (mm) Weighted 
Rainfall

Near TP 
mean

Near A 
mean

Acle 73780912 9.37 529.70 49.62 32.00 -61.62
Attle Bridge 448202 0.06 626.30 0.36 -64.60 -158.22
Aylsham Bankfield 
House 205104048 26.04 552.80 143.96 8.90 -84.72

Barton Hall 40165776 5.10 569.20 29.03 -7.50 -101.12
Buxton Dudwick 
Cottage 82675992 10.50 606.50 63.67 -44.80 -138.42

Heydon 24202898 3.07 606.80 18.65 -45.10 -138.72
Hindolveston Hope 
House 17169578 2.18 655.50 14.29 -93.80 -187.42

Melton Constable 21375778 2.71 625.00 16.96 -63.30 -156.92
Ormesby St Michael 
w.wks 127116928 16.14 516.70 83.39 45.00 -48.62

Southrepps 84848048 10.77 536.50 57.80 25.20 -68.42
Wolterton Park 84848048 10.77 596.90 64.30 -35.20 -128.82
Woodgate House 25857796 3.28 599.30 19.68 -37.60 -131.22
Total 787594004 100.00 468.08 561.70

Thiessen Mean 468.08 Arithmetric Mean 468.08

River basin 
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APPENDIX SEVEN 
USLE Calculations 
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USLE Calculations: Wischmeier W and Smith D (1978) Predicting rainfall erosion losses: a guide to conservation planning. Agriculture 
Handbook 282. USDA-ARS 
 
 
E = R x K x L x S x C x P 
 
Where E is the mean annual soil loss, R is the rainfall erosivity factor, K is the soil erodibility factor, L is the slope length, S is the slope 
steepness factor, C is the crop management factor and P is the erosion control practice factor. 
 
Table 1: R, LS and P factors 
Factor Calculation Data Source Value 
R 11.54 x exp(0.00215 x annual rainfall) Min and Max rainfall taken from 

Aylsham Bankfield Hoise (1990 – 1999) 
Min = 517.4mm 
Max = 778.3mm 

LS (Slope length/22)^n x (0.065 + (0.045 X slope %) + (0.0065 x 
slope %^2)) 

Taken from Morgan (1995) Soil Erosion 
& Conservation (2nd Ed), Longman.  
n = 0.4 for 3 degrees, 0.3 for 2 degrees 
and 0.2 for 1 degree. 
Max and min values taken from LS 
calculations for each HRU in river basin 
(table 2) 

Min = 0.18 
Max = 0.49 

P No erosion control practices Taken from Morgan (1995) Soil Erosion 
& Conservation (2nd Ed), Longman 

1 
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Table 2: LS calculations 
Slope Length Slope Slope Length Slope 

HRU (m) (m/m) (%) LS Factor HRU (m) (m/m) (%) LS Factor
1 60.98 0.05 3.24 0.42 40 91.46 0.05 3.05 0.47
2 60.98 0.05 3.24 0.42 41 60.98 0.06 3.50 0.45
3 91.46 0.05 3.05 0.47 42 60.98 0.06 3.50 0.45
4 91.46 0.05 3.05 0.47 43 60.98 0.06 3.50 0.45
5 91.46 0.05 3.05 0.47 44 91.46 0.04 2.80 0.43
6 60.98 0.06 3.56 0.46 45 60.98 0.05 3.18 0.41
7 60.98 0.06 3.56 0.46 46 60.98 0.05 3.18 0.41
8 60.98 0.05 3.24 0.42 47 60.98 0.05 3.18 0.41
9 60.98 0.05 3.24 0.42 48 60.98 0.05 3.37 0.44

10 91.46 0.05 2.99 0.46 49 60.98 0.05 3.37 0.44
11 91.46 0.05 2.99 0.46 50 91.46 0.04 2.80 0.43
12 91.46 0.05 2.99 0.46 51 60.98 0.06 3.50 0.45
13 91.46 0.05 2.93 0.45 52 60.98 0.06 3.50 0.45
14 91.46 0.05 2.93 0.45 53 91.46 0.04 2.74 0.42
15 91.46 0.05 2.93 0.45 54 60.98 0.05 3.24 0.42
16 91.46 0.05 2.93 0.45 55 60.98 0.05 3.24 0.42
17 91.46 0.05 2.86 0.44 56 60.98 0.05 3.24 0.42
18 91.46 0.05 2.86 0.44 57 91.46 0.04 2.23 0.35
19 91.46 0.05 2.86 0.44 58 91.46 0.04 2.23 0.30
20 60.98 0.05 3.43 0.45 59 91.46 0.04 2.23 0.30
21 60.98 0.05 3.43 0.45 60 91.46 0.04 2.23 0.30
22 60.98 0.06 3.56 0.46 61 60.98 0.05 3.24 0.42
23 60.98 0.06 3.56 0.46 62 121.95 0.02 1.21 0.18
24 60.98 0.06 3.56 0.46 63 121.95 0.02 1.21 0.18
25 91.46 0.04 2.29 0.36 64 60.98 0.06 3.75 0.49
26 91.46 0.04 2.29 0.36 65 60.98 0.06 3.75 0.49
27 91.46 0.04 2.29 0.36 66 60.98 0.06 3.75 0.49
28 91.46 0.04 2.29 0.36 67 60.98 0.06 3.75 0.49
29 91.46 0.04 2.67 0.41 68 60.98 0.06 3.75 0.49
30 91.46 0.04 2.67 0.41 69 91.46 0.05 3.12 0.47
31 91.46 0.04 2.67 0.41 70 91.46 0.05 3.12 0.47
32 91.46 0.04 2.67 0.41 71 91.46 0.05 3.12 0.47
33 91.46 0.04 2.61 0.40 72 91.46 0.04 2.74 0.42
34 91.46 0.04 2.61 0.40
35 91.46 0.04 2.61 0.40
36 91.46 0.05 3.12 0.47
37 91.46 0.05 3.12 0.47
38 91.46 0.05 2.86 0.44
39 91.46 0.05 3.05 0.47

Slope SteepnessSlope Steepness

 
 
 
 
 
 
 
 
 
 
 
 
 



Jodie Whitehead  Ph.D. Thesis 

Appendix Seven  - 287 - 

Table 3: C Factor Values (Wischmeier and Smith 1978) 
Crop C Factor 
Wheat 0.5 

Winter Barley 0.5 
Spring Barley 0.5 

Oats 0.5 
Other Cereals 0.5 

Potatoes 0.64 
Sugar Beet 0.64 
Fodder 1 0.36 
Fodder 2 0.36 

Field Beans 0.12 
Peas for harvesting dry 0.12 

Maize 0.68 
Oilseed Rape 0.4 
Other Arable 0.4 

Linseed 0.4 
Bare Fallow 1 

All other vegetables 0.45 
Orchards 0.006 

Small Fruits 0.45 
Pasture 0.003 

Woodland 0.001 
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Table 4: USLE K Factor Calculations 

SAND SILT CLAY OC_ag OC_pg fcsand fcl-si Arable Grass fhisand Arable Grass
1024 Adventurers 95 4 1 20.5 18.3 0.20 0.94 0.75 0.75 0.44 0.06 0.06
1022 Altcar 33 33 33 32.1 39.5 0.20 0.81 0.75 0.75 1.00 0.12 0.12
543 Aylsham 47 39 14 1.2 2.6 0.20 0.91 0.87 0.75 1.00 0.16 0.14
711 Beccles 46 29 25 1.7 3.3 0.20 0.83 0.78 0.75 1.00 0.13 0.12
821 Blackwood 70 19 11 2.3 4 0.20 0.87 0.75 0.75 0.95 0.13 0.12
643 Felthorpe 74 19 7 0.20 0.91 1.00 1.00 0.90 0.16 0.16
711 Gresham 41 47 12 1.4 2.5 0.20 0.93 0.83 0.75 1.00 0.16 0.14
871 Hanworth 52 37 11 8.2 9.2 0.20 0.92 0.75 0.75 1.00 0.14 0.14
861 Isleham 67 13 20 6.2 8.5 0.20 0.76 0.75 0.75 0.97 0.11 0.11
642 Lakenheath 75 17 8 2.3 2.9 0.20 0.89 0.75 0.75 0.88 0.12 0.12
1025 Mendham 5 32 63 25 25 0.33 0.72 0.75 0.75 1.00 0.18 0.18
814 Newchurch 2 37 61 4.2 6 0.42 0.75 0.75 0.75 1.00 0.23 0.23
551 Newport 73 19 8 1.1 2.6 0.20 0.90 0.90 0.75 0.92 0.15 0.12
552 Ollerton 73 12 15 2.2 3.2 0.20 0.78 0.76 0.75 0.92 0.11 0.11
711 Prolleymoor 14 58 28 2.8 5 0.27 0.89 0.75 0.75 1.00 0.18 0.18
712 Ragdale 35 30 35 2.6 4.9 0.20 0.79 0.75 0.75 1.00 0.12 0.12
631 Redlodge 88 8 4 3.5 4.3 0.20 0.89 0.75 0.75 0.54 0.07 0.07
541 Sheringham 48 42 10 0.8 3.4 0.20 0.94 0.96 0.75 1.00 0.18 0.14
831 Sustead 54 33 13 2.1 2.6 0.20 0.91 0.76 0.75 1.00 0.14 0.14
813 Wallasea 9 41 50 4 5.5 0.28 0.79 0.75 0.75 1.00 0.16 0.16
541 Wick 59 27 14 1.7 3.5 0.20 0.88 0.78 0.75 0.99 0.14 0.13
572 Wickmere 29 42 29 0.9 2.5 0.20 0.85 0.94 0.75 1.00 0.16 0.13

Soils
forgc K factor (t ha-1)

 
 
 
USLE K Factor = fcsand x fcl-si x fhisand      Where: msilt = % silt mc = % clay 
             ms = % sand  orgC = % organic carbon 
fcl-si =  (msilt/(mc + msilt))^3 
forgc = (1 – (0.25 x orgc/(orgc + exp(3.72 – 2.95 x orgc)))) 
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Table 5: E Calculations 

Soil Association Areas In SWAT 
(ha)

Ancillary 
Subgroups Proportions Winter Wheat/Winter 

Barley & Spring Barley

Potatoes/
Sugar 
Beet 

Maize Grass fallow
Field 

Beans/
Peas 

813 Wallasea 75 2.46 3.15 3.35 0.01 4.92 0.59
814 Newchurch 25 3.51 4.50 4.78 0.02 7.03 0.84

551 Newport 76 2.23 2.85 3.03 0.01 4.45 0.53
631 Redlodge 24 1.08 1.38 1.47 0.01 2.16 0.26
861 Isleham 31 1.66 2.12 2.25 0.01 3.31 0.40

1024 Adventurers 29 0.93 1.19 1.27 0.01 1.87 0.22
552 Ollerton 20 1.63 2.09 2.22 0.01 3.27 0.39

821 Blackwood 20 1.88 2.41 2.56 0.01 3.76 0.45
541 Wick 61 2.07 2.65 2.82 0.01 4.14 0.50

541 Sheringham 28 2.70 3.46 3.68 0.01 5.41 0.65
551 Newport 11 2.23 2.85 3.03 0.01 4.45 0.53

541 Wick 38 2.07 2.65 2.82 0.01 4.14 0.50
572 Wickmere 36 2.47 3.16 3.35 0.01 4.93 0.59

541 Sheringham 16 2.70 3.46 3.68 0.01 5.41 0.65
543 Aylsham 10 1.84 2.36 2.51 0.01 3.68 0.44
871 Hanworth 40 2.08 2.67 2.84 0.01 4.17 0.50
831 Sustead 30 2.06 2.64 2.81 0.01 4.13 0.50

1024 Adventurers 30 0.93 1.19 1.27 0.01 1.87 0.22
711 Gresham 63 2.35 3.00 3.19 0.01 4.69 0.56

711 Prolleymoor 21 2.68 3.42 3.64 0.02 5.35 0.64
831 Sustead 16 2.06 2.64 2.81 0.01 4.13 0.50
711 Beccles 65 1.96 2.51 2.66 0.01 3.92 0.47
712 Ragdale 35 1.80 2.30 2.45 0.01 3.60 0.43
1022 Altcar 50 1.84 2.36 2.51 0.01 3.68 0.44

1024 Adventurers 30 0.93 1.19 1.27 0.01 1.87 0.22
1025 Mendham 20 2.65 3.39 3.60 0.02 5.30 0.64
643 Felthorpe 40 2.46 3.15 3.35 0.01 4.93 0.59

642 Lakenheath 27 1.79 2.29 2.43 0.01 3.57 0.43
821 Blackwood 33 1.88 2.41 2.56 0.01 3.76 0.45

Erodibility (E) (max values) (t ha-1)

Gresham 1547.7441

Felthorpe 1674.0102

Beccles 1 1039.7624

Altcar 2 621.5805

Wick 2 31279.8211

Hanworth 2038.9593

Isleham 2 1463.0411

Wick 3 17645.7177

Wallasea 1 116.0625

Newport 4 3787.6766
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Potatoes 
 
10/11/2004                                           CropWat 4 
Windows Ver 4.3 
*********************************************************************
********* 
 
                          Irrigation Scheduling Report 
 
*********************************************************************
********* 
 
* Crop Data: 
------------ 
- Crop  # 1    : Potato 
- Block #      : 1  
- Planting date: 1/4 
 
* Soil Data: 
------------ 
- Soil description               : Light 
- Initial soil moisture depletion: 0% 
 
 
* Irrigation Scheduling Criteria: 
--------------------------------- 
- Application Timing: 
     Irrigate when 100% of readily soil moisture depletion occurs. 
- Applications Depths: 
     Refill to 100% of readily available soil moisture. 
- Start of Scheduling: 1/4 
 
---------------------------------------------------------------------
--------- 
Date   TAM    RAM   Total  Efct.   ETc  ETc/ETm SMD  Interv. Net    
Lost  User 
                    Rain   Rain                              Irr.   
Irr.  Adj. 
 
      (mm)   (mm)   (mm)   (mm)   (mm)    (%)   (mm)  (Days) (mm)   
(mm)  (mm) 
---------------------------------------------------------------------
--------- 
1/4   30.0   7.5    7.6    0.0    0.9   100.0%  0.9 
6/4   32.7   8.3    7.3    4.6    1.0   100.0%  1.0 
11/4  35.5   9.2    7.0    5.0    1.0   100.0%  1.0 
16/4  38.2   10.1   6.7    5.4    1.1   100.0%  1.1 
21/4  40.9   11.0   6.4    5.8    1.2   100.0%  1.2 
26/4  43.6   11.9   6.2    6.2    1.4   100.0%  1.5 
1/5   46.4   12.9   5.9    5.9    1.8   100.0%  3.5 
6/5   49.1   13.8   5.7    5.7    2.2   100.0%  8.0 
9/5   50.7   14.4   0.0    0.0    2.5   100.0%  15.1    38   15.1   
0.0 
11/5  51.8   14.8   5.5    2.6    2.7   100.0%  2.7 
16/5  54.5   15.9   5.3    5.3    3.2   100.0%  12.3 
18/5  55.6   16.3   0.0    0.0    3.4   100.0%  18.9    9    18.9   
0.0 
21/5  57.3   16.9   5.2    5.2    3.7   100.0%  5.7 
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25/5  59.5   17.8   0.0    0.0    4.2   100.0%  21.7    7    21.7   
0.0 
26/5  60.0   18.0   5.0    0.0    4.2   100.0%  4.2 
30/5  60.0   18.0   0.0    0.0    4.4   100.0%  21.4    5    21.4   
0.0 
31/5  60.0   18.0   4.9    0.0    4.4   100.0%  4.4 
4/6   60.0   18.0   0.0    0.0    4.5   100.0%  22.2    5    22.2   
0.0 
5/6   60.0   18.0   4.8    0.0    4.5   100.0%  4.5 
8/6   60.0   18.0   0.0    0.0    4.6   100.0%  18.4    4    18.4   
0.0 
10/6  60.0   18.0   4.8    4.7    4.7   100.0%  4.7 
13/6  60.0   18.0   0.0    0.0    4.8   100.0%  18.9    5    18.9   
0.0 
15/6  60.0   18.0   4.7    4.7    4.8   100.0%  4.9 
18/6  60.0   18.0   0.0    0.0    4.9   100.0%  19.4    5    19.4   
0.0 
20/6  60.0   18.0   4.7    4.7    4.9   100.0%  5.1 
23/6  60.0   18.0   0.0    0.0    5.0   100.0%  19.9    5    19.9   
0.0 
25/6  60.0   18.0   4.8    4.8    5.0   100.0%  5.2 
28/6  60.0   18.0   0.0    0.0    5.0   100.0%  20.3    5    20.3   
0.0 
30/6  60.0   18.0   4.8    4.8    5.1   100.0%  5.3 
3/7   60.0   18.0   0.0    0.0    5.1   100.0%  20.5    5    20.5   
0.0 
5/7   60.0   18.0   4.9    4.9    5.1   100.0%  5.3 
8/7   60.0   18.0   0.0    0.0    5.1   100.0%  20.6    5    20.6   
0.0 
10/7  60.0   18.4   5.0    5.0    5.1   100.0%  5.1 
13/7  60.0   19.6   0.0    0.0    4.9   100.0%  19.9    5    19.9   
0.0 
15/7  60.0   20.4   5.2    4.8    4.7   100.0%  4.7 
19/7  60.0   22.0   0.0    0.0    4.5   100.0%  23.1    6    23.1   
0.0 
20/7  60.0   22.4   5.4    0.0    4.4   100.0%  4.4 
25/7  60.0   24.4   5.6    5.6    4.1   100.0%  19.9 
27/7  60.0   25.2   0.0    0.0    3.9   100.0%  27.9    8    27.9   
0.0 
30/7  60.0   26.4   5.8    5.8    3.7   100.0%  5.6 
4/8   60.0   28.4   6.0    6.0    3.4   100.0%  17.1 
---------------------------------------------------------------------
--------- 
Total               145.2  107.6  445.7 100.0%               308.3  
0.0   0.0 
---------------------------------------------------------------------
--------- 
 
* Yield Reduction: 
------------------ 
- Estimated yield reduction in growth stage # 1 = 0.0% 
- Estimated yield reduction in growth stage # 2 = 0.0% 
- Estimated yield reduction in growth stage # 3 = 0.0% 
- Estimated yield reduction in growth stage # 4 = 0.0% 
                                                -------- 
- Estimated total yield reduction               = 0.0% 
 
* These estimates may be used as guidelines and not as actual figures. 
---------------------------------------------------------------------
--------- 
 



Jodie Whitehead  Ph.D. Thesis 

Appendix Eight  - 293 - 

* Legend: 
--------- 
 TAM = Total   Available Moisture = (FC% - WP%)* Root Depth  [mm]. 
 RAM = Readily Available Moisture = TAM * P                  [mm]. 
 SMD = Soil Moisture Deficit                                 [mm]. 
 
* Notes: 
-------- 
 Monthly ETo is distributed using polynomial curve fitting. 
 Monthly Rainfall is distributed using polynomial curve fitting. 
 To generate rainfall events, each 5 days of distributed rainfall are 
  accumulated as one storm. 
 Only NET irrigation requirements are given here. No any kind of 
losses 
  was taken into account in the calculations. 
*********************************************************************
********* 
C:\CROPWATW\REPORTS\PTS_L.TXT 
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Subcatchment EA 80% EA 80% EA 80% EA 80% EA 80% EA 80% EA 80%
1 0.00 0.00 59795.00 47836.00 4.56 3.65 573.00 458.40 13.60 10.88 0.00 0.00 60386.16 48308.93
2 0.00 0.00 5219.11 4175.29 0.00 0.00 0.00 0.00 0.00 0.00 20.42 16.34 5239.53 4191.62
3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 282.54 226.03 0.00 0.00 282.54 226.03
4 754.00 603.20 99.62 79.70 0.00 0.00 0.00 0.00 1082.49 865.99 7.40 5.92 1943.51 1554.81
5 1501.00 1200.80 0.00 0.00 0.00 0.00 0.00 0.00 7.00 5.60 0.00 0.00 1508.00 1206.40
6 1000.00 800.00 60.00 48.00 10.00 8.00 0.00 0.00 2915.00 2332.00 18.14 14.51 4003.14 3202.51
7 2046.00 1636.80 243.60 194.88 0.00 0.00 0.00 0.00 31.80 25.44 31.80 25.44 2353.20 1882.56
8 523.00 418.40 11853.82 9483.06 1649.10 1319.28 910.00 728.00 6.80 5.44 8.80 7.04 14951.52 11961.22
9 1282.00 1025.60 1449.00 1159.20 1052.00 841.60 0.00 0.00 1899.50 1519.60 19.04 15.23 5701.54 4561.23
10 0.00 0.00 11585.00 9268.00 1.36 1.09 900.00 720.00 3370.82 2696.66 0.00 0.00 15857.18 12685.74
11 4090.00 3272.00 5471.35 4377.08 0.00 0.00 655.00 524.00 5974.00 4779.20 47.64 38.11 16237.99 12990.39
12 1945.00 1556.00 6.82 5.46 0.00 0.00 0.00 0.00 4073.50 3258.80 1123.00 898.40 7148.32 5718.66
13 3757.00 3005.60 1635.28 1308.22 288.64 230.91 818.00 654.40 2496.59 1997.27 2.96 2.37 8998.47 7198.78
14 0.00 0.00 2452.00 1961.60 82.00 65.60 1365.00 1092.00 898.60 718.88 0.00 0.00 4797.60 3838.08
15 0.00 0.00 34.00 27.20 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 34.00 27.20
16 2675.00 2140.00 13099.36 10479.49 1814.74 1451.79 0.00 0.00 2012.20 1609.76 1001.83 801.46 20603.13 16482.50
17 190500.00 152400.00 2795.00 2236.00 0.00 0.00 0.00 0.00 3706.90 2965.52 0.00 0.00 197001.90 157601.52
18 0.00 0.00 8310.00 6648.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 8310.00 6648.00
19 0.00 0.00 2.30 1.84 0.00 0.00 0.00 0.00 0.00 0.00 15.00 12.00 17.30 13.84
20 0.00 0.00 10.00 8.00 0.00 0.00 0.00 0.00 820.00 656.00 0.00 0.00 830.00 664.00
21 8572.00 6857.60 2751.30 2201.04 0.00 0.00 0.00 0.00 1745.60 1396.48 0.00 0.00 13068.90 10455.12
22 7336.73 5869.38 45.49 36.39 3.41 2.73 0.00 0.00 13598.30 10878.64 958.00 766.40 21941.93 17553.54
23 3881.00 3104.80 2360.00 1888.00 602.27 481.82 0.00 0.00 17468.25 13974.60 614.09 491.27 24925.61 19940.49
24 4296.00 3436.80 25174.00 20139.20 3445.12 2756.10 0.00 101.64 81.31 15.96 12.77 33032.72 26426.18
25 1090.00 872.00 1669.70 1335.76 1.10 0.88 0.00 0.00 56.50 45.20 7.70 6.16 2825.00 2260.00
26 2072.00 1657.60 1188.50 950.80 1273.00 1018.40 0.00 0.00 3738.82 2991.06 27.10 21.68 8299.42 6639.54
27 3180.00 2544.00 10502.64 8402.11 0.00 0.00 0.00 0.00 2021.55 1617.24 15.00 12.00 15719.19 12575.35
28 383.00 306.40 69252.36 55401.89 23.00 18.40 0.00 0.00 1049.00 839.20 0.00 0.00 70707.36 56565.89
29 1320.00 1056.00 3874.16 3099.33 2727.00 2181.60 0.00 0.00 1461.46 1169.17 5.00 4.00 9387.62 7510.10

Non-specified Use (m3 day-1)
Total (m3  day-1)Surface Borehole Well Surface Borehole Well

Agriculture (m3  day-1)
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EA Discharge Data for SWAT 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Jodie Whitehead  Ph.D. Thesis 

Appendix Ten  - 297 - 

EA discharge data for the River Ant 
 
NUMBER RECEIVING_ DWF MAX_DAILY_ EASTING NORTHING
AEENF1312 River Ant NT 2600.00 6618.00 635710 324280
PR4NF660X Trib River Ant 0.00 3409.00 629900 325200
PR4NF1129X Via a Weir Ormesby Broad 0.00 1500.00 647200 315300
AEENF12002 Hundred Stream River Ant 17.00 45.00 633890 327870
PRENF3708 Trib River Ant 0.00 16.00 634370 327360
PR4NF270 Trib River Ant 0.00 15.00 634100 329700
PR4NF1112X Trib River Ant 0.00 10.00 634100 329700
PR4NF1560 Trib River Ant 0.00 10.00 631870 323270
PR4NF568 tributary River Ant 0.00 10.00 632700 327600
PRENF327 tributary River Ant 0.00 8.00 635430 332000
PR4NF1682 Trib River Ant 0.00 5.00 638200 324600
PRENF2562 Trib Dilhan Canal 0.00 5.00 630300 329250
PRETF8563 River Ant 0.00 5.00 634820 324830
PR4NF2084 Trib River Ant 0.00 4.00 625800 333900
PR4NF284 Trib River Ant 0.00 4.00 633020 324600
PRENF127 Trib Dilham Canal 0.00 4.00 632280 326420
PR4NF162 Limekiln Dyke River Ant 0.00 3.00 634420 321090
PRENF63 Trib River Ant 0.00 3.00 634390 320130
PRENF755 Trib River Ant 0.00 3.00 633060 327710
PR4NF1084 Trib River Ant 0.00 2.00 634820 327660
PR4NF1095X Trib River Ant 0.00 2.00 635200 319100
PR4NF1871 Trib River Ant 0.00 2.00 632700 327500
PR4NF1952 Trib River Ant 0.00 2.00 628700 331900
PR4NF309 Limekiln Dyke Barton Broa 0.00 2.00 632300 321000
PR4NF426 Limekiln Dyke 0.00 2.00 634420 321090
PR4NF678X Trib of River Ant 0.00 2.00 631100 329700
PR4NF886 Trib River Ant 0.00 2.00 627200 331600
PR4NF913 Trib River Ant 0.00 2.00 636400 326300
PRENF10334 tributary River Ant 0.00 2.00 636750 326250
PRENF2238 Trib North Walsham & Dilh 0.00 2.00 633400 327270
PRENF3426 Trib Dilham Canal 0.00 2.00 632950 326650
PRENF8736 tributary River Ant 0.00 2.00 629620 325880
PRENF8857 tributary River Ant 0.00 2.00 632610 327660

PRENF11640 
TRIBUTARY OF RIVER 
ANT  2.00 634200 320180

PRENF11669 LIMEKILN DYKE  2.00 634370 321020
PR4NF1035 Trib River Ant 0.00 1.00 622300 332600
PR4NF1657 Unknown Trib River Ant 0.00 1.00 627110 333480
PR4NF1966 Trib River Ant 0.00 1.00 632600 327600
PR4NF1976 Trib River Ant 0.00 1.00 634300 321000
PR4NF1978 Trib River Ant 0.00 1.00 627300 333500
PRENF10135 tributary River Ant 0.00 1.00 631500 327400
PRENF10136 tributary River Ant 0.00 1.00 634550 324180
PRENF10219 tributary River Ant 0.00 1.00 637400 328800
PRENF10224 tributary River Ant 0.00 1.00 630000 328500

PRENF10379 
North Walsham & Dilham 
Ca 0.00 1.00 630000 330650

PRENF10854 tributary River Ant 0.00 1.00 634090 321110
PRENF11408 tributary River Ant 0.00 1.00 634500 324220
PRENF152 Trib Dilham Canal 0.00 1.00 632690 327680
PRENF1534 Trib River Ant 0.00 1.00 631540 327330
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PRENF155 Trib Dilham Canal 0.00 1.00 632690 327680
PRENF179 Trib River Ant 0.00 1.00 634280 320940
PRENF180 Trib River Ant 0.00 1.00 634280 320940
PRENF220 Trib River Ant 0.00 1.00 632620 327600
PRENF4089 Trib River Ant 0.00 1.00 634320 320180
PRENF8347 Trib River Ant 0.00 1.00 633920 324090
PRENF8468 Trib River Ant 0.00 1.00 632730 324800
PRENF8714 tributary River Ant 0.00 1.00 634110 321090
PRENF952 Trib River Ant 0.00 1.00 634800 330180

PRENF11750 
North Walsham & Dilham 
Canal  1.00 633000 327700

PRENF11812 
TRIBUTARY OF RIVER 
ANT  1.00 633200 325300

PRENF11813 
TRIBUTARY OF RIVER 
ANT  1.00 633200 325301

PRENF13199 BARTON BROAD  1.00 635000 321310
AEENF1202 Foxes Beck River Ant 160.00 0.00 626540 334850
AW4NF868 River Ant NT 25.00 0.00 630300 325700
PR4NF751X Trib River Ant 23.00 0.00 630000 320000
AW4NF637X Tributary Rive Ant  NT 15.00 0.00 633000 324500
AW4NF1082X Ditch to River Ant NT 0.00 0.00 632800 327700
AWENF103 Tributary River Ant NT 0.00 0.00 634610 330770
PR4NF571 Trib River Ant 0.00 0.00 634900 324900

 
EA discharge data for the River Bure 
 

NUMBER RECEIVING_ DWF 
MAX_DAILY
_ 

EASTIN
G 

NORTHIN
G 

PR4NF1656 River Bure 0.00 1000.00 614800 330600

AEENF12058 
Scarrow Beck River 
Bure 

291.0
0 755.00 618580 333590

PRENF10038 River Bure 0.00 500.00 624730 321840
CDENF1041
1 River Bure 0.00 323.00 624700 321900
PR4NF972 Trib River Bure 0.00 32.00 603100 331700
PR4TF527X tidal River Bure 0.00 9.00 643900 309000
PR4TS527X River Bure 0.00 9.00 643900 309000
PR4NF1075X Trib River Bure 0.00 5.00 614500 330800
PR4NF789 Trib River Bure 0.00 5.00 626400 321000
PRENF10753 tributary River Bure 0.00 5.00 605930 326730
PR4NF1488 tributary River Bure 0.00 4.00 603600 331400
PR4NF863X Trib Scarrow Beck 0.00 4.00 616700 333300
PRENF10059 tributary River Bure 0.00 4.00 619150 320690
PRENF10702 catchment of River Bure 0.00 4.00 634600 311500
PRENF10750 tributary River Bure 0.00 4.00 609710 333070
PRENF11403 tributary River Bure 0.00 4.00 640400 306600
PR4NF810X River Bure 0.00 3.00 613900 333200
PRENF10388 tributary Scarrow Beck 0.00 3.00 619020 331180
PRENF8981 tributary River Bure 0.00 3.00 612820 334990
PR4NF1049X Trib River Bure 0.00 2.00 630700 317400
PR4NF1334 Trib River Bure 0.00 2.00 609920 333720
PR4NF1338 Trib River Bure 0.00 2.00 644800 315300
PR4NF1479 Watercourse River Bure 0.00 2.00 643200 310500
PR4NF1667 Watercourse River Bure 0.00 2.00 612250 329600
PR4NF1799 Trib River Bure 0.00 2.00 614050 333330
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PR4NF2062 Trib River Bure 0.00 2.00 633700 312100
PR4NF262X tributary River Bure 0.00 2.00 643200 310500
PR4NF608 Trib River Bure 0.00 2.00 622800 334600
PR4NF769 Stream River Bure 0.00 2.00 622600 329800
PRENF10245 tributary River Bure 0.00 2.00 615200 327500
PRENF10725 River Bure 0.00 2.00 614100 330400
PRENF10850 River Bure 0.00 2.00 633890 317650
PRENF11112 tributary Scarrow Beck 0.00 2.00 619300 334360
PRENF3469 River Bure 0.00 2.00 615410 329990
PRENF7834 Trib of River Bure 0.00 2.00 622530 329760
PRENF8846 River Bure 0.00 2.00 627600 319660
PRETF10087 River Bure 0.00 2.00 630750 317570
PRETF2495 River Bure 0.00 2.00 633720 317410
PRENF11833 TRIBTUARY OF RIVER BURE 2.00 618480 327100
PRENF13331 TRIBUTARY RIVER BURE 2.00 621350 326270
PR4NF1228 unknown trib River Bure 0.00 1.00 644800 315300
PR4NF1524 River Bure 0.00 1.00 610500 330700
PRENF10048 tributary River Bure 0.00 1.00 633860 317750
PRENF10080 tributary River Bure 0.00 1.00 618330 315750
PRENF10190 tributary River Bure 0.00 1.00 608250 331750
PRENF10914 tributary River Bure 0.00 1.00 609700 333200
PRENF11013 tributary Scarrow Beck 0.00 1.00 618110 334660
PRENF11109 tributary River Bure 0.00 1.00 639270 307580
PRENF11249 tributary River Bure 0.00 1.00 603860 329440
PRENF11250 tributary River Bure 0.00 1.00 603860 329440
PRENF11251 tributary River Bure 0.00 1.00 603860 329440
PRENF11252 tributary River Bure 0.00 1.00 603860 329440
PRENF11297 tributary River Bure 0.00 1.00 636300 312500
PRENF11382 tributary River Bure 0.00 1.00 643270 310600
PRENF11478 River Bure 0.00 1.00 634200 317250
PRENF130 Trib River Bure 0.00 1.00 604220 329450
PRENF68 River Bure 0.00 1.00 630900 317510
PRENF750 River Bure 0.00 1.00 607050 331780
PRENF8189 Trib River Bure 0.00 1.00 640900 312750
PRENF8426 Trib River Bure 0.00 1.00 614000 333320
PRENF8603 Trib River Bure 0.00 1.00 632720 316150
PRENF8896 tributary Tidal River Bur 0.00 1.00 627930 319350
PRENF8974 tributary River Bure 0.00 1.00 618270 339780
PRELF13351 TRIBUTARY RIVER BURE 1.00 613200 327500
PRENF11584 TRIBUTARY OF RIVER BURE 1.00 610730 329850
PRENF11783 TRIBUTARY OF RIVER BURE 1.00 621400 326200

PRENF11853 
TRIBUTARY OF SCARROW 
BECK 1.00 615850 337000

PRENF11953 RIVER BURE  1.00 613990 333300
PRENF13239 RIVER BURE  1.00 630610 317510

AW4NF550X R.Bure NT 
818.0

0 0.00 620500 326700

AEETF1000 River Bure T 
720.0

0 0.00 640900 309800
AW4TF303A
X Tributary of River Bure T 

187.0
0 0.00 636900 313800

AW4NF795 River Bure NT 
108.0

0 0.00 611800 329900

AEENF100 
Stakebridge Beck River 
Bu 0.00 0.00 626490 325030
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AW4NF1090
X Dt to Trib of Kings Beck 0.00 0.00 624100 326700
PR4TF1523 River Bure 0.00 0.00 630400 318200



Jodie Whitehead  Ph.D. Thesis 

Appendix Eleven  - 301 - 

 
 
 
 
 
 
 
 
 
 
 
 

APPENDIX ELEVEN 
SWAT Soil Moisture Outputs 
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Soil Moisture - Sub basin 1: Wick 2 (1995 -96)
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Soil Moisture - Sub basin 1: Newport (1995 - 96)
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Soil Moisture - Sub basin 18: Wallasea (1995 - 96)
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