Numerical simulation of droplet dispersion and deposition in pipes

dc.contributor.advisorVerdin, Patrick G.
dc.contributor.authorLoyseau, Xavier F.
dc.date.accessioned2017-01-19T15:06:35Z
dc.date.available2017-01-19T15:06:35Z
dc.date.issued2016
dc.description.abstractMultiphase flows are commonly encountered in industrial processes but remain challenging to predict. The role of droplets in the setting of various flow patterns seen in pipes is capital. Being able to simulate accurately the motion, the dispersion, the deposition and the entrainment of droplets from a liquid film or pool would allow refining the various numerical models and would provide a useful insight to people involved with such flows. The PhD work summarised in this thesis aims at answering that ambitious goal, i.e. to reproduce the whole "life" of a cloud of droplets, with application to pipes and industrial systems. To the author’s knowledge, such study has never been realized with any open source computational fluid dynamics code such as OpenFOAM and in such details. An original surface-tracking motion has also been developed to solve wavy-stratified flows and droplets entrainment by extending OpenFOAM’s capabilities. The Lagrangian framework has been selected for this study as the relationship with various forces could be expressed directly and statistical information, including any Eulerian field if needed, could be retrieved.en_UK
dc.identifier.urihttp://dspace.lib.cranfield.ac.uk/handle/1826/11312
dc.publisherCranfield Universityen_UK
dc.rights© Cranfield University, 2016. All rights reserved. No part of this publication may be reproduced without the written permission of the copyright holder.en_UK
dc.titleNumerical simulation of droplet dispersion and deposition in pipesen_UK
dc.typeThesis or dissertationen_UK
dc.type.qualificationlevelDoctoralen_UK
dc.type.qualificationnamePhDen_UK

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Loyseau_X_2016.pdf
Size:
14.74 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.79 KB
Format:
Item-specific license agreed upon to submission
Description: