Monitoring embedded flow networks using graph Fourier transform enabled sparse molecular relays
dc.contributor.author | Wei, Zhuangkun | |
dc.contributor.author | Pagani, Alessio | |
dc.contributor.author | Li, Bin | |
dc.contributor.author | Guo, Weisi | |
dc.date.accessioned | 2021-05-28T13:36:31Z | |
dc.date.available | 2021-05-28T13:36:31Z | |
dc.date.issued | 2020-03-06 | |
dc.description.abstract | Many embedded networks are difficult to monitor, such as water distribution networks (WDNs). A key challenge is how to use minimum sparse sensors to measure contamination and transmit contamination data to a hub for system analysis. Existing approaches deploy sensors using multi-objective optimisation and transmit the data using ground penetrating waves or fixed-line access. Here, for the first time, we introduce a novel molecular communication relay system, which is able to transmit the data report to the hub via the water-flow of WDN itself, and avoids the complex ground penetrating techniques. A water flow data-driven Graph Fourier Transform (GFT) sampling method is designed to inform the invariant orthogonal locations for deploying the molecular relay sensors. Each sensor encodes information via a DNA molecule that enables the common hub to reconstruct the full contamination information. Numerical simulation validates the proposed system, providing a pathway to integrate MC into macro-scale Digital Twin platforms for infrastructure monitoring. | en_UK |
dc.identifier.citation | Wei Z, Pagani A, Li B, Guo W. (2020) Monitoring embedded flow networks using graph Fourier transform enabled sparse molecular relays. IEEE Communications Letters, Volume 24, Issue 5, May 2020, pp. 986-990 | en_UK |
dc.identifier.issn | 1089-7798 | |
dc.identifier.uri | https://doi.org/10.1109/LCOMM.2020.2978835 | |
dc.identifier.uri | https://dspace.lib.cranfield.ac.uk/handle/1826/16725 | |
dc.language.iso | en | en_UK |
dc.publisher | IEEE | en_UK |
dc.rights | Attribution-NonCommercial 4.0 International | * |
dc.rights.uri | http://creativecommons.org/licenses/by-nc/4.0/ | * |
dc.subject | Molecular communication | en_UK |
dc.subject | graph Fourier transform | en_UK |
dc.subject | sensor deployment | en_UK |
dc.subject | water distribution network | en_UK |
dc.subject | network dynamics | en_UK |
dc.title | Monitoring embedded flow networks using graph Fourier transform enabled sparse molecular relays | en_UK |
dc.type | Article | en_UK |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- Monitoring_embedded_flow_networks_using_graph_Fourier_transform-2020.pdf
- Size:
- 2.81 MB
- Format:
- Adobe Portable Document Format
- Description:
License bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- license.txt
- Size:
- 1.63 KB
- Format:
- Item-specific license agreed upon to submission
- Description: