Lateral jet interaction with a supersonic crossflow

Date published

2010-10

Free to read from

Journal Title

Journal ISSN

Volume Title

Publisher

Cranfield University

Department

Type

Thesis or dissertation

ISSN

Format

Citation

Abstract

A lateral jet in a supersonic crossflow creates a highly complex three-dimensional flow field which is not easily predicted. The aim of this research was to assess the use of a RANS based CFD method to simulate a lateral jet in supersonic crossflow interaction by comparing the performance of available RANS turbulence models. Four turbulence models were trialled in increasingly complex configurations; a flat plate, a body of revolution and a body of revolution at incidence. The results of this numerical campaign were compared to existing experimental and numerical data. Overall the Spalart-Allmaras turbulence model provided the best fit to experimental data. The performance of the lateral jet as a reaction control system was assed by calculating the force and moment amplification factors. The predicted flowfield surrounding the interaction was analysed in detail and was shown to predict the accepted shock and vortical structures. The lateral jet interaction flowfield over a body of revolution was shown to be qualitatively the same as that over a flat plate. An experimental facility was designed and manufactured allowing the study of the lateral jet interaction in Cranfield University’s 2 ½” x 2 ½” supersonic windtunnel. The interaction was studied with a freestream Mach number of 1.8, 2.4 & 3.1 and over a range of pressure ratios (50≤PR≤200). Levels of unsteadiness in the interaction were measured using high bandwidth pressure transducers. The level of unsteadiness was quantified by calculating the OASPL of the pressure signal. OASPL was found to increase with increasing levels of PR or MPR and to decrease with increases of Mach number. The levels of unsteadiness found were low with the highest levels found downstream of the jet.

Description

Software Description

Software Language

Github

Keywords

High speed aerodynamics, sonic, underexpanded jet, reaction control system, side jet

DOI

Rights

© Cranfield University 2010. All rights reserved. No part of this publication may be reproduced without the written permission of the copyright owner.

Relationships

Relationships

Supplements

Funder/s