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Abstract 

This paper presents a method for predicting fatigue crack propagation in adhesive bonded composite 

joints with an initial full-width disbond using finite element analysis and numerical integration of the 

material’s fatigue crack growth rate law. Fatigue tests were conducted on single lap joints. Crack 

lengths were monitored from four runout corners. In-situ crack growth measurements were performed 

by ink injection to identify the crack front profile during fatigue loading. The crack growth was 

modelled using a fracture mechanics criterion considering two different crack propagation patterns. 

The material’s fatigue crack growth rate law was determined experimentally using the standard double 

cantilever beam and end notch flexure specimens. Using the total strain energy release rate and the 

two crack scenarios, the numerical model predicted the lower and upper bounds of the measured 

fatigue crack growth rates of the lap joint. 

Keywords: single lap joints; adhesive bond; finite element analysis; fatigue crack growth rate; fatigue 

life prediction  

1. Introduction 

The integrity of composite structures subjected to cyclic loads is often limited by the fatigue behaviour 

of the joints within the structure. Many composite structures use adhesive bonded joints to reduce 

weight and eliminate the stress concentration that are associated with mechanically fastened joints 

using bolts or rivets. Narrow lap joints (e.g. 25 mm wide) are often employed in laboratories to 

investigate the strength and fracture properties under the static and fatigue loads [1, 2]. In recent 

decades, considerable research has been devoted to predicting the fatigue life in adhesive bonded 

joints using strength-based and fracture mechanics approaches. In the published literature, 

investigations into the fatigue behaviour of bonded joints fall into two main categories: one is based on 

the traditional fatigue design approach, using the S-N data to evaluate the load-life relationship [3]; the 

other is based on the fracture mechanics principles to analyse the crack growth phase [4]. In the latter 

case, crack propagation rate is usually calculated as the function of the Strain Energy Release Rate 

(SERR).  

 
In terms of modelling and prediction, Abdel et al. [5] described a procedure based on a fracture 

mechanics approach to predict the fatigue life of bonded composite joints, i.e. the single lap joint 

(SLJ) and double lap joint (DLJ). The double cantilever beam (DCB) geometry was used to generate 
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the material’s crack growth rate law. Both the total SERR and mode I SERR were obtained using the 

Virtual Crack Closure Technique (VCCT) in Finite Element Analysis (FEA).  Fatigue life was 

calculated by integrating the fatigue crack growth rate law between the initial and final crack lengths. 

The predicted life was in reasonably good agreement with the experimental results. Following the 

same method, Quaresimin et al. [6] used the total SERR to evaluate the crack propagation phase for a 

composite single lap joint. Bernasconi et al. [7] predicted the fatigue life based on the equivalent 

SERR of a composite single lap joint using the mode I crack growth rate law.  Using the mode I crack 

growth rate data has been shown to predict the initial stage of the crack propagation, while the total 

SERR allowed for a more accurate prediction of the total fatigue crack growth life for a relatively 

thick composite joint (i.e. 10 mm). Cheuk et al. [8] also used the equivalent SERR to account for the 

mode ratio effect to investigate fatigue crack propagation behaviour of a metal-to-composite double-

lap joint.  

 
A shortcoming of published studies for fatigue life predictions is that only the mode I fracture has 

been used to determine the material’s fatigue crack growth rate law parameters. In fact, other fracture 

modes also play a role in crack propagation in bonded joints, for example a mode II dominant failure 

was demonstrated in single lap joints in [5, 6]. Furthermore, significant differences were observed in 

fatigue delamination growth rate between the mode I and mode II loading [9-12]. Thus, to obtain a 

theoretically robust and accurate prediction of the mixed mode behaviour of bonded joints, mixed 

mode fatigue crack growth rate data of the adhesive material and representation of mixed load crack 

driving force should be employed.  

 

This study investigates the fatigue crack propagation in a single lap bonded joint that contains an 

initial disbond in the adherend-adhesive interface to mimic the process-induced defects that can arise 

due to incomplete cure or improper surface treatment. It is reasonable to assume such initial disbond 

damage, because the single lap joint configuration experiences high interlaminar shear stresses in the 

adhesive at the bond overlap ends and the interlaminar tensile and shear strengths are very low.  

Fatigue crack propagation rate in the adhesive was measured by testing the double cantilever beam 

(DCB) and end notch flexure (ENF) specimens and also data from reference [9] with the same 

adhesive. Part way through the cyclic test, red ink was injected through a needle nozzle so that the 

crack front profile at final failure of the specimen could be observed. The novelty aspect of the current 

work is life prediction combining finite element analysis (FEA) of mixed mode SERR and material’s 

Paris law, which has enabled a better understanding and assessment of fatigue life for realistic joints 

with defects arising from manufacturing process.  
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2. Experimental 

2.1 Materials and Specimen 

Composite adherends were manufactured from a 2 mm-thick laminate made of unidirectional Hexcel
®
 

8552/IM7 pre-preg. The longitudinal (EL), transverse (ET) and shear (GLT) elastic moduli of the 

unidirectional material are 163 GPa, 12 GPa and 5.95 GPa, respectively, with a Poisson’s ratio of 0.32 

taken from data presented in the material specifications [13]. The test specimens were manually laid 

up with a quasi-isotropic stacking sequence of [0/45/90/-45]S, and cured in an autoclave. A layer of 

peel ply was applied to the composite panel during the curing procedure to provide a contaminant free 

surface. The two “laps” that comprise the sample joint adherends were then cut from the laminate 

panel using abrasive water jet cutting. The geometry and dimensions of the standard joint with full-

width disbond is shown in Figure 1a. Prior to bonding, the Onto
TM

 SB1050 treatment was applied to 

the 25×25 mm
2
 overlap region with a curing stage of 110-130 ºC for 30 minutes to introduce chemical 

bonding interactions [14]. The Onto
TM

 materials are precursors to highly reactive carbenes, which then 

reacts and forms a bond to the substrate surface [14]. Cytec FM
® 

94 modified epoxy adhesive film (a 

moisture resistant adhesive designed for use in high temperature environments) was used which was 

assumed to give a nominal bondline thickness of 0.25 mm. The film contains polyester carrier cloth to 

increase the toughness of bulk adhesive in cohesive failure. A layer of 25 µm thick Teflon
®
 release 

film in the adherend-adhesive interface was inserted to create the initial disbond damage. Curing of the 

standard joints was performed in a heating oven at 120 ºC for 40 minutes using a clamping plate with 

fasteners, at a constant pressure of 0.28 MPa based on ASTM specifications [15]. End tabs of 50 mm 

length made from identical composite laminate were bonded to the ends of the joints to enable 

clamping in tests. Four joint runout corners were defined as A, B (the runout end with initial disbond) 

and C, D (the opposite end without starter crack) for observing cracks, as shown in Figure 1b. 

 
Figure 1 Geometry and dimensions of single lap joint with a full-width initial disbond of 

5 mm (unit: mm): (a) front view and (b) top view; (c) enlarged view of joint overlap 

showing four corners for observing fatigue crack lengths: A and B at the end with an 

initial disbond, C and D at the opposite end without starter crack.  
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2.2 Experimental procedure 

An Instron 8871 servo-hydraulic testing system with a 10 kN load cell was used to apply cyclic 

loading to the test specimens. Tests were conducted at the laboratory ambient temperature, using a 

constant amplitude loading regime. The cyclic load ratio was set to 0.1 and the loading frequency was 

3 Hz to avoid the heating effects on the composites. The maximum load applied was 50% of the 

ultimate tensile failure load (Pmax=3.58 kN). Fatigue tests were conducted on four specimens, named 

as F1, F2, F3 and F4 for repeatability. 

 
During the fatigue testing, crack propagation was monitored by observing the bondline and the 

surrounding material using a travelling microscope equipped with a digital camera with the aid of the 

scale shown in Fig. 2a. Once the crack was opened (at the maximum fatigue load), red ink was 

manually injected through a needle nozzle into the bond interface to allow the liquid to flow to the 

crack front to capture the single crack propagation profile to be captured for a specimen at that stage of 

the test. This is similar to dye penetrant, which is one of the non-destructive techniques (NDT) used in 

the aerospace industry and is assumed not to influence the crack propagation [16]. It was found during 

the first trial (specimen F1) that, due to a spew fillet at the A-B end (with initial disbond), crack 

initiation took place a considerable time into the test (around 200,000 cycles) rather than straightaway 

in the separation of the clean film. For other specimens (e.g. F2-F4), the fillet was removed before 

testing to improve the crack visibility, as the aim of this research is to study the crack propagation 

phase rather than crack initiation. 

2.3 Crack growth profiles 

Crack propagation was monitored by measuring crack length from the four corners of the bond 

overlap, as the stress gradient throughout a bond length is non-uniform and it is the overlap end of a 

flat bond undergo the highest stress level rather than the central bond area. Figure 2a presents the final 

failure of specimen F2, which indicates that the propagation of cracks occurred mainly at the adhesive-

adherend interface (adhesion failure), which is attributed to the existing carrier cloth in the adhesive 

which has toughened the bulk via introduction of crack arresting mechanism. The yellow colour line 

follows the crack path where the lead crack and secondary crack met in the centre of the overlap. No 

failure in composites (adherends) was observed. Figures 2b is a schematic marking the locations in 

Figure 2c and 2d showing cracks propagating from both overlap ends. Photos were taken with a 40X 

optical microscope from corners A and C (the arrows and yellow line indicate the crack propagation 

path). The two cracks propagated toward the joint centre and joined after a certain number of load 

cycles. 
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Figure 2 (a) Crack paths at failure of specimen F2, (b) Schematic drawing indicating the 

two crack propagation sites observed from (c) corner A and (d) corner C in specimen F1 
 
At final failure, the bond had completely failed and the specimen had separated into two parts in 

adhesion failure for all specimens (see fracture surfaces in Figure 4). The red ink which had dried on 

the two faces at the intermediate stage of the test could then be observed to show the crack 

propagation profile at that point during the test. The left red interface in Figure 3a indicates the crack 

front at 151,360 cycles for specimen F2. Four positions (I, II, III, IV) were chosen to measure the 

instantaneous crack lengths under microscope. It is verified that the crack lengths at the selected four 

locations are approximately identical, indicating a uniform crack front during the propagation phase. 

Another trial was performed to insert the red ink to both sides of the specimen F4 at 186,386 cycles, to 

prove the crack propagation from two runout sides (Figure 3b). The red ink showed that the cracks 

from both sides propagated in almost the same pattern and (although sensitive to the bond quality and 

adhesive thickness) the crack front profile was roughly uniform as the stress gradient throughout a 

bond width is almost uniform.  

 
Figure 3 Post failure observations of (a) specimen F2, red ink shows the crack front at 

151,360 cycles, (b) specimen F4, red ink was injected from both sides of overlap ends at 

186,386 cycles. 

2.4 Fatigue crack growth life 

Figure 4 shows the monitored crack lengths (a) measured from four points versus number of cycles (N) 

of four specimens: F1, F2, F3, F4. Crack propagation was not uniform, and non-symmetric profiles 

were observed.  
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For specimen F1, the crack was initially observed only at corners A and B, although their start point 

was slightly different. After about 200,000 cycles, cracks were also detected at corners C and D due to 

the secondary bending effect resulting in a high stress which caused the adhesive fillet to degrade and 

fail. F1 withstood many more cycles to failure than others. This is because F1 had fillets of adhesive at 

the ends of the lap, which reduced stress concentrations and hindered crack initiation.   

  
For the other three specimens (F2-F4), cracks were found to have propagated from all the four corners 

from the initial fatigue cycles. This is different to the crack propagation observed in F1 because the 

adhesive fillet has been removed before conducting fatigue tests on the later specimens. The crack 

growth rate (i.e. the gradient of a-N curves) was approximately the same for corners A and B, and also 

the same for corners C and D (although at a different rate to corners A and B). In conjunction with 

post-failure examination of the pattern of injected red ink, this observation of similar crack growth 

rates as corners A and B, and corners C and D supports our assertion of a uniform crack front. Test F3 

experienced much faster crack propagation rate due to peculiar interface surfaces (Figure 4c) which 

might be arisen from anomalies in the manufacturing process (e.g. size tolerance and adhesive 

chemistry), particularly noting that even macroscopically identical specimens can have significant 

scatter in experimental fatigue tests. This leads to the crack propagation concentrating more at one end 

of the lap joint rather than proceeding equally from both ends. However, these scenarios are common 

in the aerospace bonding applications, which is the reason why regulators ask for continued safe flight 

even with a bonded repair that has completely failed in AC20-107B/AMC20-29 [17] as the bonding 

quality was not assured.  

 

Calculations of SERR require a value for “crack length”, which obviously poses some issues when 

considering non-uniform cracks. Two possibilities were considered: the crack averaged from the 

measures taken from the corners with an artificial defect side (average of corners A and B, defined as 

lead crack, a1), and the average crack emerged from the runout without initial crack starter due to 

fatigue cycles (average of corners C and D, defined as secondary crack, a2). Figure 5 plots crack 

propagation life for the four specimens calculated from both (a) a1 and (b) a2. It could be seen that F3 

experiences a very fast crack propagation due to an apparent observed instantaneous interface failure 

(see Figure 4c) and weak bond fracture surface which might have been induced by surface 

contaminants (possibly arising from non-uniform application of the Onto surface treatment) or 

adhesive chemistry or curing processing procedure. The adhesive and adherend interface clearly has a 

large influence on the fatigue behaviour of the single lap joint. 
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Figure 4 Measured crack length versus cycle numbers, (a) specimen F1 (Nf =364,060 

cycles), (b) F2 (Nf =180,138 cycles), (c) F3 (Nf =105,870 cycles), (d) F4 (Nf =200,192 

cycles); faster crack growth was observed from corners A and B (referring to Figure 1b).   

 

 
Figure 5 Fatigue crack growth life for the single lap joints based on (a) lead crack length 

from corners A and B (a1), and (b) secondary crack length from corners C and D (a2)  

2.5 Fatigue crack growth rate (FCGR) 

Determining crack length by eye can result in errors, (e.g. missing the first crack initiation point in the 

a-N curve) which can induce a significant effect on the a-N plots. Fatigue crack growth rate (FCGR) is 

therefore used as a more robust indicator of crack growth behaviour. FCGR was calculated from the 
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experimentally obtained a-N curves using the 7-point incremental polynominal method, specified by 

ASTM E647 [18]. 

 

Figure 4 showed that a1 (AB side) is always larger than a2 (CD side) and the crack growth rates at AB 

side and CD side are almost similar (the rates are slightly quicker at CD for F2 related to the bond 

quality). Therefore, the lead crack length a1 was used in calculating the crack growth rate, since it is 

the dominant crack (developed from the initial disbond). Figure 6 illustrates the crack growth rate of 

single lap joints. It can be seen that the initial crack growth increment of 1 mm (from the 5 mm initial 

disbond to 6 mm) is not covered. Although this early disbond growth is of practical interest, it is very 

difficult to observe this minor crack length at the initial stage, which is acknowledged as a limitation 

of the experimental procedure. It should also be noted from Figure 6 that the differences in FCGR of 

specimen F1 and other specimens are significant, due to the differences between the a-N curves of 

these specimens. For instance, Figure 5a shows that crack growth in F1 is very gradual compared to 

the results for F2 and F4 which show a rapid increase in FCGR at around 200,000 cycles. 

Consequently, F1 has a much longer fatigue life as it shows the effect of the fillet in hindering crack 

initiation and growth (by comparing a-N curves with F2-F4). Test F3 experienced much faster crack 

propagation due to interface surface quality (Fig. 4c) which might be arisen from anomalies in the 

manufacturing process (e.g. size tolerance and adhesive chemistry). Although specimen F1 is 

geometrically slightly different at the initial cycles from the other three specimens (the adhesive fillet 

was removed in F2-F4), the results for F1 are still included in calculations of FCGR in crack 

propagation phase, as FCGR is related to the stage where crack has already propagated.  

 
Figure 6 Fatigue crack growth rate (FCGR) calculated from the a vs. N relation using the 

lead crack length, a1 
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3. Modelling and life prediction 

3.1 Finite element based models 

The FE modelling work was carried out in the ABAQUS/CAE code 6.14 Package. The models of lap 

joints follow the actual specimen geometry and dimensions (excluding the tabbed area), as illustrated 

in Figure 1a. The elastic properties of the quasi-isotropic laminate and adhesive used in the finite 

element model are summarised in Table 1. The adherend elastic properties were calculated using the 

laminate theory and the adhesive properties were taken from the data provided in [9]. 

 
Table 1 Elastic properties of adherends and adhesive  

 
   

(GPa) 

   

(GPa) 
    

    

(GPa) 

Adherend 8552/IM7 

([0/45/90/-45]S) 
63.17 63.17 0.32 14.08 

Adhesive FM94 [9] 3 3 0.3 1.15 

 

A 2D plane strain finite element model was used to reduce the computational expense. For lap joints 

with full-width initial disbond, experimental observations found no significant variations in crack 

length across the width of the specimen and it is therefore reasonable assume a uniform crack front 

and to analyse the crack propagation problem with 2D plane strain elements. Figure 7 shows the 2D 

finite element model of the single lap joint, with details of the initial crack geometry. For a more 

complete understanding of the joint behaviour, two modelling scenarios have been taken into account:  

(1) the first case considers only lead crack length a1, ignoring the contribution of secondary crack 

length a2. (Based on the observation crack growth in specimen F3, cracks from C&D sides were 

insignificant compared to the cracks from A&B) ;  

(2) the other case considers lead crack length a1 under the influence of secondary crack length a2, 

which is more representative of the actual behaviour. The change of crack length a2 in the 

model is set to a1 according to the SERR ratio calculated at the crack tips of a1 and a2. 

All the modelling work was based on the adhesion failure suggested by the experimental results. The 

crack tip SERR was obtained from the VCCT method. Boundary conditions were applied such that the 

displacement of all the nodes at one end was restrained in the x and y directions, whilst those at the 

other end were restrained in the y direction only and the maximum cyclic load Pmax in the fatigue 

testing was applied in the x direction. A refined mesh was used at the interface corner (0.5×0.5 mm
2
 

based on a mesh sensitivity study) as it experiences the highest stress (and stress gradients) and 

therefore a smaller mesh size necessary to capture the rapid change in stress and energy release during 

crack propagation at this location with sufficient accuracy. A tie constraint was defined at the interface 

between the bottom adherend and the adhesive, which allowed the nodes of the respective surfaces to 

have coupled behaviour with identical motion. For the disbond, a contact interaction is defined 

between the top adherend and the adhesive with the bonded area restricted to a certain region (which 
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excludes the pre-crack). The FE analysis was conducted with geometric non-linearity to capture the 

effects of out-of-plane-bending.  

 

Figure 7 Finite element model of the joint and mesh details at the bond overlap region; 

two scenarios were assumed: Case 1 considers only the lead crack a1 propagating from 

the initial disbond; Case 2 reflects lead crack a1 under the influence of a secondary crack 

a2; mesh size is 0.5 x 0.5 mm
2
 based on a mesh sensitivity study. 

 

3.2 Calculation of SERR 

The total SERR was employed for the crack growth integration, since for the relatively thin adherends 

(e.g. 2 mm) the total SERR and equivalent SERR were shown to provide similar predictions [19]. 

Figure 8a compares the calculated SERR components, GI and GII, under quasi-static load, for both 

cases obtained from FEA:  

(1) lead crack a1 alone, and  

(2) lead crack a1 under the influence of secondary crack a2. 

 
Figure 8b presents the calculated total SERR considering these two cases. For both cases, it can be 

seen that mode II gives the greater strain energy release, but that the contribution of mode I is not 

negligible (particularly during the initial stages). However, there are significant differences in how the 

SERR varies with crack length for Case 1 and Case 2.    

 

For case 1, it can be seen that both mode I and mode II increase as the crack grows, but that at larger 

crack lengths, mode II SERR increases significantly due to the geometric non-linearity resulting from 

the large bending moment effect. As the crack propagates to the end, mode I decreases and mode II 

increases suddenly to failure.  

 
For case 2, mode II SERR increases from both runouts up to a maximum value halfway along the joint 

overlap, while mode I SERR reaches its lowest value at the same point as the cracks propagates from 

both runout ends. 

 
In terms of SERRs, case 2 seems to be more appropriate to describe the general conditions of the 

propagation while case 1 defines a more conservative scenario which could result in a longer predicted 

fatigue life. It can be concluded that for lap joint configuration, the total crack length grows faster if 
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cracks grow from both sides of the lap joint than if a crack grows from just one one side of the lap 

joint. 

 
Figure 8 (a) Calculated mode I and mode II SERR components in case 1 and case 2, GI 

and GII are at maximum cyclic load, (b) Comparison of total SERR between the case 1 

and case 2 
 
The mixed mode ratio is important as the joints experience mixed mode load during the entire fatigue 

life. The mode-mixity ratios are defined in Eq. (1) and Eq. (2), by dividing the mode I or mode II 

SERR component by the total SERR. Figure 9 plots the calculated mode-mixity ratio (ψ1 and ψ2) of 

the lap joint considering (a) a1 only and (b) a1 under influence of a2 based on the results in Figure 8. 

The mode-mixity ratios are approximately 0.5 during most of the fatigue life of the joint (i.e. as the 

crack length propagated from 5 mm to about 17 mm). The contribution of mode II becomes more 

important as the crack propagates along the overlap length, at which the crack propagation becomes 

unstable and the specimens suddenly fail. Thus, the relative contribution of the mode I and mode II 

components to the crack propagation is continuously changing at the final stage. 

   
  
  
 

  
      

 
(1) 

   
   
  
 

   
      

 
(2) 

 
Figure 9 Mode-mixity ratios (ψ1 and ψ2) of lap joint in adhesion failure considering (a) a1 

only and (b) a1 under influence of a2 
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3.3 Fatigue life prediction 

The Paris law (Eq. (3)) describes fatigue crack growth rate as a function of the SERR by correlating 

experimental data with two material constants C and m. It was originally developed for cracks in 

composite materials and is also used for predicting fatigue life for bonded joints [20]. The use of Gmax 

in the traditional Paris law has been challenged in [21, 22]. A lack of similitude with Gmax can result in 

trends being incorrectly attributed to test variables such as the applied stress ratio and residual stress 

[21]. In addition, the value range of the Paris law exponent (m) is much higher for FCG rate curves of 

composite laminates, which can lead to large uncertainties in the predicted delamination growth rate 

[22]. Therefore, the use of √  or the Hartman-Schijve relation was proposed for similitude to improve 

the prediction of fatigue delamination growth rate as it significantly reduces the value of the exponent 

[22]. However, these studies were focused on the fatigue delamination within composite laminates 

rather than disbond in adhesives. Martin and Murri [23] has found that for mode I cracks, the exponent 

ranges from 6.1 to 10.5 for composite laminates, indicating a relatively steeper slope of the FCG rate 

curve; however, the experimental tests in this study have found the exponent for mode I FCG rate in 

adhesive FM94 being around 4.5 to 6 (see Figure 10 and Table 2, and 2.5 to 5 for FM73 adhesive in 

[24]) and the FCG rate curves are much less steep than that of composite laminates (due to the relative 

brittleness of epoxy resin in a composite laminate when compared to the relative ductility of an 

adhesive). Therefore, in this study, the Paris law based on Gmax, Eq. (3), is applied for the prediction, 

which has already been successfully applied to the mixed mode behaviour of adhesive joints in [10]. 

In Figure 10, a good correlation of mode I data and separation of the mode I and mode II test data of 

the adhesive is clearly demonstrated. Integrating Eq. (3) leads to the cycle numbers required to 

propagate the initial crack to critical crack length, Eq. (4).   

  

  
  (    )

  
(3) 

   ∫   
  

 

 ∫
  

 (    )
 

  

  

 
(4) 

where Gmax used in this study is Gtot, max, and the values of the Paris law parameters C and m are 

determined from the experimental data.  

 
In determining the crack growth rate law, a DCB (mode I) and ENF (mode II) geometry made with 

8552/AS7 prepreg in a quasi-isotropic layup of [0/45/90/-45]2S bonded with FM94 adhesive were 

tested in the experimental programme. Schematic of DCB and ENF specimens is shown in Figure 10. 

The fatigue tests were conducted at a frequency of 5 Hz under displacement control and the stress ratio 

was 0.1. In analysing the DCB and ENF results, the SERR was calculated from experimental 

compliance and the FCGR was deduced from the a vs. N relation using 7-point polynomial method in 

the ASTM standard [19].  
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Figure 10 Geometry, materials and layup of (a) DCB and (b) ENF specimens in 

determining the fatigue disbond growth rate (unit: mm) 

 
In [9], fatigue tests were conducted on the FM94 adhesive bonded with aluminium substrates under 

the mode I and mode II loading, and also under mixed mode of 25% and 75%. Figure 11 shows the 

variation of crack growth rate (da/dN) with maximum SERR (Gmax) for the fatigue test. Two groups of 

data were found in Figure 11: one comprises mode I and all mixed modes apart from pure mode II, the 

other group contains pure mode II results. It is interesting to note that mixed mode tests containing 

25% and 75% of mode II have similar growth rates to those found in pure mode I tests when expressed 

in terms of maximum SERR (Gtot,max = GI, max+ GII,max). This is influenced by the presence of fibre 

carrier cloth in this adhesive that can bear the mode II loads. This trend is similar to previous work in 

[11, 12] with different composite materials, where results for mode I and mixed mode are similar to 

one another, but markedly different from pure mode II rate. The average fatigue delamination growth 

rate parameters of various mode ratios in Paris law obtained through delamination fatigue testing and 

used for fatigue life prediction are listed in Table 2. 

 
Figure 11 Measured fatigue crack growth rate versus the maximum total SERR for FM94 

adhesive under mixed mode cases. Black filled symbols in the left group are DCB 

adhesion failure (DCB-1) and mixed failure (DCB-2) (this study); in the right group show 
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ENF adhesion failure (ENF-1, 2); black unfilled symbols indicate the mixed mode and 

single mode tests taken from [9] in adhesion failure; black solid and dashed lines are the 

best fitted curves of mode I and mode II test results.  

Table 2 Paris law material constants for fatigue disbond growth rate of adhesive FM94 under various 

mode ratios obtained from tests (Fig. 11) (in mm/cycle, J/m
2
 unit) 

Mixed mode ratio (ψ2) C log C m 

0 (mode I, best fitted values) 5.75×10
-17 

-16.24 4.86 

0.25 1.91×10
-20

 -19.72 6.30 

0.75 7.24×10
-15

 -14.14 

 

4.59 

1 (mode II, best fitted values) 

)vavalues) 

4.07×10
-22

 -21.39 5.98 

 
Russell et al. [25] defined a linear rule of mixtures of the individual propagation rates between various 

mode ratios. Blanco et al. [26] expressed the non-monotonic relationship on the effect of the mixed 

mode ratio on the fatigue delamination growth rates. It is suggested that the dependency of the Paris 

law parameters is due to a complex interaction of fibre bridging, matrix cracking and brittle fracture 

behavior.  

 
Figure 12 shows the calculated Paris law coefficients at various mode ratios. This figure completely 

interprets the fatigue disbond growth data in Figure 11. It can be seen that the Paris law expression of 

different failure modes has almost the same trend, that’s why the values of the Paris law exponent (m) 

in Figure 12b are almost identical (from 4.59 to 6.30). However, the Paris law coefficient (log C) is 

scattered as it indicates the intersection of the disbond growth data with the da/dN axis. The material 

constants for mode-mixity (ψ2) of 0.25 and 0.75 were taken from literature [9], there might be some 

possibilities of fabrication and bonding issues that makes the point slightly away from the fitting 

curve. However, these mixed mode data are necessary as they indicate the particular behaviour of 

fatigue disbond growth rate of this adhesive, which is not the case for the other adhesives, such as 

FM73. Although the small sample size limits the robustness of the conclusions that can be drawn 

regarding variations of Paris law coefficients under mixed mode loading, a linear fit curve is used to 

interpolate the relationship of coefficients and exponents with the mixed mode ratio. Extensive 

experimental testing to generate a robust data set is a clear requirement to underpin further work in 

this area.  
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Figure 12 Linear fit curves of (a) the coefficient and (b) the exponent in the Paris law vs. 

the mixed mode ratio, log Ci = -1.86Ψ2 -16.33, mi = -0.28Ψ2 +5.31  

3.4 Prediction vs. test results: model validation 

Predicted fatigue life was obtained by numerical integration of the Paris law using Eq. (4). The crack 

propagation can be artificially divided into many integration segments, such as, crack extension from 5 

to 6 mm. When the integration segment is sufficiently small, the crack growth rate during this crack 

growth period can be assumed to be constant. Therefore, by inputting the mixed mode material data 

and the calculated SERR values, the fatigue life of certain crack growth period can be calculated by 

the integration. For the entire fatigue life, the lower limit of integration a0 is the initial crack length at 

the beginning of the propagation, which is 5 mm in this study, and the upper limit is the total joint 

failure, i.e., Gtot > Gcritical. Figure 13 shows the fatigue life prediction obtained by the models based on 

the total life results considering cracks either from one runout end (a1 only) or both runout ends (a1 

under influence of a2). Note that for consistency, a1 is used as the dominant crack length in the da/dN 

plots.  

 

It can be seen from the modelling results that the initial crack growth rate is slow (due to the small 

SERR values) and cracks propagate slowly. As the number of cycles accumulates, the crack begins to 

propagate faster with the increasing SERR values, followed by a sudden failure. The fatigue life 

obtained with the prediction growth of a1 without the influence of a2 forms a lower bound to the 

experimental results for crack growth (and correlates well with the data from specimen F1). The 

fatigue life obtained with the prediction growth of a1 under influence of a2 keeps increasing and 

developing between F2 and F3, resulting in a fatigue life prediction that is more realistic in most cases. 

In general, the experimental data are within the prediction bound except F3, which grew faster and 

failed in a very short life (see fracture surface in Figure 4c). This comparison has successfully 

demonstrated the applicability of the prediction models, which can cover the scatters in the fatigue 

tests. 
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Figure 13 Fatigue life predictions based on the Gtot parameter for fatigue tests considering 

lead crack from initial disbond (a1 only) and the two crack scenario (a1 under influence of 

a2) and comparison with experimental test results.  
 

Figure 14 shows fatigue crack propagation rate (da/dN) against crack length (a1) based on the Gtot 

parameters from both modelling (lines) and experiments (data points). The use of da/dN vs. a curves is 

to eliminate the potential large errors in predicted fatigue life which would be introduced if the first 

prediction point in the a-N curve was inaccurate. The predicted da/dN covers almost half decade of the 

legend (from 2×10
-5

 to 6×10
-5

) at the initial crack length, indicating the significant influence of another 

cracks a2 occurring due to fatigue load history. Cracks from both sides (a1 under influence of a2) 

propagated faster than one dominant crack from one side (a1 only). The experimental results of FCGR 

data of the joints are all within the range of the FE modelling prediction (the lower and upper bound 

are covered), which demonstrates the predictive capabilities of the FCGR approach.  

 
Figure 14 Comparison of predicted fatigue crack growth rates (calculated from crack 

propagation life curves in Figure 13) and comparison with experimental tests 
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4. Conclusions 

Crack growth behaviour in adhesive bonded lap joints was modelled and fatigue crack propagation life 

was predicted based on finite element calculated strain energy release rates and numerical integration 

of the material’s fatigue crack propagation rate data from single mode and mixed mode tests. The 

following conclusions are drawn: 

1. In fatigue tests, although the initial disbond was located at one end of the overlap, a second crack 

initiated and propagated from the opposite end owing to high interlaminar stresses at the joint 

runout. With the aid of injected red ink, the crack propagation front was observed showing an 

approximately uniform profile.  

2. Using mixed mode fatigue crack growth rate data is necessary as the disbond cracks in the lap 

joints were subjected to mixed mode conditions.  

3. In addition to the lead crack propagation from the initial disbond, the initiation and propagation of 

a second crack from the opposite end of the joint overlap was also modelled. Predicted crack 

growth life is longer than the test result (i.e. non-conservative prediction) if only considering the 

dominant crack propagating from the initial disbond, whilst the predicted life is shorter if crack 

propagation from both runout ends representing a more severe crack growth scenario. These two 

possibilities provide the upper and lower bounds in the predicted fatigue crack growth rate and 

cover the variations and scatters found in the experimental test results.  
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