An explainable artificial intelligence (xAI) framework for improving trust in automated ATM tools
Date published
Free to read from
Supervisor/s
Journal Title
Journal ISSN
Volume Title
Publisher
Department
Type
ISSN
Format
Citation
Abstract
With the increased use of intelligent Decision Support Tools in Air Traffic Management (ATM) and inclusion of non-traditional entities, regulators and end users need assurance that new technologies such as Artificial Intelligence (AI) and Machine Learning (ML) are trustworthy and safe. Although there is a wide amount of research on the technologies themselves, there seem to be a gap between research projects and practical implementation due to different regulatory and practical challenges including the need for transparency and explainability of solutions. In order to help address these challenges, a novel framework to enable trust on AI-based automated solutions is presented based on current guidelines and end user feedback. Finally, recommendations are provided to bridge the gap between research and implementation of AI and ML-based solutions using our framework as a mechanism to aid advances of AI technology within ATM.