Optimisation of convective heat dissipation from ventilated brake discs

dc.contributor.advisorTirovic, Marko
dc.contributor.authorGalindo-Lopez, Carlos Hannover
dc.date.accessioned2015-05-26T16:18:49Z
dc.date.available2015-05-26T16:18:49Z
dc.date.issued2009-05
dc.description.abstractFast heat dissipation from brake discs is sought in current vehicles, where high power braking duties demand harmonic combination of strength, (undamped) disc mass and cooling abilities for a wide speed range. This work analyses the convective heat dissipation from ventilated brake discs and proposes means for its optimisation. The focus of research is the ventilation geometry of a standard brake disc with an outer diameter of 434mm and radial channels of 101mm in length. After analysing in detail data calculated with CFD simulations and from experimental work for various ventilation patterns, a parameter relating the local channel-averaged convective heat transfer coefficient to channel circumferential width, and radial location was derived. This new numerical parameter termed Flow Index, depicts graphically the link between channel geometry (width and position) to the heat transfer coefficient level attained. The FI was not only used as a tool to analyse the convective performance of conventional and new ventilation geometries, but it also allowed clear identification of changes necessary in the channel width in order to improve its convective heat transfer coefficients. New, optimised for convective heat transfer, ventilation geometries designed with the FI were achieved in this Thesis. Industrial (patenting) and academic applications are foreseen from the results of this Thesis and its future activities. Also, the work developed in this Thesis gives path and supporting frame for future research in the field of brake disc convective heat dissipation.en_UK
dc.identifier.urihttp://dspace.lib.cranfield.ac.uk/handle/1826/9196
dc.language.isoenen_UK
dc.publisherCranfield Universityen_UK
dc.rights© Cranfield University 2009. All rights reserved. No part of this publication may be reproduced without the written permission of the copyright holder.en_UK
dc.titleOptimisation of convective heat dissipation from ventilated brake discsen_UK
dc.typeThesis or dissertationen_UK
dc.type.qualificationlevelDoctoralen_UK
dc.type.qualificationnamePhDen_UK

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
C_Galindo-Lopez_Thesis_2009.pdf
Size:
22.66 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.79 KB
Format:
Item-specific license agreed upon to submission
Description: