Thermal Performance of a Multi-Axis Smoothing Cell

dc.contributor.advisorComley, Paul
dc.contributor.advisorShore, Paul
dc.contributor.authorGeorgiou, Charalambos Andrew
dc.date.accessioned2012-12-10T14:55:08Z
dc.date.available2012-12-10T14:55:08Z
dc.date.issued2011-05
dc.description.abstractMulti Axis Robots have traditionally been used in industry for pick and place, de-burring, and welding operations. Increasing technological advances have broadened their application and today robots are increasingly being used for higher precision applications in the medical and nuclear sectors. In order to use robots in such roles it is important to understand their performance. Thermal effects in machine tools are acknowledged to account for up to 70% of all errors (Bryan J. , 1990) and therefore need to be considered. This research investigates thermal influences on the accuracy and repeatability of a six degree of freedom robotic arm, which forms an integral part of a smoothing cell. The cell forms part of a process chain currently being developed for the processing of high accuracy freeform surfaces, intended for use on the next generation of ground based telescopes. The robot studied was a FANUC 710i/50 with a lapping spindle the end effector. The robot geometric motions were characterised and the structure was thermally mapped at the latter velocity. The thermal mapping identified the key areas of the robot structure requiring more detailed analysis. Further investigation looked into thermal variations in conjunction with geometric measurements in order to characterise the robot thermal performance. Results showed thermal variations of up to 13ºC over a period of six hours, these produced errors of up to 100μm over the 1300mm working stroke slow. Thermal modelling carried out predicted geometric variation of 70μm to 122μm for thermal variations up to 13ºC over a period of six hours. The modelling was 50% to 75% efficient in predicting thermal error magnitudes in the X axis. With the geometric and modelling data a recommendation for offline compensation would enable significant improvement in the robots positioning capability to be achieved.en_UK
dc.identifier.urihttp://dspace.lib.cranfield.ac.uk/handle/1826/7671
dc.language.isoenen_UK
dc.publisherCranfield Universityen_UK
dc.rights© Cranfield University 2011. All rights reserved. No part of this publication may be reproduced without the written permission of the copyright owner.en_UK
dc.subjectRoboten_UK
dc.subjectThermal Performanceen_UK
dc.subjectThermal Modelen_UK
dc.subjectGeometric Performanceen_UK
dc.subjectOpticsen_UK
dc.titleThermal Performance of a Multi-Axis Smoothing Cellen_UK
dc.typeThesis or dissertationen_UK
dc.type.qualificationlevelMastersen_UK
dc.type.qualificationnameMSc by Researchen_UK

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Charalambos_Andrew_Georgiou_Thesis_2011.pdf
Size:
6.67 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.79 KB
Format:
Item-specific license agreed upon to submission
Description: