End-to-end identification of autoregressive with exogenous input (ARX) models using neural networks

dc.contributor.authorDong, Aoxiang
dc.contributor.authorStarr, Andrew
dc.contributor.authorZhao, Yifan
dc.date.accessioned2025-01-28T14:08:27Z
dc.date.available2025-01-28T14:08:27Z
dc.date.freetoread2025-01-28
dc.date.issued2025-02-01
dc.date.pubOnline2024-12-25
dc.description.abstractTraditional parametric system identification methods usually rely on apriori knowledge of the targeted system, which may not always be available, especially for complex systems. Although neural networks (NNs) have been increasingly adopted in system identification, most studies have failed to derive interpretable parametric models for further analysis. In this paper, we propose a novel end-to-end autoregressive with exogenous input (ARX) model identification framework using NNs. An order-wise neural network structure is introduced and trained using a multitask learning approach to simultaneously identify both the model terms and coefficients of the ARX model. Through testing with various neural network backbones and training data sizes in different scenarios, we empirically demonstrate that the proposed framework can effectively identify an arbitrary stable ARX model with finite simulation training data. This study opens up a new research opportunity for parametric system identification by harnessing the power of deep learning.
dc.description.journalNameMachine Intelligence Research
dc.format.extent117-130
dc.identifier.citationDong A, Starr A, Zhao Y. (2025) End-to-end identification of autoregressive with exogenous input (ARX) models using neural networks. Machine Intelligence Research, Volume 22, Issue 1, February 2025, pp. 117-130
dc.identifier.eissn2731-5398
dc.identifier.elementsID562367
dc.identifier.issn2731-538X
dc.identifier.issueNo1
dc.identifier.urihttps://doi.org/10.1007/s11633-024-1523-3
dc.identifier.urihttps://dspace.lib.cranfield.ac.uk/handle/1826/23420
dc.identifier.volumeNo22
dc.language.isoen
dc.publisherSpringer
dc.publisher.urihttps://link.springer.com/article/10.1007/s11633-024-1523-3
dc.rightsAttribution 4.0 Internationalen
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subjectLinear system identification and estimation
dc.subjectlearning systems
dc.subjectmodel structure determination
dc.subjectmultivariable systems
dc.subjectdeep learning
dc.titleEnd-to-end identification of autoregressive with exogenous input (ARX) models using neural networks
dc.typeArticle
dc.type.subtypeArticle
dcterms.dateAccepted2024-08-09

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
End-to-end_identification-2024.pdf
Size:
9.69 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.63 KB
Format:
Plain Text
Description: