Spatial attention-based convolutional transformer for bearing remaining useful life prediction
Date published
Free to read from
Supervisor/s
Journal Title
Journal ISSN
Volume Title
Publisher
Department
Type
ISSN
Format
Citation
Abstract
The remaining useful life (RUL) prediction is of significance to the health management of bearings. Recently, deep learning has been widely investigated for bearing RUL prediction due to its great success in sequence learning. However, the improvement of the prediction accuracy of existing deep learning algorithms heavily relies on feature engineering such as handcrafted feature generation and time–frequency transformation, which increase the complexity and difficulty of the actual deployment. In this paper, a novel spatial attention-based convolutional transformer (SAConvFormer) is proposed to establish an accurate bearing RUL prediction model based on raw vibration data without prior knowledge or feature engineering. In this algorithm, firstly, a convolutional neural network enhanced by a spatial attention mechanism is proposed to squeeze the feature maps and extract the local and global features from raw bearing vibration data effectively. Then, the extracted senior features are fed into a transformer network to further explore the sequential patterns relevant to the bearing RUL. An experimental study using the XJTU-SY rolling bearings dataset revealed the merits of the proposed deep learning algorithm in terms of root-mean-square-error (RMSE) and mean-absolute-error (MAE) in comparison with other state-of-the-art algorithms.