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Abstract—The challenge in the hydrodynamic modelling of tidal 
and marine turbine farms is to take into account the interaction 
of flow events across a wide range of scales, such as the blade 
scale, turbine scale, array scale and regional scale. Whilst the 
interaction of the blade and turbine scales can be studied using 
the classical Blade-Element-Momentum (BEM) theory, no basic 
theory was available until recently to describe the interaction of 
the turbine and larger scales. The two-scale actuator disc theory 
(ADT), first proposed in 2012 by Nishino and Willden, explains 
the interaction of the turbine and array scales at a fundamental 
level; however, its validity or applicability to real problems has 
only partially been confirmed. Hence in this study we perform 
3D RANS simulations of single and double rows of porous discs 
(8 discs for each row) in the middle of a shallow open channel 
with a vertically sheared flow. The simulation results are shown 
to agree qualitatively with the two-scale ADT and importantly, 
the optimal intra-disc spacing predicted by the simulations (to 
maximise the total power) agrees well with the theory, for both 
single- and double-row cases. 
 

Keywords—Tidal stream energy, Ocean current energy, Multi-
scale modelling, Hydrodynamics, Optimal turbine array 

I. INTRODUCTION 

Tidal currents are one of the most promising sources of 
renewable energy especially for countries with suitable marine 
conditions. The maximum power extracted from a fluid flow, 
independently of the device design, can be assessed using the 
Linear Momentum Actuator Disk Theory (LMADT) [1]. This 
theory was derived originally to predict the performance of 
wind turbines and rotorcraft applications; however, the theory 
was then extended for tidal applications, for which the power 
extracted is strongly influenced by the blockage of the tidal 
channel [2]–[4]. Most importantly, the maximum power of a 
turbine placed in a channel is proportional to (1 – B)–2, where 
B is the channel’s cross-sectional blockage ratio. 

Following the above-mentioned studies on the maximum 
power of a tidal turbine in a channel, Nishino & Willden [5] 
carried out a further theoretical investigation focusing on the 
efficiency of a lateral array of turbines partially blocking a 
wide water channel. This study introduced the idea of scale 
separation between the flow around each device and that 
around the whole array. Although this extended actuator disc 

theory (namely the two-scale Actuator Disc Theory) is still a 
simple one-dimensional quasi-inviscid theory neglecting the 
effect of seabed friction and the resulting vertical shear of the 
flow, it has been shown to be useful to understand the basic 
effects of local and global blockages on the performance of a 
lateral array of turbines [5], [6]. A more recent explanation of 
the physical meaning of the local and global blockage effects 
has been given by Nishino and Draper [7]. 

One of the challenges in the hydrodynamic modelling of 
tidal turbine arrays is how to model the interaction of flow 
events across a wide range of scales, such as the blade scale, 
turbine scale, array scale and regional scale [8]. Similarly to 
the classical Blade-Element-Momentum (BEM) theory being 
very useful to understand the interaction of blade and turbine 
scales, the two-scale ADT is expected to become an important 
basis to understand the interaction of turbine and array scales. 
However, since the theory is based on many assumptions, it is 
crucial to assess its validity or applicability to real problems 
and, if necessary, make some corrections (like we often make 
tip/hub-loss corrections to the BEM theory, for example). 

In this study we perform 3D Reynolds-averaged Navier-
Stokes (RANS) simulations of single and double lateral rows 
of turbines (modelled as actuator discs) placed in the middle 
of a wide water channel. The results are then compared with 
the two-scale ADT to assess its validity. Specifically, we aim 
to assess whether the theory is still approximately valid in a 
practical situation where (i) the flow is vertically sheared due 
to the effect of the seabed and (ii) not only single but also 
double rows of turbines are deployed. The single- and multi-
row versions of the two-scale ADT are briefly described first 
in Section II, followed by the details of the RANS simulations 
in Section III. Results are presented in Section IV and finally 
conclusions are given in Section V. 

II. TWO-SCALE ACTUATOR DISC THEORY 

We first describe briefly the original two-scale ADT for a 
single row of a number of turbines placed in the middle of a 
wide water channel. We then describe a possible extension of 
this theory to double (and more) rows of turbines. 

A. Single Row 

The two-scale ADT was proposed by Nishino and Willden 
[5] originally for a single lateral row of turbines. The basic 
assumption is that the number of turbines arrayed is large 
enough to ensure a clear “scale separation” between the flow 
around each turbine and that around the whole array. For the 
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case of a single row of turbines, this assumption seems valid 
(at least approximately) when the number of turbines arrayed 
is of the order of 10 [6]. 

For such a long single row of turbines, we can consider the 
flow around each turbine (i.e. device-scale flow) and the flow 
around the whole array (i.e. array-scale flow) separately. The 
only issue here is that for the device-scale flow, the upstream 
flow speed is not known a priori (because it depends on how 
much the entire channel flow bypasses the whole array). By 
applying the single-scale blockage effect analysis of Garrett 
and Cummins [2] to each of the device-scale and array-scale 
flow problems, we can obtain the following relationships (see 
[5] and [3] for further details): 
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where aL and aA are the axial induction factors for the device- 
and array-scale problems, γL and γA are the ratios of the near-
wake velocity to the upstream velocity, again for the device- 
and array-scale problems, and BL and BA are the local and 
array blockage ratios, i.e. the blockage ratios for the device- 
and array-scale problems. Also, we can obtain the following: 
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where CTL and CTA are the thrust coefficients for the device- 
and array-scale problems. In order to solve the entire problem 
(or to obtain the relationship between aL and aA) we need to 
couple the device- and array-scale problems in such a way that 
(i) the mass flow through the entire array is the same between 
the two problems, and (ii) the total thrust acting on the entire 
array is the same between the two problems. As described in 
[5] the coupling condition to be satisfied is therefore 

TLLATA CBaC 2)1(                                  (5) 

A common procedure to solve this two-scale problem (for a 
given set of BL and BA) is as follows: 

1. Solve the device-scale problem, i.e. obtain aL and CTL 
as a function of γL, using Eqs (1) and (3). 

2. Solve the array-scale problem, i.e. obtain aA and CTA as 
a function of γA, using Eqs (2) and (4). 

3. Find (numerically) the value of aA that satisfies the 
coupling condition, Eq. (5), for a given aL (or CTL). 

4. Finally, the (global) thrust and power coefficients of 
the turbines can be calculated from the following Eqs 
(6) and (7), respectively, for a given aL (or CTL): 

TLATG CaC 2)1(                                   (6) 
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where aG is the (global) axial induction factor [5]. 

B. Double Rows 

The above two-scale ADT can be extended to double (and 
more) rows of turbines if we assume that: (i) the streamwise 
spacing between each row, sR, is large enough to neglect the 
device-scale wake interaction (i.e. sR is large enough for the 
wake of each turbine to be fully mixed before being affected 
by the turbines downstream); and (ii) the streamwise extent of 
the region in which we observe the device-scale flow events 
(approximately nR sR, where nR is the number of rows) is still 
much smaller than the scale for the array-scale (or horizontal) 
flow expansion and mixing (so that the nR rows of turbines 
can still be modelled as a single power-extracting fence from 
the array-scale point of view) [9]. 

It should be noted that these assumptions become more and 
more difficult to be satisfied as nR increases. The number of 
turbines (arrayed within each row) required for the theory to 
be valid is expected to be nR times more than that required for 
the single row case. Nevertheless, for such long/wide lateral 
rows of turbines satisfying the above two assumptions, we can 
apply the two-scale ADT in a very similar way to the single 
row case. The only difference is the coupling condition to be 
satisfied between the device- and array-scale problems (Eq. 
(5)), which needs to be replaced by the following:    

TLLARTA CBanC 2)1(                              (8) 

Note that nR = 2 for the double row case to be discussed later 
in this paper. 

Another application of the two-scale ADT to double rows 
of turbines has recently been proposed by Draper and Nishino 
[10]. In their study, two rows of turbines are modelled (from 
the array-scale point of view) as two power-extracting fences 
rather than as a single power-extracting fence, with assuming 
that the downstream fence is located at the end of the “near 
wake” of the upstream fence (approximately one to two fence-
widths downstream of the upstream fence). This approach is 
expected to be more appropriate when the number of turbines 
(arrayed within each row) is not large enough. However, in 
the present study we use the former approach using Eq. (8) for 
simplicity. Although not shown here, these two approaches 
tend to yield similar results unless the thrust acting on each 
fence is very large. 

III. RANS SIMULATIONS 

A. Flow Configurations 

As mentioned earlier, in this study we perform 3D RANS 
simulations of single and double rows of 8 turbines (modelled 
as porous discs) in a wide water channel. The turbines have a 
diameter, d, of 20m and are arrayed at the centre of a wide 
rectangular channel. The streamwise length of the channel is 
200d (4000m), its height h is 2d (40m) and its width w is 40d 
(800m). The lateral spacing between each turbine, s, varies 
from 0.25d to 4d. For the double row cases, the streamwise 
spacing between the rows is fixed at 10d (200m). Cartesian 
coordinates (x, y, z) are employed to represent the spanwise, 
vertical and streamwise directions, respectively. 

It should be noted that a very long channel (computational 
domain) has been used in this study to ensure that the sheared 



flow profile develops sufficiently before the flow reaches the 
turbines at the centre of the channel. Table 1 summarizes the 
flow configurations simulated. Note that the global blockage 
ratio BG (= BLBA) is identical for all cases. The channel inlet 
velocity, u, is fixed at 2m/s, resulting in the Reynolds number 
(based on the channel height) Re = ρuh/μ = 8107 (where ρ = 
1000kg/m3 and μ = 0.001kg/m-s). 

B. Mathematical models 

The governing equations of the flow to be solved are 3D 
incompressible RANS equations. The standard k-ε turbulence 
model of Launder and Spalding [11] is employed to model the 
Reynolds stresses. This model solves two transport equations 
(for the turbulent kinetic energy, k, and its dissipation rate, ε) 
to calculate the eddy viscosity, μT. The model also involves 
five empirical model constants: Cε1, Cε2, Cμ, σk and σε. Unless 
specified, we use the original model constants recommended 
by Launder and Spalding [11]. We also use wall functions to 
model the flow near the bottom of the channel, since here we 
consider a very high-Reynolds-number open-channel flow and 
it is impractical to resolve the viscous sublayer on the bottom 
wall. (Also, the k-ε model is a high-Reynolds-number model 
and cannot be applied to the viscous sublayer directly.) 

As noted earlier, the turbines are modelled as porous discs, 
i.e. the effect of each turbine on the flow is modelled as a loss 
of momentum in the streamwise direction. Specifically, the 
loss of momentum (per unit area) is locally calculated as  
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where K is the resistance coefficient of the discs (constant for 
all discs but varied for different cases simulated, see Table 1) 
and Ud is the local streamwise velocity at the disc plane. The 
thrust acting on each disc can therefore be calculated as 
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where the integration is taken over the area of each disc, Ad (= 
πd2/4), the subscript “i” indicates the i-th disc in the array of n 
discs (n = 8nR), and i

 denotes the average of a variable φ 
over the i-th disc surface. Hence the (global) thrust coefficient 
averaged across all n discs is 

2
0

2

2
02

1

1 )(

d

d

dd

n

i id

TG u

U
K

nAu

T
C   


                       (11) 

where   denotes the average of φ over all n discs and ud0 (= 
2.05m/s) is the velocity averaged across the disc area for the 
“undisturbed” case (K = 0). Also, the power removed from the 
flow by the i-th disc is  
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and hence the (global) power coefficient averaged across all n 
discs is 
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Also, the (global) axial induction factor averaged across all n 
discs is 
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As shown in [12] this RANS porous disc model agrees well 
with the analytical single-scale blockage model of Garrett and 
Cummins [2] if applied to a single disc located in the middle 
of a rectangular channel with low ambient turbulence; see [6] 
and [12] for further details. 

C. Computational grids 

The computational grids for this study were created using 
ANSYS ICEM CFD. A special care was taken to make sure 
that the total number of grid points used for each grid was less 
than 2 million to save computational costs, since a number of 
cases (76 cases shown in Table 1 and some additional cases) 
were required to study this problem systematically. 

To create grids for several different array configurations 
quickly and systematically, we first created a 2D unstructured 
mesh for a cross section of the channel and then extruded it 
along the streamwise direction. Figure 1 shows part of the 2D 
cross-sectional mesh. In order to ensure a good enough mesh 
quality, the 2D cross section was divided into 4 regions: disc 
(maroon), near-disc (purple), far-disc (green) and near-wall 
(pink) regions. For the near-wall region, we used a structured 
mesh with clustering grid points in the vicinity of the wall, 
resulting in reasonably small wall y+ values of less than 100 
for the entire bottom wall. 

The 2D cross-sectional mesh was then extruded along the 
streamwise direction to create the final 3D mesh for the entire 
channel. Figure 2 shows an isometric view of roughly half of 
the 3D mesh for a single row case. 160 grid points were used 

TABLE I 
SUMMARY OF FLOW CONFIGURATIONS FOR RANS SIMULATIONS 

Number of rows (nR) s/d Resistance coefficient (K) BL BA BG 
1 0.25 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 5.5 0.3142 0.25 0.0785 
1 0.5 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 5.5 0.2618 0.3 0.0785 
1 1 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 5.5 0.1963 0.4 0.0785 
1 4 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 5.5 0.0785 1 0.0785 
2 0.25 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 5.5, 6.0 0.3142 0.25 0.0785 
2 0.5 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 5.5, 6.0 0.2618 0.3 0.0785 
2 1 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 5.5, 6.0 0.1963 0.4 0.0785 
2 4 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 5.5, 6.0 0.0785 1 0.0785 

 



for the channel length (80 points for upstream and another 80 
points for downstream of the discs) with the smallest spacing 
of 1m (0.05d) near the discs and the largest spacing of 25m 
(1.25d) far upstream and far downstream of the discs. The use 
of such high aspect ratio elements (to reduce the total number 
of grid points) is justified since the (Reynolds-averaged) flow 
field far upstream and far downstream of the discs varies only 
very gently in the streamwise direction. 

D. Boundary Conditions 

A uniform streamwise velocity u = 2m/s was applied at the 
inlet boundary (100d upstream of the discs) together with k = 
5.40103 m2/s2 and ε = 6.52106 m2/s3 (corresponding to a 
turbulent intensity of 3% and length scale of 10m). The inlet 
boundary was located far away from the discs so that the flow 
developed sufficiently before reaching the discs. For the top 
and side boundaries we used symmetry boundary conditions, 
whereas for the bottom (seabed) boundary no-slip conditions 
were applied (together with wall functions), creating vertically 
sheared flow around the discs. The disc surfaces were defined 
as internal boundaries with various resistance constant values 
to account for the momentum losses (Eq. (9)). For the outlet 
boundary, the streamwise gradients of all velocity components, 
k and ε were assumed to be zero. 

E. Numerical Schemes 

All simulations were performed using ANSYS FLUENT, 
which is based on the finite volume method. The simulations 
were performed as steady state, using the SIMPLE algorithm 
for velocity-pressure coupling [13]. For spatial discretization, 
second-order upwind schemes were used for the momentum, k 

and ε. Each simulation was run long enough to make sure that 
the results (especially aG, CTG and CPG) were fully converged; 
see [14] for further details. 

IV. RESULTS AND DISCUSSION 

A. Single Row Cases 

Figure 3 shows the (global) thrust and power coefficients, 
CTG and CPG, obtained from the RANS simulations (symbols) 
and the two-scale ADT (lines) for four different disc-spacing 
cases: s/d = 0.25, 0.5, 1 and 4. It can be seen that the RANS 
results agree qualitatively with the two-scale ADT, i.e. both 
predict the same trend in terms of the effects of disc-spacing 
on the variations of CTG and CPG. The highest power extracted 
by these 8 discs is obtained for the smallest disc-spacing case 
(s/d = 0.25) and the power decreases as the spacing increases. 
Also, the (global) axial induction factor required to maximise 
the power decreases as the spacing increases. 

Although the trends of these results agree between the two-
scale ADT and RANS simulations, the values of CPG (and also 
CTG) do not agree quantitatively. For the cases with relatively 
small disc-spacing (s/d = 0.25, 0.5 and 1) the RANS results 
are lower than the theory (presumably because the relatively 
small number of discs arrayed [6]), whilst for the case with a 
large disc-spacing (s/d = 4) the RANS results are higher than 
the theory (presumably due to the effect of near-wake mixing 
neglected in the theory [12]). 

Figure 4 shows streamwise velocity contours plotted on the 
“hub-height” plane (y = 0) for the two smallest disc-spacing 
cases (s/d = 0.25 and 0.5). The resistance coefficient K = 4.5 
is very close to the optimal value. Note that the flow direction 

 
Fig. 1  Partial view of the cross-sectional mesh. 

 

 
 Fig. 2  Isometric view of the 3D channel mesh for a single row case. 



is from upper right to lower left. It can be seen that, although 
the number of discs arrayed is relatively small, the expansion 
and mixing of the flow take place at two dominant scales, i.e. 
device scale and array scale. The array-scale flow deceleration 
occurs first upstream of the entire array (red to dark orange in 
the figure) and then the device-scale flow deceleration occurs 
just upstream of each disc individually (dark orange to light 
orange). Also, the device-scale mixing takes place much faster 
behind each disc compared to the array-scale mixing behind 
the entire array. The device-scale wake mixing can be seen in 

more detail in Figure 5, which shows the streamwise velocity 
contours at four different streamwise locations (0.25d, 1d, 2d, 
and 4d downstream of the discs) for the case with s/d = 0.25. 
These two-scale flow features are similar to those observed in 
the earlier RANS study [6] that neglected the vertical shear.   

B. Double Row Cases 

Figure 6 compares CPG for the double row cases obtained 
from the RANS simulations (symbols) and the two-scale ADT 
(lines). The results shown here are for s/d = 0.25, 0.5 and 1. 

(a)       (b)  
Fig. 3  Comparison of the two-scale ADT and RANS simulations for a single row of turbines: (a) thrust coefficient CTG vs. axial induction factor aG; and 

(b) power coefficient CPG vs. axial induction factor aG. Lines and symbols show the results of two-scale ADT and RANS simulations, respectively. 

    (a)  
 

    (b)  

 Fig. 4  Streamwise velocity contours plotted on the hub-height plane: 
(a) s/d = 0.25, K = 4.5, aG = 0.44; (b) s/d = 0.5, K = 4.5, aG = 0.44. 

                                      

                  

 Fig. 5  Streamwise velocity contours plotted at 0.25d, 1d, 2d and 4d 
downstream of a single row of 8 discs (s/d = 0.25, K = 4.5). 



As noted earlier, the streamwise gap between the two rows is 
fixed at 10d for all cases. Again, the RANS results agree 
qualitatively with the two-scale ADT and importantly, both 
predict the same trend in terms of the effect of disc-spacing. 
Here the highest power is obtained for s/d = 1 (s = 20m) and 
the power decreases as the spacing is reduced, suggesting that 
the optimal local blockage ratio for double rows of turbines is 
much lower than that for a single row of turbines. Note that 
the same conclusion has been obtained recently by Draper and 
Nishino [10], who employed a different two-scale approach as 
described earlier in Section II.B. 

Although the results agree qualitatively, the discrepancies 
in CPG are larger for the double row cases than for the single 
row cases. The values of CPG predicted by the present RANS 
simulations are much smaller than the two-scale ADT. This is 
presumably mainly because the streamwise spacing between 
the rows is not large enough to neglect the device-scale wake 
interaction in the present RANS simulations. Figure 7 shows 

streamwise velocity contours plotted on the hub-height plane 
for the highest power case (s/d = 1, K = 5). It can be seen that 
the wake of each disc in the upstream row has not been fully 
mixed before reaching the downstream row. It should also be 
noted, however, that discs at the ends of the downstream row 
are not completely covered by the wake of the upstream discs 
because the wake of the entire upstream row has already been 
expanding slightly in the spanwise direction before reaching 
the downstream row (i.e. disc wakes near the spanwise ends of 
the rows are somewhat “staggered” even though the discs are 
perfectly aligned and not staggered geometrically). 

To understand the effects of device-scale wake mixing on 
the performance of double rows of turbines, some additional 
cases with stronger wake mixing were simulated by changing 
one of the turbulence model constants, Cε1, from the original 
value of 1.44 to a slightly smaller value of 1.36 (see [6] for a 
justification of this approach). Figure 8 shows the streamwise 
velocity profiles at 1d, 2.5d, 5d and 7.5d downstream of the 

 
Fig. 6  CPG vs. aG for double rows of turbines. Lines and symbols show 

the results of two-scale ADT and RANS simulations, respectively. 

 
Fig. 8  Streamwise velocity profiles downstream of the front row of turbines at the hub height (double-row case, s/d = 1, K = 5): (a) 1d downstream; (b) 
2.5d downstream; (c) 5d downstream; and (d) 7.5d downstream. C1ε = 1.44 and 1.36 represent standard and stronger wake mixing cases, respectively. 

 

Fig. 7  Streamwise velocity contours plotted on the hub-height plane 
(double-row case, s/d = 1, K = 5, aG = 0.50). 



front row of discs for the standard (Cε1 = 1.44) and stronger 
(Cε1 = 1.36) wake mixing cases. As expected, the wake behind 
each disc is mixed faster for the case with Cε1 = 1.36. It can 
also be seen that the wake of the entire front row is expanding 
slightly in the spanwise (x) direction and that the difference in 
Cε1 does not affect this spanwise expansion of the array-scale 
wake. Hence we can analyse the effects of the strength/rate of 
device-wake mixing by comparing these two cases. 

Figure 9 compares the (global) power coefficient values for 
these two different wake mixing cases together with the two-
scale ADT. It can be seen that the stronger wake mixing case 
(Cε1 = 1.36) predicts higher CPG values which are much closer 
to the two-scale ADT. This is presumably because the device-
scale wake interaction between the two rows is less significant 
for the stronger mixing case. It should be noted, however, that 
the value of aG required to achieve the highest power is still 
somewhat different from the theory. To understand better the 
reasons of these discrepancies, we would need further studies 
with a larger number of discs arrayed in each row. 

Finally, Fig. 10 compares the maximum values (for a given 
local blockage ratio) of the (global) power coefficient, CPG max, 
obtained from the two-scale ADT and the RANS simulations. 
Note that the two vertical lines indicate the possible range of 
the local blockage ratio for the present study; the smallest BL 
corresponds to the largest possible intra-disc spacing (s/d = 4) 
and the largest BL corresponds to the smallest possible spacing 
(s/d = 0). It can be seen that the theory agrees reasonably well 
with the simulations in terms of the prediction of the optimal 
local blockage ratio, which is around 0.2 for this double-row 
case, despite the fact that the assumptions (regarding the scale 
separation and negligible device-wake interaction) used in the 
theory are not fully satisfied in this case.     

V. CONCLUDING REMARKS 

In this study we have performed 3D RANS simulations of 
single and double rows of 8 porous discs placed in the middle 
of a wide channel with a vertically sheared flow, with the aim 

of numerically validating the two-scale ADT. We summarised 
the theory for a single row of turbines first and then explained 
a possible extension of the theory to double (and more) rows 
of turbines. For the double (and more) rows of turbines, the 
main assumption for the theory to be valid is that the stream-
wise spacing between each row is large enough to neglect the 
device-scale wake interaction between the rows, i.e. the wake 
behind each turbine (not the entire row) is fully mixed before 
reaching the downstream turbines. It has also been explained 
that there are two possible approaches to the array-scale part 
of the two-scale ADT for multiple rows of turbines and, for 
the approach used in this study, the number of turbines (within 
each row) required to satisfy the scale-separation assumption 
will increase with the number of rows. 

For the single row of 8 porous discs, our RANS simulation 
results agreed qualitatively with the two-scale ADT in terms 
of the effect of intra-disc spacing on the total power predicted. 
Both RANS and two-scale ADT predicted the highest power 
with the smallest disc-spacing tested (s/d = 0.25), even though 
the power coefficient values obtained from the RANS did not 
agree quantitatively with the theory (presumably because the 
number of discs arrayed was relatively small). The two-scale 
flow features observed in our RANS results were also similar 
to those observed in the earlier study [6] that neglected the 
vertical shear of the flow. Therefore it seems that, at least for 
this size of array consisting of 8 devices, neglecting the effect 
of seabed friction (and the induced vertical shear of the flow) 
is indeed a good first-order approximation for predicting the 
performance of the array theoretically. 

For the double rows of 8 porous discs, again our simulation 
results agreed qualitatively with the two-scale ADT in terms 
of the effect of intra-disc spacing. Both predicted the highest 
total power with a relatively small local blockage ratio BL of 
about 0.2 (corresponding roughly to s/d = 1) for this case. 
However, agreement in the power coefficient values predicted 
was worse compared to the single row case. This discrepancy 

 
Fig. 9  CPG vs. aG for double rows of turbines with s/d = 1. Line and 
symbols show the results of two-scale ADT and RANS simulations, 
respectively. 

Fig. 10  The maximum power coefficient (CPG max) vs. local blockage 
ratio BL for double rows of turbines. Green line shows the two-scale 
ADT and symbols show the results of RANS simulations. Note that the 
red dash-dot lines indicate the possible range of BL by definition.  



was mainly due to the small streamwise spacing between the 
two rows (10d) used in this study, causing substantial device-
scale wake interaction between the rows. Some corrections to 
the theory would therefore be needed to predict quantitatively 
the performance of such double rows of turbines with a small 
spacing between each row. A potential difficulty in modelling 
this device-scale wake interaction is that turbines downstream 
may or may not be within the wake of the turbines upstream, 
depending on how much the wake of the entire upstream row 
expands laterally before reaching the downstream row. This 
means that device-scale wakes can be effectively “staggered” 
(i.e. shifted slightly in the lateral direction) even if the devices 
themselves are not arrayed in a staggered manner. 

Finally, it should be noted that the two-scale ADT has not 
been validated for real turbines; all relevant studies reported 
so far (including the present study) are for ideal actuator discs 
or porous discs. The theory should therefore be compared with 
real turbine experiments and/or computations in future studies 
in order to assess, for example, the influence of the rotation of 
individual turbine wakes on the characteristics of array-scale 
wakes. Also of importance but not examined in this study is 
the validity of using an actuator disc model in a sheared flow, 
which has been investigated very recently for the single-scale 
ADT [15] but not for the two-scale ADT. Nevertheless, it is 
encouraging that the RANS simulations of porous discs in a 
vertically sheared flow predicted the same optimal intra-disc 
spacing as the theory, not only for the single-row case but also 
for the double-row case. Further validations and modifications 
of the theory will be necessary in future studies, especially on: 
(i) how to apply the theory to real turbines; and (ii) how to 
incorporate the device-scale wake interaction into the theory 
(for multi-row cases). 
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