Adversarial reconfigurable intelligent surface against physical layer key generation
Date published
Free to read from
Authors
Supervisor/s
Journal Title
Journal ISSN
Volume Title
Publisher
Department
Type
ISSN
Format
Citation
Abstract
The development of reconfigurable intelligent surfaces (RIS) has recently advanced the research of physical layer security (PLS). Beneficial impacts of RIS include but are not limited to offering a new degree-of-freedom (DoF) for key-less PLS optimization, and increasing channel randomness for physical layer secret key generation (PL-SKG). However, there is a lack of research studying how adversarial RIS can be used to attack and obtain legitimate secret keys generated by PL-SKG. In this work, we show an Eve-controlled adversarial RIS (Eve-RIS), by inserting into the legitimate channel a random and reciprocal channel, can partially reconstruct the secret keys from the legitimate PL-SKG process. To operationalize this concept, we design Eve-RIS schemes against two PL-SKG techniques used: (i) the CSI-based PL-SKG, and (ii) the two-way cross multiplication based PL-SKG. The channel probing at Eve-RIS is realized by compressed sensing designs with a small number of radio-frequency (RF) chains. Then, the optimal RIS phase is obtained by maximizing the Eve-RIS inserted deceiving channel. Our analysis and results show that even with a passive RIS, our proposed Eve-RIS can achieve a high key match rate with legitimate users, and is resistant to most of the current defensive approaches. This means the novel Eve-RIS provides a new eavesdropping threat on PL-SKG, which can spur new research areas to counter adversarial RIS attacks.