Is the hyporheic zone relevant beyond the scientific community?

Citation

Lewandowski J, Arnon S, Banks E, Batelaan O, Betterle A, Broecker T, Coll C, Drummond JD, Gaona Garcia J, Galloway J, Gomez-Velez J, Grabowski RC, Herzog SP, Hinkelmann R, Höhne A, Hollender J, Horn MA, Jaeger A, Krause S, Prats AL, Magliozzi C, Meinikmann K, Mojarrad BB, Mueller BM, Peralta-Maraver I, Popp AL, Posselt M, Putschew A, Radke M, Raza M, Riml J, Robertson A, Rutere C, Schaper JL, Schirmer M, Schulz H, Shanafield M, Singh T, Ward AS, Wolke P, Wörman A & Wu L (2019) Is the hyporheic zone relevant beyond the scientific community? Water (Switzerland), Volume 1, Issue 11, 2019, Article number 2230

Abstract

Rivers are important ecosystems under continuous anthropogenic stresses. The hyporheic zone is a ubiquitous, reactive interface between the main channel and its surrounding sediments along the river network. We elaborate on the main physical, biological, and biogeochemical drivers and processes within the hyporheic zone that have been studied by multiple scientific disciplines for almost half a century. These previous efforts have shown that the hyporheic zone is a modulator for most metabolic stream processes and serves as a refuge and habitat for a diverse range of aquatic organisms. It also exerts a major control on river water quality by increasing the contact time with reactive environments, which in turn results in retention and transformation of nutrients, trace organic compounds, fine suspended particles, and microplastics, among others. The paper showcases the critical importance of hyporheic zones, both from a scientific and an applied perspective, and their role in ecosystem services to answer the question of the manuscript title. It identifies major research gaps in our understanding of hyporheic processes. In conclusion, we highlight the potential of hyporheic restoration to efficiently manage and reactivate ecosystem functions and services in river corridors.

Description

Software Description

Software Language

Github

Keywords

hyporheic zone, hyporheic exchange flow, surface water–groundwater exchange, ecosystem services, nutrient turnover, hyporheos, self-purification capacity, emerging pollutants, removal of trace organic compounds

DOI

Rights

Attribution 4.0 International

Relationships

Relationships

Supplements

Funder/s