A linear acoustic model for multi-cylinder IC engine intake manifolds including the effects of the intake throttle
Date published
Free to read from
Supervisor/s
Journal Title
Journal ISSN
Volume Title
Publisher
Department
Type
ISSN
Format
Citation
Abstract
This paper presents a linear acoustic model of a multi-cylinder intake manifold that can be used as part of a hybrid time/frequency domain method to calculate the intake wave dynamics of practical naturally aspirated engines.
The method allows the user to construct a model of almost any manifold of complex geometry. The model is constructed as an assemblage of sub-models:
(i) A model for a straight pipe with both ends open and through-flow.
(ii) A model for an expansion chamber consisting of three lengths of pipe laid end-to-end: a narrow bore pipe expanding into a wide bore pipe contracting into a narrower bore pipe once more.
(iii) A model of a side-branch, which includes a model for a straight pipe with one end closed and a model for the three way junction that joins the side-branch to a length of flow pipe.
(iv) A model for an expansion with two (or more) side-branches, which combines the sub-models (i, ii, iii) into a multi-way (n-way) junction model.
(v) A model for an intake throttle.
Good agreement with measurement has been found for each sub-model when bench-tested in isolation and encouraging agreement has been found when many sub-models are used together to model a complex intake manifold on a running engine.