A review on electric vehicle battery modelling: from lithium-ion toward lithium–sulphur
Date published
Free to read from
Supervisor/s
Journal Title
Journal ISSN
Volume Title
Publisher
Department
Type
ISSN
http://dx.doi.org/10.1016/j.rser.2015.12.009
Format
Citation
Abstract
Accurate prediction of range of an electric vehicle (EV) is a significant issue and a key market qualifier. EV range forecasting can be made practicable through the application of advanced modelling and estimation techniques. Battery modelling and state-of-charge estimation methods play a vital role in this area. In addition, battery modelling is essential for safe charging/discharging and optimal usage of batteries. Much existing work has been carried out on incumbent Lithium-ion (Li-ion) technologies, but these are reaching their theoretical limits and modern research is also exploring promising next-generation technologies such as Lithium–Sulphur (Li–S). This study reviews and discusses various battery modelling approaches including mathematical models, electrochemical models and electrical equivalent circuit models. After a general survey, the study explores the specific application of battery models in EV battery management systems, where models may have low fidelity to be fast enough to run in real-time applications. Two main categories are considered: reduced-order electrochemical models and equivalent circuit models. The particular challenges associated with Li–S batteries are explored, and it is concluded that the state-of-the-art in battery modelling is not sufficient for this chemistry, and new modelling approaches are needed.