A deep mixture of experts network for drone trajectory intent classification and prediction using non-cooperative radar data
Date published
Free to read from
Supervisor/s
Journal Title
Journal ISSN
Volume Title
Publisher
Department
Type
ISSN
Format
Citation
Abstract
The intent prediction of unmanned aerial vehicles (UAVs) also known as drones is a challenging task due to the different mission profiles and tasks that the drone can perform. To alleviate this issue, this paper proposes a deep mixture of experts network to classify and predict drones trajectories measured from non-cooperative radars. Telemetry data of open-access datasets are converted to simulated radar tracks to generate a pool of heterogeneous trajectories and construct three independent datasets to train, validate, and test the proposed architecture. The network is composed of two main components: i) a deep network that predicts the class associated to the input trajectories and ii) a set of deep experts models that learns the extreme bounds of the trajectories in different future time steps. The proposed approach is tested and compared with different deep models to verify its effectiveness under different flight profiles and time-windows.