Impact of whale tubercles on the aerodynamics characteristics of F1 front wing - adjoint optimization
Date published
Free to read from
Supervisor/s
Journal Title
Journal ISSN
Volume Title
Publisher
Department
Type
ISSN
Format
Citation
Abstract
This research aimed to investigate the impact of varying tubercles frequency and amplitudeon the leading edge of a double-element Formula One (F1) front wing at two different ride heights in the pre-stall regime. A bio-inspired tubercle distribution was implemented, varying in amplitude and frequency across the span. Computational simulations were performed at 30m/s using the κ − ω SST model. The results showed that implementing bio-inspired tubercles on front wings did not improve aerodynamic efficiency at any ride height. The clean leading-edge model consistently achieved the highest lift-to-drag ratio at both ride heights. Configurations with various tubercle amplitude presented different results: for low-amplitude tubercles, the down force increased compared to the baseline at the cost of increased drag. Models with higher amplitude tubercles led to significant down force reduction due to flow separation, further diminishing aerodynamic performance. Variations in tubercle frequency had minimal impact on aerodynamic performances. Among the tubercle configurations tested, the model with the lowest amplitude and the fewest tubercles achieved the highest aerodynamic efficiency.