Application of model-based systems engineering for the integration of electric engines in electrified aircraft
Date published
Free to read from
Supervisor/s
Journal Title
Journal ISSN
Volume Title
Publisher
Department
Type
ISSN
Format
Citation
Abstract
The objective of green, carbon-neutral flights is propelling the innovation of newer propulsion systems. With this increased development of an interdisciplinary form of propulsion for aircraft, the integration burdens and efforts intensify. In literature, it is estimated that it takes 10-15 years to design and develop an aircraft. The expected date of entry for any hybrid electric aircraft is 2035-2040. Any innovation and effort to cut this time by any degree should be explored and analysed. One of the techniques that have the potential to help fast-track the research and development of interdisciplinary systems is Model-based System Engineering (MBSE). Various studies have shown the benefit of employing a model-based design strategy. The focus case study relates to the integration of the electric machine and the propeller, along with related sub-systems. For Hybrid Electric Propulsion (HEP), the electric machine and propeller need to be integrated and their interaction to be analysed. MBSE is proposed as a methodology that would help streamline the process of design and integration of the two systems. This study documents the exploration of connecting MBSE with current simulation and modelling of sub-systems in order to ensure the fulfilment of stakeholder needs and full system effectiveness. This paper establishes the research problem, and the approach to be pursued, and gives notice of first developments and expected follow-up work.