Data-efficient active weighting algorithm for composite adaptive control systems

dc.contributor.authorKim, Seong-hun
dc.contributor.authorLee, Hanna
dc.contributor.authorCho, Namhoon
dc.contributor.authorKim, Youdan
dc.date.accessioned2022-08-15T14:23:25Z
dc.date.available2022-08-15T14:23:25Z
dc.date.issued2022-08-09
dc.description.abstractWe propose an active weighting algorithm for composite adaptive control to reduce the state and estimate errors while maintaining the estimation quality. Unlike previous studies that construct the composite term by simply stacking, removing, and pausing observed data, the proposed method efficiently utilizes the data by providing a theoretical set of weights for observations that can actively manipulate the composite term to have desired characteristics. As an example, a convex optimization formulation is provided, which maximizes the minimum eigenvalue while keeping other constraints, and an illustrative numerical simulation is also presented.en_UK
dc.identifier.citationKim S-H, Lee H, Cho N, Kim Y. (2023) Data-efficient active weighting algorithm for composite adaptive control systems. IEEE Transactions on Automatic Control, Volume 68, Issue 5, May 2023, pp. 3086-3090en_UK
dc.identifier.issn0018-9286
dc.identifier.urihttps://doi.org/10.1109/TAC.2022.3197702
dc.identifier.urihttps://dspace.lib.cranfield.ac.uk/handle/1826/18320
dc.language.isoenen_UK
dc.publisherIEEEen_UK
dc.rightsAttribution-NonCommercial 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/*
dc.subjectComposite adaptive controlen_UK
dc.subjectParameter estimationen_UK
dc.subjectRank-one updateen_UK
dc.titleData-efficient active weighting algorithm for composite adaptive control systemsen_UK
dc.typeArticleen_UK

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Data-efficient_active_weighting_algorithm-2022.pdf
Size:
509.87 KB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.63 KB
Format:
Item-specific license agreed upon to submission
Description: