Towards automating the sizing process in conceptual (airframe) systems architecting
Date published
Free to read from
Supervisor/s
Journal Title
Journal ISSN
Volume Title
Publisher
Department
Type
ISSN
Format
Citation
Abstract
Presented is a method for automated sizing of airframe systems, ultimately aiming to enable an efficient and interactive systems architecture evaluation process. The method takes as input the logical view of the system architecture. A source-sink approach combined with a Design Structure Matrix (DSM) sequencing algorithm is used to orchestrate the sequence of the sub-system sizing tasks. Bipartite graphs and a maximum matching algorithm are utilized to identify and construct the computational sizing workflows. A recursive algorithm, based on fundamental dimensions of additive physical quantities (e.g., weight, power, etc.) is employed to aggregate variables at the system level. The evaluation, based on representative test cases confirmed the correctness of the proposed method. The results also showed that the proposed approach overcomes certain limitations of existing methods and looks very promising as an initial systems architectural design enabler.
Description
Software Description
Software Language
Github
Keywords
DOI
Rights
Creative Commons Attribution-Non-Commercial 4.0 (CC BY-NC 4.0) You are free to: Share — copy and redistribute the material in any medium or format, Adapt — remix, transform, and build upon the material. The licensor cannot revoke these freedoms as long as you follow the license terms. Under the following terms: Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use. Information: Non-Commercial — You may not use the material for commercial purposes. No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.