Study of power plant with carbon dioxide capture ability through modelling and simulation

dc.contributor.advisorYeung, Hoi
dc.contributor.authorBiliyok, Chechet
dc.date.accessioned2017-06-23T14:26:13Z
dc.date.available2017-06-23T14:26:13Z
dc.date.issued2013-11
dc.description.abstractWith an increased urgency for global action towards climate change mitigation, this research was undertaken with the aim of evaluating post-combustion CO2 capture as an emission abatement strategy for gas-fired power plants. A dynamic rate-based model of a capture plant with MEA solvent was built, with imposed chemical equilibrium, and validated at pilot scale under transient conditions. The model predicted plant behaviour under multiple process inputs and disturbances. The validated model was next used to analyse the process and it was found that CO2 absorption is mass transfer limited. The model was then improved by explicitly adding reactions rate in the model continuity, the first such dynamic model to be reported for the capture process. The model is again validated and is observed to provide better predictions than the previous model. Next, high fidelity models of a gas-fired power plant, a scaled-up capture plant and a compression train were built and integrated for 90% CO2 capture. Steam for solvent regeneration is extracted from the power plant IP/LP crossover pipe. Net efficiency drops from 59% to 49%, with increased cooling water demand. A 40% exhaust gas recirculation resulted in a recovery of 1% efficiency, proving that enhanced mass transfer in the capture plant reduces solvent regeneration energy demands. Economic analysis reveals that overnight cost increases by 58% with CO2 capture, and cost of electricity by 30%. While this discourages deployment of capture technology, natural gas prices remain the largest driver for cost of electricity. Other integration approaches – using a dedicated boiler and steam extraction from the LP steam drum – were explored for operational flexibility, and their net efficiencies were found to be 40 and 45% respectively. Supplementary firing of exhaust gas may be a viable option for retrofit, as it is shown to minimise integrated plant output losses at a net efficiency of 43.5%. Areas identified for further study are solvent substitution, integrated plant part load operation, flexible control and use of rotating packed beds for CO2 capture.en_UK
dc.identifier.urihttp://dspace.lib.cranfield.ac.uk/handle/1826/12111
dc.language.isoenen_UK
dc.publisherCranfield Universityen_UK
dc.rights© Cranfield University, 2013. All rights reserved. No part of this publication may be reproduced without the written permission of the copyright holder.en_UK
dc.subjectpost-combustionen_UK
dc.subjectMEAen_UK
dc.subjectdynamic modellingen_UK
dc.subjectmodel validationen_UK
dc.subjectcombined cycleen_UK
dc.subjectNGCCen_UK
dc.subjectCCGTen_UK
dc.subjectExhaust gas recirculationen_UK
dc.subjectEGRen_UK
dc.titleStudy of power plant with carbon dioxide capture ability through modelling and simulationen_UK
dc.typeThesis or dissertationen_UK
dc.type.qualificationlevelDoctoralen_UK
dc.type.qualificationnamePhDen_UK

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Biliyok_C_S_2013.pdf
Size:
2.76 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.79 KB
Format:
Item-specific license agreed upon to submission
Description: