Two-layer on-line parameter estimation for adaptive incremental backstepping flight control for a transport aircraft in uncertain conditions
Date published
Free to read from
Supervisor/s
Journal Title
Journal ISSN
Volume Title
Publisher
Department
Type
ISSN
Format
Citation
Abstract
Presence of uncertainties caused by unforeseen malfunctions of the actuator or changes in aircraft behavior could lead to aircraft loss of control during flight. The paper presents two-layer parameter estimation procedure augmenting Incremental Backstepping (IBKS) control algorithm designed for a large transport aircraft. IBKS uses angular accelerations and current control deflections to reduce the dependency on the aircraft model. However, it requires knowledge of the control effectiveness. The proposed identification technique is capable to detect possible problems such as a failure or presence of unknown actuator dynamics even in case of redundancy of control actuation. At the first layer, the system performs monitoring of possible failures. If a problem in one of the control direction is detected the algorithm initiates the second-layer identification determining the individual effectiveness of the each control surface involved in this control direction. Analysis revealed a high robustness of the IBKS to actuator failures. However, in severe conditions with a combination of multiple failures and presence of unmodelled actuator dynamics IBKS could lost stability. Meanwhile, proposed control derivative estimation procedure augmenting the IBKS control helps to sustain stability.