Mechanical stress effects on 550°C hot corrosion propagation rates in precipitation hardened Ni-base superalloys: CMSX-4, CM247LC DS and IN6203DS

Date published

2021-12-10

Free to read from

Supervisor/s

Journal Title

Journal ISSN

Volume Title

Publisher

Springer

Department

Type

Article

ISSN

0030-770X

Format

Citation

Chapman N, Gray S, Sumner J, Nicholls J. (2022) Mechanical stress effects on 550°C hot corrosion propagation rates in precipitation hardened Ni-base superalloys: CMSX-4, CM247LC DS and IN6203DS, Oxidation of Metals, Volume 97, Issue 3-4, April 2022, pp. 261–279

Abstract

Combinations of temperature, stress and hot corrosion may cause environmentally-assisted cracking in precipitation-hardened Ni-base superalloys, which is little understood. This research aims to increase current understanding by investigating the effects of mechanical stress on the hot corrosion propagation rate during corrosion-fatigue testing of CMSX-4, CM247LC DS and IN6203DS. The parameters used during the tests included a high R-ratio, high frequency, and a temperature of 550 °C. The results showed CMSX-4 experienced a predictable increase in the hot corrosion rate, CM247LC DS also experienced increased rates, but no obvious trend was apparent; whilst IN6203DS showed no evidence of an increased rate. These different behaviours appear to be a result of an interaction between the mechanical stress and microstructural features, which include gamma-prime volume fractions in both the matrix and eutectic regions, along with the distribution of the eutectic structure. The different behaviours in the hot corrosion propagation rate subsequently affected the respective corrosion fatigue results, with both CMSX-4 and CM247LC DS experiencing fracture but with significantly more scatter involved in the CM247LC DS results. All IN6203DS corrosion-fatigue specimens completed the respective tests without fracture and showed no evidence of cracking. It, therefore, appears that precipitation hardened Ni-base superalloys, which are susceptible to environmentally-assisted cracking, also experience increased hot corrosion propagation rates.

Description

Software Description

Software Language

Github

Keywords

High-temperature mechanical properties, Strengthening mechanisms

DOI

Rights

Attribution 4.0 International

Relationships

Relationships

Supplements

Funder/s