Static and Dynamic Fracture of Structural Steel.

dc.contributor.advisorHancock, P.
dc.contributor.advisorSpurrier, J.
dc.contributor.authorSmith, Paul
dc.date.accessioned2009-03-19T15:12:52Z
dc.date.available2009-03-19T15:12:52Z
dc.date.issued1983-11
dc.description.abstractThe present study is concerned with the assessnent of structural steel fracture toughness, as close to real service loading conditions as practically possible in the laboratory, using small scale specimens. The effects of stored strain energy content is evaluated for slow-static and dynamic COD tests for maximum load and cleavage instability. The literature reviews elastic-plastic fracture mechanics and goes on to study the effect of stored strain energy, the COD technique and dynamic testing procedures presently available. Static and dynamic fracture toughness testing using the COD technique is carried out on BS4360 - 50D structural steel in its normalised state. The testing procedures used closely relate to either the BS5762 COD standard or BS5447 plane strain standard. The specimen size tested is 2B =U= 24 mn, with a fatigue notch size of approximately a/W between 0.48 and 0.57. Photographic-macros and SEM fractography were carried out after the specimens were tested to assess the micromechanism processes operative during a fracture test. It is believed the present work is of special significance to determinate structural design using structural steel, for example with liquefied gas pressure vessels. The resulting test data available from this thesis is envisaged to be the closest approach to real service "true limit severity", and consequently is beneficial to fracture prevention technology.en_UK
dc.identifier.urihttp://hdl.handle.net/1826/3286
dc.language.isoenen_UK
dc.publisherCranfield Universityen_UK
dc.titleStatic and Dynamic Fracture of Structural Steel.en_UK
dc.typeThesis or dissertationen_UK
dc.type.qualificationlevelDoctoralen_UK
dc.type.qualificationnamePhDen_UK

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Paul Smith Thesis 1983.pdf
Size:
34.07 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.88 KB
Format:
Item-specific license agreed upon to submission
Description: