High-speed multi-dimensional relative navigation for uncooperative space objects

Date published

2019-05-03

Free to read from

Supervisor/s

Journal Title

Journal ISSN

Volume Title

Publisher

Elsevier

Department

Type

Article

ISSN

0094-5765

Format

Citation

Kechagias-Stamatis O, Aouf N, Richardson MA., (2019) High-speed multi-dimensional relative navigation for uncooperative space objects. Acta Astronautica, Volume 160, July 2019, pp. 388-400

Abstract

This work proposes a high-speed Light Detection and Ranging (LIDAR) based navigation architecture that is appropriate for uncooperative relative space navigation applications. In contrast to current solutions that exploit 3D LIDAR data, our architecture transforms the odometry problem from the 3D space into multiple 2.5D ones and completes the odometry problem by utilizing a recursive filtering scheme. Trials evaluate several current state-of-the-art 2D keypoint detection and local feature description methods as well as recursive filtering techniques on a number of simulated but credible scenarios that involve a satellite model developed by Thales Alenia Space (France). Most appealing performance is attained by the 2D keypoint detector Good Features to Track (GFFT) combined with the feature descriptor KAZE, that are further combined with either the H∞ or the Kalman recursive filter. Experimental results demonstrate that compared to current algorithms, the GFTT/KAZE combination is highly appealing affording one order of magnitude more accurate odometry and a very low processing burden, which depending on the competitor method, may exceed one order of magnitude faster computation.

Description

Software Description

Software Language

Github

Keywords

Multi-dimensional processing, Relative navigation, Spaceborne LIDAR, Uncooperative target

DOI

Rights

Attribution-NonCommercial-NoDerivatives 4.0 International

Relationships

Relationships

Supplements

Funder/s