Canonical variate dissimilarity analysis for process incipient fault detection
Date published
Free to read from
Authors
Supervisor/s
Journal Title
Journal ISSN
Volume Title
Publisher
Department
Type
ISSN
Format
Citation
Abstract
Early detection of incipient faults in industrial processes is increasingly becoming important, as these faults can slowly develop into serious abnormal events, an emergency situation, or even failure of critical equipment. Multivariate statistical process monitoring methods are currently established for abrupt fault detection. Among these, canonical variate analysis (CVA) was proven to be effective for dynamic process monitoring. However, the traditional CVA indices may not be sensitive enough for incipient faults. In this work, an extension of CVA, called the canonical variate dissimilarity analysis (CVDA), is proposed for process incipient fault detection in nonlinear dynamic processes under varying operating conditions. To handle non-Gaussian distributed data, kernel density estimation was used for computing detection limits. A CVA dissimilarity-based index has been demonstrated to outperform traditional CVA indices and other dissimilarity-based indices, namely DISSIM, RDTCSA, and GCCA, in terms of sensitivity when tested on slowly developing multiplicative and additive faults in a CSTR under closed-loop control and varying operating conditions.