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which is a platform to execute complex tasks in a cooperative manner. Cooper-5

ation among the agents means to decide the actions for each agent considering

the state information of the neighbouring agents obtained through a communi-

cation network. This interaction among the agents helps them to converge to a

common value, which is known as consensus. In this process, a group of agents

reaches an agreement to achieve a common goal. A considerable amount of10

work on a consensus problem has been reported in the literature. Some of them

are mentioned in [1], [2], [3], [4], etc. Other examples of collective behaviour of

cooperative platform are formation control [5, 6], Synchronization [7], [8], etc.

The interacting agents exchange information with its neighbour on a graph

network to decide the strategy or control action for the consensus. The dis-15

tributed control theory considers the interaction among the agents while select-

ing the control strategy. It essentially means the control strategy of an agent

depends on how it is connected to its neighbour, and their dynamics. Distributed

control protocols for di�erent dynamical systems have been discussed in the lit-

erature. Consensus problem for the �rst-order system was studied in [9], [10]20

etc. The consensus was explained with the help of graph theory in [9] for Vicsek

model [11] which proposed a system consisting of n agents and demonstrated by

simulation that all agents asymptotically moved to one direction with the same

speed. Consensus for second-order systems are studied in [12], [13], [14] etc.

These works consider homogeneous linear systems in the multi-agent structure.25

There exist research works that consider �rst and second-order systems together

in a multi-agent platform. Some of the works are mentioned in [15], [16], [17]

etc. Also few works have been reported in [18], [19] which considers nonlinear

nodal dynamics.

The information exchange with neighbours over communication the network30

plays a key role in building the consensus among the agents [20], [1]. The com-

munication network can be analyzed using the graph theory [21]. The properties

of graph theory have been proved to be very useful in analyzing the nature of

connectivity among the agents. Some papers contain works related to commu-

nication topology. These works consider the switching topology, time delay in35
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used for 
ight scheduling problem in [32] where the problem of scheduling of

aircrafts is solved using 2D GA. The time table or schedule is considered as a

2D chromosome.

The variables required to describe a 2D chromosome is given in Table 1.155

Table 1: Description of Variables

Variable De�nition

N no of chromosome in the population

Ck kth chromosome, 1 � k � N

Ck(i; j) Gene at the position (i; j) in chromosome matrix

R No. of rows of chromosome matrix

Q No. of rows of chromosome matrix

The dimension of the chromosome matrix is considered as R�Q. Therefore,

rows and columns are denoted by 1 � i � R, and 1 � j � Q respectively. An

example of two-dimensional chromosome is given by

A =

2

6666666666664

0 0 1 0 0 0

1 0 0 0 0 1

1 1 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 1 0

3

7777777777775

(13)

A is an adjacency matrix which represents a directed graph as shown before.

Each gene or each element of A represents the existence of a weighted directed

edge, i.e., the status of the connection between any two speci�c agents. It can

be noted that the weights are considered as 1 for simplicity.

4.2. Population Generation160

In this work, the chromosomes are represented as square matrices because

the adjacency matrix is square. It is important to note that the adjacency matrix
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is not symmetric since it represents a directed graph. Also, the diagonal elements

are zero. The algorithm to generate kth chromosome Ck of the population of

size N is given in Algorithm 1.165

Algorithm 1 Initial Population generation
for i = 1 to R do

for j = 1 to Q do

x random number x 2 (0; 1)

if x > 0:5 then

Ck(i; j) 1

else

Ck(i; j) 0

end if

if i = j then

Ck(i; j) 0

end if

end for

end for

In the algorithm, the genes of a chromosome are created in a random manner.

The genes at position (i; j) of the chromosome matrix, Ck is selected depending

on a random variable x 2 (0; 1). If x > 0 then the value is selected as 1,

otherwise 0. The diagonal elements are set to zeros. These chromosomes, thus

generated, are provided as the initial population of the Genetic Algorithm.170

4.3. Crossover

There are a few Crossover methods exist in the literature. Some of these

methods are Multipoint Crossover [33], Uniform Crossover [34], One-Point Crossover

[35], Substring Crossover [35]. More crossover methods can be found in [36].

Crossover method mentioned in [32], is adopted in this work. These methods175

are presented in algorithmic form. The 2D parent chromosomes are denoted by

11



‘Parent 1’, and ‘Parent 2’. They are shown in �g. 3. The produced children are

denoted by ‘Child 1’ and ‘Child 2’.

Figure 3: Parent Chromosomes

Algorithm 2 Substring Crossover
r1  random integer < R

r2  random integer < Q

x random number x 2 (0; 1)

if x > 0:5 then

Execute Horizontal Crossover(r1; r2)

else

Execute V ertical Crossover(r1; r2)

end if

The crossover point is selected in a random manner. Two random integers

(r1 and r2) are generated, which are less than the maximum number of rows (R)180

and columns (Q) as given in Algorithm 2. An example of parent chromosomes

is shown in �g. 3. The genes of Parent 1 is represented as a11 to a44. Similarly,

the genes of Parent 2 are represented by b11 to b44. The crossover point is

the gene at position (r1; r2) of parent chromosome matrices. The algorithm is
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explained with the help of an example. In this example, the dimension of parent185

chromosome matrices is 4 � 4, i.e., R = 4, and Q = 4. The crossover position

is obtained as r1 = 2, r2 = 2. Therefore the points of crossover for Parent 1

and Parent 2 are a22, and b22, respectively. Next, the type of crossover needs

to be selected. For this purpose, a random variable x is considered, which can

take any value between 0 and 1. As described in the algorithm, if the value190

of x is greater than 0:5, the horizontal crossover is selected. Otherwise, for

x < 0:5, the vertical crossover is chosen. The horizontal crossover function

Horizontal Crossover() is described as follows. The rows or part of rows are

exchanged between the parents.

Algorithm 3 function Horizontal Crossover
Block1P 1  P arent1(r1; r2 + 1 : Q)

Block2P 1  P arent1(r1 + 1 : R; 1 : Q)

Block1P 2  P arent2(r1; r2 + 1 : Q)

Block2P 2  P arent2(r1 : R; 1 : Q)

Block1P 1 *) Block1P 2 and Block2P 1 *) Block2P 2

The pictorial representation of Algorithm 3 is shown in �g. 4. According195

to the algorithm, the selected genes of Parent 1, i.e., a23 to a44 (shown in the

red box) are replaced by selected genes of Parent 2, i.e., b23 to b44 (shown in

the green box) to obtain Child 1. Similarly, a23 to a44 of Parent 1 is copied in

place of b23 to b44 of Parent 2 to obtain Child 2. In this algorithm, a23 and

a24 of Parent 1 are denoted by Block1P 1. The genes a31 to a44, i.e., the third200

and fourth rows are denoted as Block2P 1. Similar elements of the Parent 2 are

denoted as Block1P 2 and Block2P 2.

The Vertical Crossover algorithm is given in Algorithm 4.
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Figure 4: Horizontal Crossover: The selected rows and part of rows of Parent 1 and Parent 2

are exchanged.

Algorithm 4 function V ertical Crossover
Block1P 1  P arent1(r1 + 1 : R; r2)

Block2P 1  P arent1(1 : R; r2 + 1 : Q)

Block1P 2  P arent2(r1 + 1 : R; r2)

Block2P 2  P arent2(1 : R; r2 + 1 : Q)

Block1P 1 *) Block1P 2 and Block2P 1 *) Block2P 2

Vertical crossover is shown in �g. 5. In this case, genes of Parent 2, i.e., b32

to b44 (shown in the red box) are copied to the same positions of Parent 1, i.e.,205

a32 to a44 (shown in the green box) to obtain Child 1. A similar operation is

performed to obtain Child 2. In this case, a32 and a42 of Parent 1 are denoted by

Block1P 1. The genes a13 to a44, i.e., the third and fourth columns are denoted

as Block2P 1. Similar elements of the Parent 2 are denoted as Block1P 2 and

Block2P 2.210

Another type of substring crossover is given in Algorithm 5. This is simpli�ed

version of horizontal and vertical crossover.
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Figure 5: Vertical Crossover: The selected columns and part of columns of Parent 1 and

Parent 2 are exchanged.

Algorithm 5 Substring Crossover
r1  random integer < R

r2  random integer < Q

Block1  P arent1(r1 : R; r2 : Q)

Block2  P arent2(r1 : R; r2 : Q)

Block1 *) Block2

According to this algorithm, the two random integers r1 and r2 are obtained.

The block of genes in rows r1; r1 + 1; : : : ; R and columns r2; r2 + 1; : : : ; Q are

interchanged between the two parents. The algorithm is explained with the help215

of an example, as shown in �g. 6. The block of genes are marked in the red box

for Parent 1 and green for Parent 2. These genes are interchanged to obtain

Child 1 and Child 2.

4.4. Mutation

The Mutation is an important operation to preserve the genetic diversity of220

a population of chromosomes in every generation. The Mutation is performed

by exchanging one or more genes of the chromosomes. Generally, a certain

percentage of the population is allowed to undergo mutation. The Mutation
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Figure 6: Substring Crossover: Selected block of genes are exchanged between the parents.

may change the solution considerably from the previous solution. Hence GA

can come to a better solution by using mutation. Few mutation operations are225

shown in the following algorithms.

4.4.1. Two-Dimensional String Swapping Mutation

The process for this mutation is given in Algorithm 6.

Algorithm 6 String Swapping Mutation
x random number x 2 (0; 1)

if x > 0:5 then

Execute Horizontal Swap()

else

Execute V ertical Swap()

end if

The selection of the mutation type is purely random. It depends on a random

variable x 2 (0; 1). If the value of x is greater than 0:5, then Horizontal Swap230

function, i.e., Horizontal Swap() is executed. Otherwise, V ertical Swap() is

executed.

16



Algorithm 7 Horizontal Swap()
m1  random integer < R

m2  random integer < R

if m1 6= m2 then

Swap mth
1 and mth

2 rows of Ck

end if

Horizontal Swap() function is given in Algorithm 7. It swaps mth
1 and mth

2

rows of a chromosome. The pictorial representation of the operation is shown

in �g. 7. Let us consider, m1 = 1, and m2 = 3. Therefore, the �rst and third235

rows are swapped, as shown in the �gure.

Figure 7: Horizontal Swapping: The selected rows are shown in red and green box. They are

swapped.

V ertical Swap() function is given in Algorithm 8. It swaps mth
1 and mth

2

columns of a chromosome. The pictorial representation of the operation is shown

in �g. 8. Let us consider, m1 = 2, and m2 = 4. Therefore, the second and

fourth columns are swapped, as shown in �g. 8.240

Algorithm 8 V erical Swap()
m1  random integer < Q

m2  random integer < Q

if m1 6= m2 then

Swap mth
1 and mth

2 columns of Ck

end if
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Figure 9: Two-Point Swapping: genes at two positions of a parent chromosome are swapped.

5.1. Optimal topology for Single Integrator System

The initial conditions of the agents are considered as x0 = [1 2 � 3 4 � 2 � 1].

The output of the two dimensional GA is an optimal adjacency matrix which is

given in Eq. (14).

A =

2

6666666666664

0 0 1 0 0 0

1 0 0 0 0 1

1 1 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 1 0

3

7777777777775

T

(14)

The graph corresponding to the optimal adjacency matrix is shown in �g.

10d. It can be observed that the directed graph shown in �g. 10d has a spanning255

tree. The existence of the spanning tree can be con�rmed by the eigenvalues

of the Laplacian matrix. These eigenvalues are shown in �g. 10c. It is clear

that one of the eigenvalues is zero, and the rest of them have positive real

part. Hence, there is no repeated eigenvalue at zero, which is an important

requirement for a graph to contain a spanning tree.260

The consensus among the agents on the optimal topology is shown in �g.

10b. All the agents with di�erent initial conditions reached a common value

within a few seconds on the graph.

The cost or �tness value for various graphs are shown in �g. 10a. It can be

observed that the cost decreases as the iteration of GA progress and �nally, it265

reaches the lowest value 66 at 61st iteration.
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(a) State Trajectory x1 (b) State trajectory x2

Figure 12: State Trajectories

Figure 13: Control of Agents u

will help the user to �nd a speci�c communication topology which is more energy

e�cient towards achieving consensus.

22



Acknowledgment

This research was partially funded by an Engineering and Physical Sciences290

Research Council (EPSRC) project CASCADE (EP/R009953/1).

References

[1] W. Ren, R. W. Beard, Consensus seeking in multiagent systems under dy-

namically changing interaction topologies, IEEE Transactions on automatic

control 50 (5) (2005) 655{661.295

[2] R. Olfati-Saber, J. A. Fax, R. M. Murray, Consensus and cooperation in

networked multi-agent systems, Proceedings of the IEEE 95 (1) (2007)

215{233.

[3] Y. Xie, Z. Lin, Global optimal consensus for multi-agent systems with

bounded controls, Systems & Control Letters 102 (2017) 104{111.300

[4] Y. Yin, Y. Shi, F. Liu, K. L. Teo, S. Wang, Second-order consensus for

heterogeneous multi-agent systems with input constraints, Neurocomput-

ing 351 (2019) 43{50.

[5] X. Liu, Z. Ji, T. Hou, H. Yu, Decentralized stabilizability and formation

control of multi-agent systems with antagonistic interactions, ISA transac-305

tions 89 (2019) 58{66.

[6] T. Nguyen, H. M. La, T. D. Le, M. Jafari, Formation control and obsta-

cle avoidance of multiple rectangular agents with limited communication

ranges, IEEE Transactions on Control of Network Systems 4 (4) (2016)

680{691.310

[7] J. Cao, G. Chen, P. Li, Global synchronization in an array of delayed neural

networks with hybrid coupling, IEEE Transactions on Systems, Man, and

Cybernetics, Part B (Cybernetics) 38 (2) (2008) 488{498.

23



[8] W. Yu, J. Cao, G. Chen, J. Lu, J. Han, W. Wei, Local synchronization

of a complex network model, IEEE Transactions on Systems, Man, and315

Cybernetics, Part B (Cybernetics) 39 (1) (2008) 230{241.

[9] A. Jadbabaie, J. Lin, A. S. Morse, Coordination of groups of mobile au-

tonomous agents using nearest neighbor rules, Departmental Papers (ESE)

(2003) 29.

[10] U. Munz, A. Papachristodoulou, F. Allgower, Consensus in multi-agent320

systems with coupling delays and switching topology, IEEE Transactions

on Automatic Control 56 (12) (2011) 2976{2982.

[11] T. Vicsek, A. Czir�ok, E. Ben-Jacob, I. Cohen, O. Shochet, Novel type of

phase transition in a system of self-driven particles, Physical review letters

75 (6) (1995) 1226.325

[12] W. Ren, R. W. Beard, Consensus algorithms for double-integrator dynam-

ics, Distributed Consensus in Multi-vehicle Cooperative Control: Theory

and Applications (2008) 77{104.

[13] Y. Xie, Z. Lin, Global optimal consensus for higher-order multi-agent sys-

tems with bounded controls, Automatica 99 (2019) 301{307.330

[14] Y. Zheng, Y. Zhu, L. Wang, Finite-time consensus of multiple second-order

dynamic agents without velocity measurements, International Journal of

Systems Science 45 (3) (2014) 579{588.

[15] Y. Liu, H. Min, S. Wang, Z. Liu, S. Liao, Distributed consensus of a class

of networked heterogeneous multi-agent systems, Journal of the Franklin335

Institute 351 (3) (2014) 1700{1716.

[16] H. Wang, J. Ma, Optimal topology for consensus of heterogeneous multi-

agent systems, Neurocomputing 177 (2016) 594{599.

[17] Y. Zheng, L. Wang, Consensus of heterogeneous multi-agent systems with-

out velocity measurements, International Journal of Control 85 (7) (2012)340

906{914.

24



[18] W. Yu, G. Chen, M. Cao, J. Kurths, Second-order consensus for multiagent

systems with directed topologies and nonlinear dynamics, IEEE Trans-

actions on Systems, Man, and Cybernetics, Part B (Cybernetics) 40 (3)

(2009) 881{891.345

[19] K. You, L. Xie, Network topology and communication data rate for con-

sensusability of discrete-time multi-agent systems, IEEE Transactions on

Automatic Control 56 (10) (2011) 2262{2275.

[20] M. Cao, A. S. Morse, B. D. Anderson, Reaching a consensus in a dy-

namically changing environment: A graphical approach, SIAM Journal on350

Control and Optimization 47 (2) (2008) 575{600.

[21] M. Fiedler, Algebraic connectivity of graphs, Czechoslovak mathematical

journal 23 (2) (1973) 298{305.

[22] R. Olfati-Saber, R. M. Murray, Consensus problems in networks of agents

with switching topology and time-delays, IEEE Transactions on automatic355

control 49 (9) (2004) 1520{1533.

[23] G. Chen, Y. Song, F. L. Lewis, Distributed fault-tolerant control of

networked uncertain euler{lagrange systems under actuator faults, IEEE

transactions on cybernetics 47 (7) (2016) 1706{1718.

[24] Y.-J. Pan, H. Werner, Z. Huang, M. Bartels, Distributed cooperative con-360

trol of leader{follower multi-agent systems under packet dropouts for quad-

copters, Systems & Control Letters 106 (2017) 47{57.

[25] Y. Cao, W. Ren, Optimal linear-consensus algorithms: An lqr perspective,

IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernet-

ics) 40 (3) (2009) 819{830.365

[26] J. Ma, Y. Zheng, L. Wang, Lqr-based optimal topology of leader-following

consensus, International Journal of Robust and Nonlinear Control 25 (17)

(2015) 3404{3421.

25



[27] J. Ma, Y. Zheng, B. Wu, L. Wang, Equilibrium topology of multi-agent

systems with two leaders: a zero-sum game perspective, Automatica 73370

(2016) 200{206.

[28] F. L. Lewis, H. Zhang, K. Hengster-Movric, A. Das, Cooperative control

of multi-agent systems: optimal and adaptive design approaches, Springer

Science & Business Media, 2013.

[29] Z. Qu, Cooperative control of dynamical systems: applications to au-375

tonomous vehicles, Springer Science & Business Media, 2009.

[30] W. Ren, R. W. Beard, Distributed consensus in multi-vehicle cooperative

control, Springer, 2008.

[31] S. Jain, H. C. Gea, Two-dimensional packing problems using genetic algo-

rithms, Engineering with Computers 14 (3) (1998) 206{213.380

[32] M.-W. Tsai, T.-P. Hong, W.-T. Lin, A two-dimensional genetic algorithm

and its application to aircraft scheduling problem, Mathematical Problems

in Engineering 2015.

[33] K. A. De Jong, W. M. Spears, A formal analysis of the role of multi-

point crossover in genetic algorithms, Annals of mathematics and Arti�cial385

intelligence 5 (1) (1992) 1{26.

[34] G. Syswerda, Uniform crossover in genetic algorithms, in: Proceedings of

the third international conference on Genetic algorithms, Morgan Kauf-

mann Publishers, 1989, pp. 2{9.

[35] L. B. Booker, D. E. Goldberg, J. H. Holland, Classi�er systems and genetic390

algorithms, Arti�cial intelligence 40 (1-3) (1989) 235{282.

[36] A. Umbarkar, P. Sheth, Crossover operators in genetic algorithms: A re-

view., ICTACT journal on soft computing 6 (1).

26

e805814
Text Box



Cranfield University

CERES Research  Repository https://dspace.lib.cranfield.ac.uk/

School of Aerospace, Transport and Manufacturing (SATM) Staff publications (SATM)

Optimal topology for consensus using

genetic algorithm

Mondal, Sabyasachi

2020-05-08

Attribution-NonCommercial-NoDerivatives 4.0 International

Mondal S, Tsourdos A. (2020) Optimal topology for consensus using genetic algorithm.

Neurocomputing, Volume 404, September 2020, pp.1-49

https://doi.org/10.1016/j.neucom.2020.04.107

Downloaded from CERES Research Repository, Cranfield University


