Role of acid hydrocarbon chain length on the cure kinetics and thermal degradation of epoxy- dicarboxylic acid vitrimers

dc.contributor.authorShen, Shouqi
dc.contributor.authorSkordos, Alexandros A.
dc.date.accessioned2025-02-24T14:09:45Z
dc.date.available2025-02-24T14:09:45Z
dc.date.freetoread2025-02-24
dc.date.issued2025-03-19
dc.date.pubOnline2025-02-21
dc.description.abstractThis study investigates the cure kinetics and thermal degradation of epoxy-dicarboxylic acid vitrimers, focusing on the effect of methylene chain length. A diffusion-controlled, modified autocatalytic kinetics model was applied, based on Differential Scanning Calorimetry (DSC) data, whilst Thermogravimetric Analysis (TGA) was used to assess degradation. Increasing the methylene chain length enhanced thermal stability, with decomposition temperatures ranging from 430 °C for the hexanedioic acid formulation to 500 °C for the tetradecanedioic acid formulation. The curing process transitioned through three distinct kinetics regimes: an initial non-catalysed phase, followed by an autocatalytic stage, and finally, a diffusion-limited phase at high crosslink density. This shift leads to a 30 %-70 % reduction in apparent activation energy during the early stages. The activation energy displays a complex behaviour, initially decreasing with longer methylene sequences before rising due to competing effects of chain flexibility and reduced reactivity. Kissinger and isoconversional analyses confirmed reliable activation energy values. Despite some discrepancies in the dodecanedioic acid formulation due to secondary reactions, the model exhibits a good approximation, with an average goodness-of-fit of 84.4 %. This analysis improves understanding of vitrimer cure kinetics and thermal behaviour, providing insights for optimising industrial applications.
dc.description.journalNameEuropean Polymer Journal
dc.identifier.citationShen S, Skordos AA. (2025) Role of acid hydrocarbon chain length on the cure kinetics and thermal degradation of epoxy- dicarboxylic acid vitrimers. European Polymer Journal, Volume 228, March 2025, Article number 113812
dc.identifier.elementsID563973
dc.identifier.issn0014-3057
dc.identifier.paperNo113812
dc.identifier.urihttps://doi.org/10.1016/j.eurpolymj.2025.113812
dc.identifier.urihttps://dspace.lib.cranfield.ac.uk/handle/1826/23515
dc.identifier.volumeNo228
dc.languageEnglish
dc.language.isoen
dc.publisherElsevier
dc.publisher.urihttps://www.sciencedirect.com/science/article/pii/S0014305725001004?via%3Dihub
dc.relation.isreferencedbyhttps://doi.org/10.6084/m9.figshare.27060847
dc.rightsAttribution 4.0 Internationalen
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subjectVitrimers
dc.subjectEpoxy resins
dc.subjectDicarboxylic acids
dc.subjectCure kinetics
dc.subjectThermal degradation
dc.subjectDifferential Scanning Calorimetry (DSC)
dc.subjectThermogravimetric Analysis (TGA)
dc.subject40 Engineering
dc.subject4016 Materials Engineering
dc.subject7 Affordable and Clean Energy
dc.subjectPolymers
dc.subject3403 Macromolecular and materials chemistry
dc.subject4016 Materials engineering
dc.titleRole of acid hydrocarbon chain length on the cure kinetics and thermal degradation of epoxy- dicarboxylic acid vitrimers
dc.typeArticle
dc.type.subtypeArticle
dcterms.dateAccepted2025-02-06

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Role_of_acid-2025.pdf
Size:
2.04 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.63 KB
Format:
Plain Text
Description: