High-throughput screening of sulfur-resistant catalysts for steam methane reforming using machine learning and microkinetic modeling

Date published

2024-02-28

Free to read from

Supervisor/s

Journal Title

Journal ISSN

Volume Title

Publisher

American Chemical Society

Department

Type

Article

ISSN

2470-1343

Format

Citation

Wang S, Kasarapu SS, Clough PT. (2024) High-throughput screening of sulfur-resistant catalysts for steam methane reforming using machine learning and microkinetic modeling. ACS Omega, Volume 9, Issue 10, March 2024, pp. 12184 - 12194

Abstract

The catalytic activity of bimetallic catalysts for the steam methane reforming (SMR) reaction was extensively studied previously. However, the performance of these materials in the presence of sulfur-containing species is yet to be investigated. In this study, we propose a novel process aided by machine learning (ML) and microkinetic modeling for the rapid screening of sulfur-resistant bimetallic catalysts. First, various ML models were developed to predict atomic adsorption energies (C, H, O, and S) on bimetallic surfaces. Easily accessible physical and chemical properties of the metals and adsorbates were used as input features. The Ensemble learning, artificial neural network, and support vector regression models achieved the best performance with R2 values of 0.74, 0.71, and 0.70, respectively. A microkinetic model was then built based on the elementary steps of the SMR reaction. Finally, the microkinetic model, together with the atomic adsorption energies predicted by the Ensemble model, were used to screen over 500 bimetallic materials. Four Ge-based alloys (Ge3Cu1, Ge3Ni1, Ge3Co1, and Ge3Fe1) and the Ni3Cu1 alloy were identified as promising and cost-effective sulfur-resistant catalysts.

Description

Software Description

Software Language

Github

Keywords

DOI

Rights

Attribution 4.0 International

Relationships

Relationships

Supplements

Funder/s